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Abstract

Background: Protein inter-residue contact maps provide a translation and rotation invariant topological
representation of a protein. They can be used as an intermediary step in protein structure predictions. However,
the prediction of contact maps represents an unbalanced problem as far fewer examples of contacts than
non-contacts exist in a protein structure.

In this study we explore the possibility of completely eliminating the unbalanced nature of the contact map
prediction problem by predicting real-value distances between residues. Predicting full inter-residue distance maps
and applying them in protein structure predictions has been relatively unexplored in the past.

Results: We initially demonstrate that the use of native-like distance maps is able to reproduce 3D structures
almost identical to the targets, giving an average RMSD of 0.5A. In addition, the corrupted physical maps with an
introduced random error of +6A are able to reconstruct the targets within an average RMSD of 2A.

After demonstrating the reconstruction potential of distance maps, we develop two classes of predictors using
two-dimensional recursive neural networks: an ab initio predictor that relies only on the protein sequence and
evolutionary information, and a template-based predictor in which additional structural homology information is
provided. We find that the ab initio predictor is able to reproduce distances with an RMSD of 6A, regardless of the
evolutionary content provided. Furthermore, we show that the template-based predictor exploits both sequence
and structure information even in cases of dubious homology and outperforms the best template hit with a

clear margin of up to 3.7A.

Lastly, we demonstrate the ability of the two predictors to reconstruct the CASP9 targets shorter than 200 residues
producing the results similar to the state of the machine learning art approach implemented in the Distill server.

Conclusions: The methodology presented here, if complemented by more complex reconstruction protocols, can
represent a possible path to improve machine learning algorithms for 3D protein structure prediction. Moreover,
it can be used as an intermediary step in protein structure predictions either on its own or complemented by
NMR restraints.
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Background

The ability to correlate the function of a protein and its
three-dimensional (3D) structure is a challenge of funda-
mental importance in computational biology. However,
deciphering this structure-function relationship requires
the availability of much more structural data than expe-
rimental methods can currently provide. The lack of
structural data, in contrast to the wealth of existing
proteins sequences [1-3], has been addressed in the last
three decades by constructing different computational
models for predicting protein 3D structures from pri-
mary amino acid sequence information.

Existing structure prediction models are typically
divided into two broad categories: template-based and
ab initio. Template-based models utilize sequence and
structure similarity between an unknown protein, the so-
called ‘target’, and known structures, termed ‘templates’,
fathomed to be homologous to the target. This category of
models has become increasingly accurate in predicting the
structures of globular proteins over the last years [4-6].
However, the accuracy of template-based models strongly
relies on the degree of similarity between the target and
its templates, thus preventing its application to a signifi-
cant fraction of unannotated proteins. On the contrary,
the ab initio models are usually employed for proteins that
have no detectable homology to proteins of known struc-
ture and therefore these models are not nearly as accurate
as their template-based counterparts [4-6]. However, the
most prevalent ab initio models still utilize known protein
structures to some degree, ie. small structural fragments
with the strong sequence-structure relationship [7]. As
such, structural fragments are used as building blocks in
reconstructing the complete structure of the target pro-
tein. This process is typically governed by the use of statis-
tical constraints [7], force fields [8] and/or NMR spectra
[9]. Only recently, models that use only evolutionary
constraints have emerged [10,11].

In the absence of a reliable solution to the protein
structure prediction problem, some research groups
have focused on solving simplified problems such as the
prediction of protein structural features [12-14]. The
most frequently predicted structural features are: protein
secondary structure, relative solvent accessibility, contact
density and contact maps. Once these protein features
have been obtained, they can be used to guide the recon-
struction process implemented by a simple geometric-
based algorithm [15]. Among protein structural features,
contact maps have been proposed as an intermediate
step in assembling the unknown protein 3D structure
from its amino acid sequence [16-22]. Contact maps are
usually predicted in binary form, i.e. they contain infor-
mation about the mutual contact/non-contact between a
pair of residues or atoms, where a contact is defined
according to some distance cut-off criterion. Even though
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contact maps do not contain all information about a
protein, such as chirality, they do provide a good overall
topology of the protein structure. In fact, it has been
argued that a contact map with an adequate threshold for
a contact provides sufficient information to reconstruct
native or near-native structure [15]. Beyond the prediction
of protein structures, protein contact maps have been also
used in a number of other structural tasks, for instance
as protein fingerprints for rapid prediction of protein
structures similarity [23-25], in the prediction of protein
folding rates [26], protein disorder [27] and inter-domain
contact regions [28].

