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Abstract

Background: Amyloids are proteins capable of forming fibrils whose intramolecular contact sites assume densely
packed zipper pattern. Their oligomers can underlie serious diseases, e.g. Alzheimer’s and Parkinson’s diseases.
Recent studies show that short segments of aminoacids can be responsible for amyloidogenic properties of a
protein. A few hundreds of such peptides have been experimentally found but experimental testing of all
candidates is currently not feasible. Here we propose an original machine learning method for classification of
aminoacid sequences, based on discovering a segment with a discriminative pattern of site-specific co-occurrences
between sequence elements. The pattern is based on the positions of residues with correlated occurrence over a
sliding window of a specified length. The algorithm first recognizes the most relevant training segment in each
positive training instance. Then the classification is based on maximal distances between co-occurrence matrix of
the relevant segments in positive training sequences and the matrix from negative training segments. The method
was applied for studying sequences of aminoacids with regard to their amyloidogenic properties.

Results: Our method was first trained on available datasets of hexapeptides with the amyloidogenic classification,
using 5 or 6-residue sliding windows. Depending on the choice of training and testing datasets, the area under ROC
curve obtained the value up to 0.80 for experimental, and 0.95 for computationally generated (with 3D profile method)
datasets. Importantly, the results on 5-residue segments were not significantly worse, although the classification required
that algorithm first recognized the most relevant training segments. The dataset of long sequences, such as sup35 prion
and a few other amyloid proteins, were applied to test the method and gave encouraging results. Our web tool FISH
Amyloid was trained on all available experimental data 4-10 residues long, offers prediction of amyloidogenic segments
in protein sequences.

Conclusions: We proposed a new original classification method which recognizes co-occurrence patterns in sequences.
The method reveals characteristic classification pattern of the data and finds the segments where its scoring is the
strongest, also in long training sequences. Applied to the problem of amyloidogenic segments recognition, it showed a
good potential for classification problems in bioinformatics.
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Background
Amyloids are proteins which aggregate into oligomers
and then fibrils that accumulate in cells. Their intramo-
lecular contact sites form a characteristic zipper pattern.
Although a few functional amyloids are known, the ma-
jority of proteins lose their physiological function when
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they aggregate and they become cytotoxic for cells [1-5].
The exact reason for this cytotoxicity is still unclear but
many studies show that intermediate oligomeric struc-
tures are the main culprits. The number of amyloido-
genic diseases following misfolding of a protein into the
amyloid is constantly increasing and include Alzheimer’s
disease (amyloid-β, tau), Parkinson’s disease (α-synuclein),
type 2 diabetes (amylin), Creutzfeldt-Jakob’s disease (prion
protein), Huntington’s disease (huntington), amyotrophic
lateral sclerosis (SOD1), and many others (for a review see
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e.g. [6]). They affect constantly increasing number of
people, especially in well developed countries. Recognition
of factors responsible for protein misfolding can contrib-
ute to better understanding of its mechanisms and poten-
tial drug design. Recent studies indicate that there may be
certain protein sequence determinants responsible for
their affinity to form amyloids. These may be short seg-
ments of aminoacids, which are called hot spots [7,8].
Those fragments are harmless only when they are buried
inside a protein. The amyloidogenic fragments responsible
for amyloidogenicity of the whole protein are believed to be
4-10 residues long and it is often assumed that 6-residue
fragments of amyloidogenic properties are typical “hot
spots” [9]. Recognition of amyloidogenic fragments can be
obtained by computational approach, for example physico-
chemical methods, e.g. Tango [9], ZipperDB [10,11], Fol-
dAmyloid [12,13], Pasta [14,15], AggreScan [16], PreAmyl
[17], Zyggregator [18], CamFold [19], NetCSSP [20], Amy-
loidMutant [21,22], BetaScan [23], and consensus Amyl-
Pred [24]. Statistical methods have also been employed in
the classification. In our previous work we used classical
machine learning methods [25] implemented in WEKA
[26]. Other methods include Waltz [27] using Position Spe-
cific Scoring Matrices (PSSM), or Bayessian classifier and
weighted decision tree applied to long sequences of bacter-
ial antibodies [28]. A few hundreds of amyloid peptides
have been experimentally found, although the dataset is
very limited. Also computational methods generate data-
bases of potential amyloids, such as 3D profile [9,29], which
is a physicochemical method that generated the most nu-
merous computational dataset – ZipperDB [30].
In this manuscript we propose a new machine learning

method for the identification of amyloidogenic segments
in amino acid sequences, based on the presence of a seg-
ment with the highest scoring for co-occurrence of residue
pairs. By application of a sliding window, the algorithm all
by itself recognizes the most relevant training segments in
positive training instances.

Methods
Machine learning method
Our classification method is based on the assumption
that aminoacid sequences (such as amyloidogenic frag-
ments) exhibit certain, well defined, pattern of residue
distribution, which is position specific and, most import-
antly, involves co-occurrence of two aminoacids at different
positions. For example, the pattern would not only include
a high chance of valine occurrence at position 2, but also
the valine would entail isoleucine at position 4. The pattern
should be contained in one segment and limited in length.
A pattern in the negative dataset is not important, as long
as it is different from that of the positive set. However, it
may happen that the discriminative pattern is more pro-
nounced in the negative set - we also test our method with
this regard. To investigate the co-occurrence pattern, a rele-
vant window length needs to be specified. This window is
equivalent to the minimal fragment of a protein sequence
displaying the classification property.
First, the negative training dataset (NO) is divided into

segments of the selected length n (here 5 or 6) by shifting
the window of one position each time. We assume that
there is no special segment in peptides from the negative
dataset. Therefore, all generated negative segments equally
contribute to their representative pattern and calculation
of the classification threshold (described later in this sec-
tion) used for discrimination between negative and positive
test sequences. If the negative instances exhibit a pattern, it
will be naturally averaged, hence removed, due to the shift-
ing window. Pairs of aminoacids from all the segments are
counted in the matrix MatrixNO (the explanation of co-
occurrence matrices is presented in Figure 1), which repre-
sents occurrence of specific aminoacid couples with regard
to their positions in the segments.
Next, the dataset of positive training instances (YES)

undergoes similar procedure, generating MatrixYES. How-
ever, in contrast to the negative training instances, each
positive training sequence can include segments respon-
sible for amyloidogenicity of the sequence, whose location
is not known, as well as segments lacking the pattern. Our
method finds and takes into account only those segments
which display the classification co-occurrence pattern in
the most pronounced way, neglecting others. Hence, only
one window (e.g. with the highest chance of amyloidogeni-
city) is selected in each positive training sequence, and
each positive training sequence contributes only one seg-
ment to MatrixYES. Graphical representation of the final
matrix which is used in the classification is presented in
Figure 2. The most frequent couples of aminoacids (repre-
sented by numbers 1-20), from the selected 5-residue win-
dows, assume the darkest color of the dot.
The most relevant segments in positive training se-

quences, carrying the classification pattern, are found in
the iterative procedure that selects those which are most
distant from the averaged pattern of negative segments, as
well as closest to the segments selected from other posi-
tive sequences. The distance, w, between positive and
negative segments is represented by a sum of elements of
array MatrixYES divided by MatrixNo. The procedure,
resulting with the choice of optimal segments in the set of
positive training fragments, gives the maximum distance
value, wd, which is used in the classification procedure as
a threshold value.
In the classification of test sequences, a distance wl is

defined, which is an a’priori assumed ratio of wd (between
0 and 1), providing a threshold value used in the classifica-
tion test of sequences. Detailed training algorithm of the
method is presented in Figure 2. In the classification of
the test set (or a set of unclassified sequences), the greatest



Figure 1 Construction of the co-occurrence matrix. Construction
of the co-occurrence matrix (for the simplicity windows are of length
4, and 3 sub-matrices are generated in each direction of the general
matrix). Coordinates of the general matrix (large numbers) represent
the location of aminoacids in the sequences. Each aminoacid is
represented by a number between 1 and 20 (ordered alphabetically),
located within sub-matrices. For example, the point highlighted in
red would indicate a high co-occurrence score between lysine (K) at
position 1 of the sequence and tryptophan (W) at position 3 of
the sequence. Figure 2 Training algorithm. Training algorithm of the method. Here