The prediction of contact maps represents an unbal-
anced problem as far fewer examples of contacts than
non-contacts exist in a protein structure. Therefore, it is
not surprising that the prediction accuracy of contact
maps is still low despite years of attempts [29]. To miti-
gate the unbalanced nature of contact/non-contact predic-
tions, a method that predicts 4-class distance maps has
recently been introduced [30]. The 4-class distance map
has been shown to improve both the residue contact
prediction and the C,-trace reconstruction compared to
its binary counterpart [30].

In this study we explore the possibility of completely
eliminating the unbalanced nature of the contact map
prediction problem by predicting real-value distances
rather than contacts. In particular, we predict an inter-
residue distance map, i.e. a 2D symmetric matrix whose
entry (i, j) represents the distance between residues i
and j along the protein sequence. Unlike binary and
multi-class contact maps where classifying distances into
a few states is somewhat arbitrary, a distance map
contains real distances between protein residues. As a
consequence, not only is the unbalanced nature of
the contact prediction eliminated, but also the poor
approximation of those distances in the vicinity of the
class boundaries.

The possibility of predicting inter-residue distances
has been relatively unexplored in the past. To our know-
ledge, only a few studies concerning inter-residue dis-
tances exist in the literature where a limited number of
distance restraints have been predicted [31,32] or only
an inter-residue distance distribution has been studied
[33,34]. Here, for the first time, we explore the possibil-
ity of predicting full inter-residue distance maps. In the
first part of this study, we examine the ability of native
distance maps to reconstruct near native protein struc-
tures. We show that native distance maps give rise to
more accurate C,-traces than native multi-class and
binary contact maps even when a random error of 6A is
added to the maps. Then, we describe two classes of
predictors developed here that are based on two-dimen-
sional recursive neural networks (2D RNN): an ab initio
predictor, which relies only on the protein sequence and
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evolutionary information, and a template-based predic-
tor in which additional structural homology information
is provided. In addition, we report on the average RMSD
between the native and predicted distance maps ob-
tained as outputs of the ab initio and template-based
predictors. In the final part of this study, we test the two
predictors in reconstructing protein structures of the
CASP9 targets and briefly gauge the quality of the
reconstructed traces.

Results

Reconstruction of Ca-traces using native contact and
distance maps

Our first question in this study is concerned with the
ability of distance maps to adequately reconstruct C,-
traces. With this in mind, we use native maps extracted
from 93 solved 3D structures of the CASP7 targets. The
CASP7 targets represent an ideal dataset for this
purpose due to their intermediate length (the average
number of residues per structure of 192 with 85% of
structures consisting of 100 to 300 residues) and the
variety of protein structural motifs they include. As a
reconstruction protocol we use a simple procedure
described in detail within the Methods section. Using
this reconstruction procedure we only enforce the
constraints encoded in the map and very basic geomet-
rical rules, such as the distances between neighbouring
C, atoms, the geometry of a-helices and [-strand
lengths. As a corollary, any improvement in reconstruc-
tion results using distance over coarse maps derive from
the wealth of structural constraints encoded in the
distance maps compared to their coarse counterparts.

In the following, we compare the quality of recon-
structions based on binary, 4-class and distance maps
when experimental constraints are known, that is the
maps are native. Binary contact maps are provided with
a distance cut-off of 12A between a contact and a non-
contact. Even though a threshold of 8A is commonly
used in the CASP experiments [35], the results of a 12A
threshold are presented here, as this threshold leads to
more accurate reconstructions in our tests, in agreement
with the conclusions from in [30,36]. The 4-class maps
are identical to those in [30] and include three threshold
values: 8A, 13A and 19A.