YES (NO) denotes the set of positive (negative) training sequences,
including nYES (nNO) number of instances, which are tested with a
window of a length n; MatrixYES (MatrixNO) are corresponding co-
occurrence matrices with coordinates i and j; k denotes the subsequent
number of a positive training sequence, Mk is a temporary positive
correlation matrix obtained up to the k-th sequence, a denotes the
beginning position of a tested window; X is the normalized sum of all
previously calculated matrices M; l is an iteration counter; w denotes
distance between current positive and negative co-occurrence matrices,
wd is the maximal distance later used in the classification.
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actual distance ratio, ws, between MatrixYES of the tested
sequence and MatrixNO is calculated. If ws assumes a
value greater than a selected value of wl then the window
is classified as positive (Figure 2).
The overall quality of the classifier was evaluated with

Area under Receiver Operating Characteristic (ROC) curve
(AUC ROC). The value of the AUC ROC can range from
zero to one, with the score of 0.5 corresponding to random
guess and the score of 1 indicating perfect separation. Two
methods of testing our machine learning method were ap-
plied: either the same set was used for training and valid-
ation or the method was trained on one dataset and tested
on another one. In the first case, 4-fold cross-validation
method was used and the mean result of AUC ROC was
reported. Additionally, for evaluation of the method, we
used Sensitivity (Sn), which is the ratio of correctly classi-
fied positive fragments and Specificity (Sp), the ratio of cor-
rectly classified negative fragments. They are defined in the
following:

Sn ¼ TP= TPþ FNð Þ
Sp ¼ TN= TNþ FPð Þ

where TP, FP, FN and TN represent the numbers of true
positives, false positives, false negatives and true nega-
tives, respectively.
Datasets
Our classification method was first trained and validated
on 3 experimental datasets of short peptide fragments,
specifying their amyloid or β-aggregation propensities:
AmylHex [9] with 6-residue sequences including 67 posi-
tive and 91 negative, Waltz [27] with 6-residue sequences
including 49 positive and 71 negative, Tango (TG, tested
for aggregation) [9] with a variable (4-43) residue frag-
ments including 71 positive and 172 negative instances,
downloaded from FoldAmyloid database [31]. The choice
of experimental datasets is very limited since very few data
are available, and our choice included all of them. Unfortu-
nately, all these datasets are biased, which can influence
the results of machine learning.
To compare the performance of our classification method

with classical machine learning methods, we used another



Table 1 Classification results

Training set (horizontal)
TG Waltz AmylHex

Tested set (vertical)

sliding window of length 5

TG 0.75 | 0.62 0.82 | 0.21 0.77 | 0.42

Waltz 0.62 | 0.60 0.69 | 0.60 0.59 | 0.51

AmylHex 0.69 | 0.60 0.84 | 0.31 0.81 | 0.47

sliding window of length 6

TG 0.76 | 0.57 0.77 | 0.30 0.78 | 0.44

Waltz 0.54 | 0.45 0.69 | 0.61 0.61 | 0.43

AmylHex 0.48 | 0.57 0.82 | 0.25 0.79 | 0.47

AUC ROC of the classification results with two window lengths. To test if a
classification pattern is observable in the negative datasets, the training and
testing procedures were also applied on negative datasets (POSITIVE |
NEGATIVE); the positive datasets are in bold. Training dataset is defined
horizontally; testing dataset – vertically. Random classification (or no pattern in
a dataset) would obtain 0.5 and an ideal classifier 1.
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dataset of 4481 hexapeptides, which was computationally
obtained with the 3D profile method [25]. The 3D profile
method was originally proposed in [9] and applied in
ZipperDB to generate the database of amyloidogenic hexa-
peptides. This computational dataset was generated with a
faster version of the 3D profile algorithm [25]. It is not as
biased as the experimental datasets and it was previously
used in tests with a number of classical machine learning
methods [25].
Then, our classification method, trained with 5-residue

sliding window on the set of short peptides from Waltz
dataset [33], was tested on 4 full length amyloidogenic pro-
teins: amyloid-β and tau (Alzheimer’s disease), α-synuclein
(Parkinson’s disease), amylin (type 2 diabetes), and prion
protein sup-35 (Creutzfeldt-Jakob’s disease). The Waltz
dataset was selected for the training since it did not contain
fragments of the tested proteins. In these proteins, the
method indicated amyloidogenic regions, classified with
various values of the classification threshold wl, which were
compared with experimentally validated data.
Finally, we merged all the experimental datasets. The

full dataset included all experimentally tested peptides
from different groups, whose length did not exceed 10
aminoacids, and involved also fragments from prion sup35.
The full dataset consisted of 436 (146 positive and 290
negative) fragments (see Additional file 1). This dataset
was first used in 4-fold cross-validation of our method, and
then to train our web service FISH Amyloid, which is now
freely available for classification.