For each protein in the CASP7 dataset we run 10
folding simulations and select the best reconstructed
structure. As a measure of quality we use root mean
square deviation (RMSD), global distance test total score
(GDT_TS) and template modelling score (TM-score)
between the predicted and native structure. Unlike the
RMSD measure which is based on a single general
superposition between two structures, the GDT algo-
rithm is based on multiple local superpositions [37]. In
particular, the GDT_TS score reports the largest, not
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necessarily continuous, set of ‘equivalent’ residues that
deviate by no more than a particular distance cut-off
(1A, 2A, 4A and 8A). TM-score [38], on the other hand,
is a measure sensitive to the correctness of the global
topology rather than to the local structural errors. It lies
in the [0,1] interval, with values above 0.4 indicating a
model with a roughly correct topology, and values below
0.17 indicating random prediction regardless of the
protein size [38]. The RMSD, GDT_TS and TM-score
for the best simulation are averaged over all 93 CASP7
proteins and are reported in Table 1.

If more distance constraints are provided to the simple
reconstruction algorithm, it is expected that more accur-
ate structural predictions would follow. Therefore, it is
not surprising that the reconstruction based on the
native binary maps produces structures of the lowest
quality, with an average RMSD of 4.38A, a GDT_TS of
72% and a TM-score of 0.77 (Table 1). Native 4-class
maps include more distance constraints than their bin-
ary counterparts and lead to structures with an average
RMSD of 1.04A, a GDT_TS of 94% and a TM-score of
0.95. Finally, the reconstruction based on the native
distance maps that encode the real-value inter-residue
distances is able to reproduce even more accurate struc-
tures having an average RMSD of only 0.48A, a GDT_TS
of 99% and a TM-score of 0.99. The main problem expe-
rienced by the binary and 4-class contact maps in recon-
structing the near-native structures is observed in the
proteins with structurally disordered segments, e.g. the
long coils in a 250-residue structure of the T0381 target,
PDB ID: 212A (RMSDj_ciass = 6.94, RMSDyinary = 14.6A)
and a 100-residue structure of the T0309 target, PDB ID:
2H40 (RMSDy (jass = 2.5A, RMSDpinary = 12.0A). On the
other hand, the reconstruction protocol with distance
maps is able to reproduce the two structures with an
RMSD of 0.5A and 0.4A, respectively. Furthermore, the

Table 1 Reconstruction of C,-traces from native and
non-native maps

Maps RMSD [A] GDT_TS TM-score
Binary 438(090,1498) 072(042,096) 077 (0.29,097)
Binary + 3A 405 (150,1244) 064 (036,082  0.74 (042, 0.90)
Binary + 6A 426(254,978)  053(032,067) 064 (0.29,0.78)
4-Class 4 (047,690) 094 (0.73,1.00) 095 (0.79, 0.98)
4-Class + 3A 1(088,680) 085 (0.67,093) 090 (0.72, 0.96)
4Class + 6A  225(153,408) 070 (0.56,0.81) 1(057,088)
Distance 048 (0.22,087) 099 (094, 1.00)  0.99 (0.94, 0.998)
Distance + 3A 096 (066, 1.46) 092 (0.85,098) 094 (0.73, 0.99)
Distance + 6A 2(1.03,4200  081(057,088) 087 (048, 0.96)

The reconstruction of Cy-traces derived from binary contact maps, 4-class
contact maps and distance maps. The native maps and the maps with a
random error of 3A and 6A are used with the basic reconstruction protocol.
Average RMSD [A], GDT_TS [fraction] and TM-score, along with their range
(min, max) are reported using the CASP7 targets.
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reconstruction protocol and the distance maps of all
other structures give consistent results with an RMSD
being in the narrow range between 0.22A and 0.87A.

A non-native distance map conveys more structural
information than its coarse counterparts and, thus, is
expected to convey more errors at the same time. There-
fore, in the following we set out to investigate the impact
of distance constraints with various degrees of errors on
the used geometric reconstruction protocol. To this end
we generate binary, 4-class and distance native maps
with a random error of +3A and +6A for the same
CASP?7 targets, and further use them in the reconstruc-
tion protocol (Table 1). When an error of +3A is added
to the maps, the accuracy of the reproduced structures
decreases slightly using all of the three map types.
Distance maps still produce the best reconstruction
results (RMSD = 0.96A, GDT_TS = 92%, TM-score = 0.94),
followed by 4-class maps (RMSD =1.41A, GDT_TS = 85%,
TM-score=0.9) and binary maps (RMSD = 4.05A,
GDT_TS = 64%, TM-score = 0.74). Here, it is interesting
to point out that the lowest RMSD in the dataset always
deteriorates when the error is included in the maps,
whereas the largest RMSD value in the dataset and
the mean RMSD can even improve. On the other
hand, the corresponding values of GDT_TS and TM-
score (max, min and mean values) almost always deterior-
ate with an increase of the error. This confirms that for
low accuracy models RMSD is no longer a meaningful
measure of the quality of the models and GDT_TS and
TM-score should therefore be given precedence.

Finally, we increase a random error to +6A and calcu-
late the accuracy of the reconstructions. As expected,
the accuracy of the reconstructed structures decreases
further, but the folds in most structures remain essen-
tially the same. Even with an error as large as +6A,
distance maps still yield more accurate structures than
4-class and binary maps. Specifically, distance maps
produce structures with an average RMSD of 1.624A, a
GDT_TS of 81% and a TM-score of 0.87; 4-class maps
produce structures with an average RMSD of 2.25A, a
GDT_TS of 70% and a TM-score of 0.81; binary maps
produce structures with an average RMSD of 4.26A, a
GDT_TS of 53% and a TM-score of 0.64. Even though
distance maps and 4-class maps with a +6A error are
still able to reproduce accurate folds for the proteins,
the possible application of these models in structural
studies is more limited beyond this level of error.

Distance map prediction

After establishing the potential of distance maps in
protein 3D structure predictions, we set out to explore
the possibility of predicting distance maps using a
machine learning approach. For that purpose we build an
artificial neural network based on the 2D-RNN adaptive
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architecture, previously described in [17,39] and further
outlined here in Methods and Additional file. The 2D-
RNN-based model is used for mapping 2D matrices of
variable size into matrices of the same size. The output of
the model O represents the distance map itself, whereas
the input I encodes a set of pairwise properties of the
residues in the protein (Additional file 1: Figure S1). In
particular, the input vector I;; associated with j™ and k™
residue pair contains: evolutionary information, secondary
structure, solvent accessibility and contact density infor-
mation (Figure 1, Stage 2). The output vector O repre-
sents the predicted distance between the ;™ and k™
residue pair. To predict O;4, the 2D-RNN model learns
pairwise properties of different parts of the input space i.e.
the distance O;; will not depend only on information
contained in I;; but also to some degree on the I,,.;,.«
vectors associated with the properties of all other residue
pairs in the protein (Additional file 1: Figure S1).

We construct here two classes of models, a template-
based and an ab initio model. To dissect the importance
of evolutionary information on preserving inter-residue
distances in homologous proteins, we also compare ab
initio models that utilize various types of amino acid
information. In particular, we compare performances of
the ‘classical’ model which encodes the common 20
types of amino acids, the ‘complementarity’ model re-
stricted only to seven classes of amino acids playing a
crucial role in the stability of a protein fold (Methods),
and the ‘correlation’ model where amino acid infor-
mation is augmented by the correlated mutation signal
extracted from multiple sequence alignments (MSAs).
The correlation model provides the most informative
statistics among the three ab initio models, and there-
fore it is expected to outperform the other two. The
template-based model is expected to perform substan-
tially better than the ab initio models when reliable
templates are available, i.e. templates with more than
25-30% sequence identity to the query. All models are
trained using a dataset containing 3,645 proteins
shorter than 200 residues, described in detail in the
Methods section. The models are then tested using a
5-fold cross validation and results obtained are listed
in the following.