Results and discussion
Our method was trained on hexapeptides from different
datasets, using two sliding window lengths: 5 and 6 (note
that training on the 6-residue fragments with a window of
length 6 eliminates the stage of finding the most relevant
pattern-carrying, windows in the training and testing se-
quences). The results, obtained with different classification
threshold wl were represented as ROC curves.
Testing the quality of our new classification method and

comparing it with different methods could only be possible
while working with the same datasets as those state-of the-
art methods. Therefore, to compare the performance of our
method to classical machine learning methods, first we ran
tests on the non-biased computational dataset generated
with the physicochemical 3D profile method [9]. The result
can be used for comparison with other machine learning
methods since the same dataset was previously classified
with several classical machine learning methods imple-
mented in WEKA [25]. In this case, AUC ROC obtained
with our method was 0.95 for a 6-residue window and 0.87
for a 5-residue sliding window. Top results of the state of
the art methods from WEKA, working on hexapeptides,
were very similar. For example, neural network (multilayer
perceptron – MLP) and alternating decision tree, which
showed the highest performance for this dataset from
over 100 machine learning methods available in WEKA,
obtained AUC ROC= 0.96 [25]. This is very similar to our
results with the method presented here, obtained for the
6-residue window. Other classical methods implemented
in WEKA obtained lower quality. Moreover, the result of
new method was not significantly worse when it worked
on a sliding window of length 5, although it first required
that the algorithm finds the most relevant windows in the
training and testing sequences. Hence, the classification
quality of the new method presented here was very close
to the top results obtained with classical machine learning
methods on the same dataset. Moreover, none of the clas-
sical methods was capable of finding the most relevant
training window, which is an asset of our new method.
Then, the performance of our method was tested on ex-

perimental datasets, which are scarce and possibly incom-
patible with each other. Hence, we first used those datasets
separately. Depending on the applied experimental dataset,
the AUC ROC varied from 0.69 to 0.81 for a sliding win-
dow of length 5 and between 0.69 and 0.79 for a window of
length 6 (Table 1, main diagonals, bold font). Additionally,
to test if negative datasets could have discriminative pat-
terns, we ran the classifications in which the negative sets
were treated as “positive”. The results are presented in
Table 1 as a second number in each field, showing that
many of those negative datasets are biased. Only the values
close to 0.5 mean the lack of any characteristic pattern.
By combining different datasets and testing one versus
another, we could observe how compatible they are with
each other (Table 1, non-diagonal). The AUC ROC values
were lower in this case, showing that the available datasets
are often incompatible.
The performance of our method was then compared to

two state of the art tools for classification of amyloidogenic
hot spots: Waltz, which was based on the most numerous