In Table 2 we report RMSDs obtained for the ab initio
and template-based distance predictions as a function of
sequence identity to the best template. According to
Table 2, the average RMSD between the native and
predicted distance maps obtained as outputs of the ab
initio and template-based classical models are 5.85A and
3.70A, respectively. The use of templates improves
predictions for every level of sequence identity to the
best template, except for the [0, 20%) identity range in
which the performances of the two systems are similar.
The gain is particularly substantial for higher sequence
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SECONDARY STRUCTURE

DISTANCE MAP RECONSTRUCTED STRUCTURE

‘CONTACTS & SOLVENT ACCESSIBILITY

PROTEIN SEQUENCE

Figure 1 The workflow of the algorithm. The overall workflow of the protein structure prediction algorithm on the example of Protein-Tyrosine
Phosphotase 1B (PDB ID: 2HNP). The first stage includes predictions of protein secondary structure, contact density and relative solvent accessibility, as
well as finding and ranking appropriate templates. Using the structural features from the first step, the distance map is predicted in the second stage.
In the last stage the actual 3D coordinates of all atoms and residues in the structure are reconstructed.

Table 2 Performance of the distance map algorithm
Seq. id [%] [0, 10) [10,20) [20,30) [30,40) [40,50) [50,60) [60,70) [70,80) [80,90) [90,95) All
Model

B 5734 6.5+3.5 44+£32 3.1+£2.1 26x16 24+15 2413 23+13 25+14 26+19 3.70+£2.9
(7.1) (7.1 (4.6) (33) (3.1 (2.5) (2.5) (2.3) (24) (2.8) (4.52)

Al classical 55+25 6.3+2.8 59425 58+2.6 56+19 5.7+20 55+1.9 56+20 6.0+2.9 6.1+3.2 5.85+2.6
(7.0) 6.9) (6.6) (6.5) (6.6) (6.3) (6.3) (6.5) 6.7) (6.8) (6.75)

Al 55+26 6.3+2.8 59426 58+£25 56£19 5.7%2.1 55%19 57%20 6.0£3.0 6.1£3.1 585+26

Compl. (7.1) (6.9) (6.7) (6.5) (6.6) (6.3) 6.2) (6:4) 6.7) (6.7) (6.75)

Al 56%26 6.3%2.5 59424 58+24 5.6x1.7 56x16 57%2.1 56%19 6.2+3.0 6.3£34 590+26

Correl. (7.1) (7.0) (6.7) 6.3) (6.6) (6.3) (6.6) (6.6) 6.8) (6.9) (6.81)

RMSD [A] of ab initio (Al) and template-based (TB) predictions of inter-residue distances as a function of sequence identity to the best template. RMSD is calculated
for all residue pairs belonging to the particular protein and then averaged for all proteins in the data set. Values in the brackets are obtained by averaging the
obtained RMSDs across the all residue pairs in the dataset.
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similarity (40-95%) and exceeds the value of 3A. An
example of the ab initio and template-based predicted
distance map for a protein with the best template
sequence identity of 23.5% is given in Figure 2. The top
right of either map depicts a native map, whereas the
bottom left represents a predicted map. While the ab
initio predicted map contains some error areas giving an
RMSD between the native and predicted distances of
5.5A, the template-based distance map correctly repro-
duces the native map giving an RMSD of 2.9A.

If one focuses on the value of RMSD between native
and predicted distances averaged for all residue pairs in
the test dataset (given in brackets in Table 2) and the
value of RMSD averaged on a protein level (given with-
out brackets in Table 2), it is obvious that distance-based
RMSDs are slightly higher than the corresponding
protein-based RMSDs for all levels of sequence identity.
This is a consequence of the fact that the prediction
capability of the algorithm deteriorates when the length
of the protein sequence increases.

We also report in Table 2 the performances of the
three ab initio models with different contents of lever-
aged evolutionary information: the classical, the comple-
mentarity and the correlation models. According to
Table 2, the performances of all three models are undis-
tinguishable and produce an average RMSD of: 5.85A,
5.85A and 5.90A, respectively. Furthermore, the models
are also tied for every level of sequence similarity imply-
ing that the evolutionary information in terms of classes
of amino acids with different physicochemical properties
provides sufficient information in predicting inter-residue
distances using this machine learning approach.

Inter-residue separation
Beside the overall prediction capability, it is also import-
ant to evaluate our model’s ability to predict distances at
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a specific inter-residue sequence separation. Distances
between residues belonging to the same secondary struc-
ture element (an a-helix or a -strand) are much easier
to predict than other inter-residue distances in the
protein. Accordingly, a P-strand can be recognized in
distance profiles by peaks at very short sequence se-
paration (up to 5 residues), whereas an a-helix can be
observed in the profiles up to a sequence separation of
20 residues [40]. Therefore, in Figures 3a-c we depict
RMSDs of the obtained distances predicted for residue
pairs with sequence separations between 6 and 11
residues, between 12 and 23 residues, and 24 residues
or more.

According to Figures 3a-c it is evident that distances
between neighbouring residues in sequence are pre-
dicted more accurately than distances between residues
far away in the sequence. In particular, the ab initio
model produces an overall RMSD of 3.9A for residues
with sequence separation between 6 and 11, an overall
RMSD of 59A for residues with sequence separation
between 12 and 23, and an overall RMSD of 7.3A for
residues separated by more than 24 amino acids in the
sequence. The template-based model improves overall
RMSD down to 2.6A for residues with sequence separ-
ation between 6 and 11, to 4.3A for residues with
sequence separation between 12 and 23, and to 6.0A
for residues separated by more than 24 amino acids
in the sequence. Moreover, if we compare the perfor-
mances of the models depending on the sequence
identity to the best template, then it is evident that
the template-based model outperforms its ab initio
counterpart for almost all sequence identity ranges
and sequence separations. The results between the
models are only comparable when the sequence iden-
tity to a query is [0, 10%) with the residues being 6
to 11 positions apart, and when the sequence identity

residue No
residue No

@
o

100

120

residue No

initio maps are 2.86A and 5.47A respectively.

residue No

Figure 2 An example of the distance map prediction. An example of the template-based (left) and ab initio (right) distance map predicted for
the protein with PDB ID: 3KHT (145 residues). The best template sequence identity to the query is 24.6%. Residue numbers are given on the axes,
whereas the inter-residue distances [A] are depicted by the colour scheme provided. Average RMSDs of the predicted template-based and ab

distance [A]
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B Ab Initio
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[0,10) [10,20) [20,30) [30,40) [40,50) [50,60) [60,70) [70,80) [80,90) [90,95)

Sequence identity to the best template identity, %

b) : : : .

12} — Templates | |
B b Initio

_ln,lu) [10,20) [20,30) [30,40) [40,50) [50.60) [60,70) [70,80) [80,90) ([90,95)
Sequence identity to the best template identity, %

[ Templates | |
B Ab initio

_[I),:ID) [10,20) [20,30) [30,40) [40,50) [50,60) [60,70) [70,80) [80,90) [90,95)
Sequence identity to the best template identity, %
Figure 3 Distance maps prediction vs. sequence separation. RMSD [A] of the classical model predictions for residue pairs with sequence

separation (a) between 6 and 11 residues (b) between 12 and 23 residues (c) of more than 23 residues. X-axis represents the sequence identity
between the query and the best template.
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to a query is [10, 20%) with the residues more than 24
positions apart in the sequence.

The template-based model

To quantify the improvement gained when templates are
included in this machine learning model, we report the
prediction of distances between residue pairs depending
on their coverage by the providing templates. Firstly, in
Table 3 we report results for only those residues not
covered by any template in the dataset. According to
Table 3, an average improvement of 1.8A in RMSD of
distance predictions using template-based predictors
over the ab initio predictors is reported. When the
model is able to identify good quality templates, the gain
becomes even more obvious with values as large as 4A
when the best template with sequence identity above
90% is identified.