Table 2 Tests on prion sup35 fragments

Positive fragments Classification result ws

7–17 GNNQQNYQQY + 0.34

16–26 YSQNGNQQQG - 0.08

28–38 RYQGYQAYNA + 0.21

43–53 GGYYQNYQGY + 0.53

46–56 YQNYQGYSGY + 0.53

52–62 YSGYQQGGYQ + 0.16

55–65 YQQGGYQQYN + 0.13

94–104 PQGGRGNYKN - 0.09

103–113 NFNYNNNLQG + 0.22

106–116 YNNNLQGYQA + 0.17

109–119 NLQGYQAGFQ + 0.17

127–137 NDFQKQQKQA - 0.11

Negative fragments

67-76 AGYQQQYNPQ + 0.17

70-79 QQQYNPQGGY - 0.08

73-82 YNPQGGYQQY - 0.06

76-85 QGGYQQYNPQ + 0.13

79-88 YQQYNPQGGY + 0.13

82-91 YNPQGGYQQQ - 0.03

139-148 KPKKTLKLVS - 0.09

142-151 KTLKLVSSSG - 0.09

145-154 KLVSSSGIKL - 0.12

148-157 SSSGIKLANA - 0,12

151-160 GIKLANATKK - 0,07

154-163 LANATKKVGT - 0,07

157-166 ATKKVGTKPA - 0,03

160-169 KVGTKPAESD - 0,03

163-172 TKPAESDKKE - 0,03

166-175 AESDKKEEEK - 0.03

169-178 DKKEEEKSAE - 0.03

172-181 EEEKSAETKE - 0.03

175-184 KSAETKEPTK - 0.06

178-187 ETKEPTKEPT - 0.06

181-190 EPTKEPTKVE - 0.06

184-193 KEPTKVEEPV - 0.09

187-196 TKVEEPVKKE - 0.09

190-199 EEPVKKEEKP - 0.03

193-202 VKKEEKPVQT - 0.03

196-205 EEKPVQTEEK - 0.03

199-208 PVQTEEKTEE - 0.11

202-211 TEEKTEEKSE - 0.11

205-214 KTEEKSELPK - 0.08

208-217 EKSELPKVED - 0.08

211-220 ELPKVEDLKI - 0.11

Table 2 Tests on prion sup35 fragments (Continued)

Sensitivity 0.75

Specificity 0.91

Classification efficiency tested on fragments of prion sup35. The method was
trained on Waltz dataset with a sliding window 5-residue long, classification
coefficient was set to wl = 0.13. Emphasized are windows recognized by the
classification method as potentially the most positive (amyloidogenic) of the
whole tested fragment; the fragments obtained the actual distance value ws

(window of a greatest distance).
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individual dataset tested above, and FoldAmyloid using a
combination of several experimental datasets. The authors
of Waltz show [27, Addenum Figure 1] that their method
trained on Waltz hexapeptides and tested on AmylHex
dataset generated ROC curve with diagonal coordinates
Sn = 83% and Sp = 83% (Waltz) and Sp = 89% and Sn =
89% (cross-validated Waltz), AUC ROC was not reported.
Our method, trained on 5-residue sliding windows from
Waltz dataset and tested on AmylHex obtained Sn = 79%,
Sp = 78%, and AUC ROC= 0.81. Cross-validation of Waltz
was reported at the level of Sn = 84%, Sp = 92% [27]. (Our
method, in the more demanding mode i.e. with a sliding
window of length 5, trained on the Waltz dataset, ob-
tained AUC ROC of 0.69 and diagonal point of the ROC
curve was Sn = 63% and Sp = 63%). However, an independ-
ent test on fragments from prion sup35 showed the
adventage of our method. Waltz authors reported Sn =
58%, Sp = 90%, while our method (also trained on the
Waltz dataset but with a 5-residue long sliding window)
obtained Sn = 70% and Sp = 91% (Table 2). For compari-
son, the authors of Waltz also reported the sensitivity of
computational 3D profile method on sup35 positive set,
which was Sn = 67% [27].
With the optimal parameters, FoldAmyloid was reported

to obtain: for the scale of the expected packing density Sn =
75%, Sp= 74%, for the donor scale Sn = 69%, Sp= 78%, for
the acceptor scale Sn = 0.77 and Sp= 74% [13]. Our method,
trained on the same dataset as FoldAmyloid, with a 5-
residue sliding window, obtained AUC ROC= 0.82, the di-
agonal point of the ROC curve was Sn = 75% and Sp= 75%.
We also tested our method on full length amyloid pro-

teins. For all full protein independent tests we were using
our method trained on hexapeptides from Waltz dataset,
which does not include their fragments [27]. To apply a full
version of our algorithm, with recognition of the most rele-
vant windows in the positive training instances, we applied
a window of length 5. Four full-length amyloid proteins
were tested: amyloid-β, τ, amylin, and alpha-synuclein.
The results are presented in Figure 3, where black blocks
indicate location of amyloidogenic segments obtained with
wl = 0.14, which was equivalent to the specificity of 60%
obtained on Waltz dataset with a cross-validation method.
The brown blocks at the top of lines indicate where the
amyloidigenic segments would begin if a different wl value
would be assumed. We compared the classification results
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to the experimental data. The circles show amyloidogenic
segments obtained experimentally by different groups, work-
ing on protein fragments of various lengths. Amyloid-β:
13-24 HHQKLVFFAED, 11-26 EVHHQKLVFFAEDVG 48-
53 [9], amylin: 48-53 FLVHSS, 55-60 NFGAIL [9]; Alpha-
syn: 35-40 EGVLYV [27], 61-73 EQVTNVGGAVVTG,
66-74 VGGAVVTGV [27]; Tau: 274-279 KVQIIN [27],
306-311 VQIVYK [9,10,27].
The method was capable of finding most of the segments