In addition, in Table 4 we report the comparison
between predictions with the template-based model and
a baseline model. The baseline model is built from the
same templates used for training purposes. In the first
approach, the baseline model simply calculates distances
between residues in the best template i.e. the template
with the lowest PSI-BLAST e-value. In the second
approach, the baseline model is built using all templates
and their corresponding weights. The weights depend
on templates’ quality and sequence identity to the target.
This weighted baseline model corresponds to the way
the templates are presented to the neural networks and
it’s explained in the Methods section (see Equations 1, 2,
3, 4 and 5). The baseline models are not built using
comparative modelling software because this would
introduce a different degree of uncertainty depending on
the target.

According to Table 4, the overall RMSD obtained
using the template-based prediction of distances is 3.7A,
and represents a 1.4A (0.4A) improvement over to the
best template (the weighted baseline) model. If the
available best template is of a high quality (more than
50% of sequence identity), then the predictions between
the models become comparable, with the baseline model
performing slightly better by increasing the sequence
identity. On the other hand, in both the so-called
twilight [20, 30%) and midnight zone [0, 20%) of
sequence identity, where it is particularly hard to extract
information from the templates, the template-based

Table 3 Performance for non-template regions
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model outperforms the best template hit with a clear
margin of up to 3.7A, and the weighted average model
with a clear margin of up to 1.2A.

Modelling protein structures using distance maps and
CASP9 targets

In the final part of this study we examine the possible
application of the template-based and the ab initio models
of distance maps in the reconstruction of 3D protein
structures. To this end, we incorporate the procedure for
distance map prediction into a structure prediction pipe-
line given in Figure 1. The prediction pipeline is modular
and includes three steps. In the first step evolutionary
information leveraged from the MSA is used to predict
several structural features and to generate PDB templates.
Among the structural features secondary structure classes
(a-helix, B-strand, coil), relative solvent accessibility (sur-
face exposed, buried residue) and reside contacts are
predicted. Predictors of the structural features are based
on the class of neural networks called bidirectional re-
current neural networks (BRNNS), explained elsewhere
[13,41-45]. In the second step, the template-based and the
ab initio predictor developed in this study are imple-
mented. The predicted distance map output from this step
represents a topological representation of the protein 3D
structure. Finally, in the last step the actual 3D coordi-
nates of the protein atoms are reconstructed using the
restraints provided by the distance map and the basic geo-
metrical rules [15].

As a test dataset in the reconstruction process we use
27 free-modelling and 112 comparative-modelling CASP9
targets [46]. To assess the ability of the presented machine
learning approach in reconstructing 3D structures, we
benchmark the obtained result on the similar machine
learning approach participated in the CASP9 expe-
riment, named Distill. The Distill server predicts 4-
class distance maps and employs the reconstruction
protocol similar to the protocol explained here. However,
the reconstruction protocol implemented in Distill has an
additional fragment-based step (see Methods). To
benchmark the performance of the distance map ap-
proach to the corresponding contact map approach
we implement the identical reconstruction algorithm
here. The performances of the two algorithms are
listed in detail in Additional file 1: Table S3 and
summarized here in Table 5.

Seq. id [%] [0, 10) [10, 20) [20, 30) [30, 40) [40, 50) [50, 60) [60, 70) [70, 80) [80, 90) [90, 95) All
Model

TB classical 7.3 83 6.8 4.7 6.0 40 4.7 4.1 48 48 567
Al classical 7.1 7.5 79 7.7 88 84 7.1 85 9.5 9.2 746

RMSD [A] of ab initio (Al) and template-based (TB) predictions of inter-residue distances for non-template regions of the distance map.
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Table 4 Performance for template-covered regions

Seq. id [%] [0, 10) [10, 20) [20, 30) [30, 40) [40, 50) [50, 60) [60, 70) [70, 80) [80, 90) [90, 95) All
Model

TB classic. 6.7 6.0 39 30 2.5 1.9 1.8 1.9 1.9 1.9 37
Baseline 88 (7.3) 9.7 (7.2) 52 423) 329 2.7 (24) 1.9 (1.8) 1.6 (1.7) 1.9 (1.8) 1.8 (1.8) 1.8 (1.8) 51 4.1)

RMSD [A] of template-based (TB) predictions of inter-residue distances for template-covered regions of the distance map. Baseline is a predictor that copies the

distances from the best hit template or the weighted templates (given in brackets).