that have already been experimentally confirmed. It can be
observed that other fragments have also been shown as
potential hot-spots, however most of them have not been
experimentally tested.
Finally, we merged all the experimental datasets to study

the application of our method for practical recognition of
the amyloidogenic sequences. The extended dataset con-
tained all experimentally studied peptides of 4-10 amino-
acids. Figure 4 presents the average-value ROC curve
obtained with our method on this dataset from 40 inde-
pendent trials by 4-fold cross-validation. The total AUC
ROC was 0.80 and the optimal (diagonal) classification
point had sensitivity Sn = 74% and specificity Sp = 74%. The
quantiles of 0.95, 0.85 and median are presented as a box-
plot at the diagonal classification point of the ROC curve.
Based on this extended experimental dataset, we trained

our method for finding amyloidogenic windows in aminoa-
cid sequences, and made it available as a web tool called
FISH Amyloid (Hot Spot Is Found in Amyloid - reversed),
which is currently available at http://www.comprec.pwr.
wroc.pl/COMPREC_home_page.html. The service uses 5-
residue sliding windows, both for training and classification,
displaying the score value at the beginning of each window.
Those residues that belong to at least one positive window
are classified as positive and denoted by “1”. The list of frag-
ments that constituted the extended dataset is also available
at the service site.
The classification on the extended dataset was also

compared with the performance of Waltz and Fold-
Amyloid (packing density) methods. Using 75% of data

http://www.comprec.pwr.wroc.pl/COMPREC_home_page.html
http://www.comprec.pwr.wroc.pl/COMPREC_home_page.html


Table 3 Co-localized pairs of aminoacids

2 3 4 5

All + sup35

1 S-F, G-V S-V, Y-N S-I, Y-Y, L-Y, I-I S-I, Y-Q

2 F-L, T-V V-I, T-I, V-Y, F-I R-R, T-I, V-I

3 V-I, L-I, N-Y V-I, L-V

4 I-I, I-F, Y-R, Y-I

The co-occurrence pattern obtained with the sliding window of length 5 after
training on extended experimental dataset. The first letter of each pair corresponds
to the window location indicated by vertical numbers, the second letter to a
number indicated horizontally. The table was obtained from data presented in
Figure 5 after executing the cut off for the threshold of 0.4.
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in each of 4 test, FoldAmyloid showed Sn = 58%, Sp =
75%, Waltz obtained Sn = 71%, Sp = 83%, and FISH
Amyloid in the same 4 tests achieved Sn = 76% and Sp =
76% (see Additional file 1).
The most interesting feature of the method presented

here is its ability to reveal a co-occurrence pattern found
in the positive training dataset. The pattern includes pairs
of aminoacids with their positions, which most frequently
occur together. The patterns found in the full experimen-
tal dataset is presented in Figure 5. Table 3 shows the final
pairs after executing the cut-off at the threshold of 0.4.
Conclusions
We proposed an original classification method which
recognizes classification pattern in sequences, taking into
account position dependent frequency of aminoacids and
site specific co-occurrence between their pairs. The method
reveals the characteristic co-occurrence pattern of the data.
Moreover, it is able to find the segments with the co-
occurrence pattern of the highest scoring, also in long train-
ing sequences, and use them for the training. Our method
was applied to the problem of recognition of amyloidogenic
segments and it showed a good potential for their classifica-
tion. We obtained good results for a sliding window of
lengths 6 and 5. The web tool FISH Amyloid, using this
method trained on full experimental dataset of amyloid
fragments 4-10 aminoacids long, with 5-residue sliding win-
dow, is currently available at our server: http://www.com
prec.pwr.wroc.pl/COMPREC_home_page.html (it will be
moved to http://www.comprec.edu.pwr.wroc.pl/COMPRE
C_home_page.html). FISH Amyloid offers prediction of
amyloidogenic segments in protein sequences.
Additional file

Additional file 1: Full experimental dataset used in FISH Amyloid
and classification results of 3 computational methods.
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