According to Additional file 1: Table S3 and Table 5
the reconstruction algorithm that uses distance maps
predicted by the template-base predictor reproduces the
CASP 9 targets with an average GDT_TS of 53.8% and a
TM-score of 0.62. The corresponding 4-class-based pre-
dictor produces the structures with an average GDT_TS
of 60.9% and a TM-score of 0.66. The results obtained
show that the distance map-based reconstruction pro-
duces the structures whose quality slightly degrades
compared to the corresponding structures obtained by
the 4-class map approach. The reported GDT_TS score
decreases by 7.1% on average, whereas the TM-score
decrease by 0.04 on average. The main reason for the
slight decrease in the performance of the distance-based
algorithm results from its inability to accurately repro-
duce structures longer than 200 residues. When targets
with sequence length below 200 amino acids are con-
sidered, the final results of the two methods become
comparable with an average TM-score of 0.56 and 0.55
for the 4-class based predictor and distance-map pre-
dictor, respectively (Additional file 1: Table S5).

When the reconstruction algorithm uses distance maps
predicted by the ab initio predictor, the performance of
the model significantly drops as expected (Additional
file 1: Table S3 and Table 5). Both the distance-based
and the 4-class-based reconstruction protocols give
similarly low performances: GDT_TS = 22%, TM-score =
0.24 when distance maps are used; and GDT_TS = 22%,
TM-score = 0.23 when 4-class maps are used. These re-
sults show that the current distance/contact map machine
learning approach is not able to reliably reproduce protein
structures using only protein sequence information
coupled with basic geometrical rules, and should be com-
plemented in the future by more complex reconstruction
protocol.

Table 5 Reconstruction of CASP 9 targets

Maps GDT_TS TM-score

4-Class (template) 0.61(0.11,0.97) 0.66 (0.18, 0.98)
4-Class (ab initio) 0.22 (0.09, 043) 0.23 (0.12,0.31)
Distance (template) 0.54 (0.11,091) 062 (0.15,091)
Distance (ab initio) 0.22 (0.07, 0.44) 024 (0.12,043)

The reconstruction of CASP 9 targets using predicted 4-class contact maps
and distance maps. Average GDT_TS [fraction] and TM-score, along with their
range (min, max) are reported.

Finally, we try to establish a correlation between the
quality of reconstruction with the quality of a predicted
distance map. This is similar to the approach summa-
rized in Table 1. However, instead of generating native
distance maps with certain amount of noise, we use the
distance maps predicted for the CASP9 targets and their
corresponding reconstructed structures. In Figure 4, we
show the dependence of the RMSD between the pre-
dicted and native distance maps, and the GDT_TS score
of the reconstructed structures. According to Figure 4,
there is a strong correlation between the quality of the
distance maps and the quality of the reconstructions
with a Pearson correlation coefficient of 0.78. This cor-
relation was independent of the secondary structure
content. For values of RMSD bellow 9A this dependence
is linear, whereas for values of RMSD above 9A the
reconstruction protocol produces structures of poor
quality. Similar to the previous conclusion (see Table 1),
it is evident that only the distance maps predicted with
the precision better than RMSD=6A can produce
meaningful structures (GDT_TS > 0.4) using this simple
reconstruction protocol. Distance maps of this quality
used with a more advanced reconstruction protocol can
represent a valuable approach in future protein structure
prediction efforts.

Discussion

We have explored the possibility of predicting protein
inter-residue distances using amino-acid information on
its own, or complemented by structural templates. The
prediction of inter-residue distances and other continu-
ous structural features in proteins in general has been
avoided in the past due to complexity of the problem in
comparison to the traditional methods that predict their
discrete counterparts. Only recently, have new models
that successfully predict continuous backbone torsion
angles emerged [47,48]. These models have shown that
the accurate prediction of continuous backbone tor-
sion angles can be obtained and hence more accurate
sampling of the protein conformational space can be
achieved. In light of this, we have developed a novel
machine learning pipeline for high-throughput predic-
tion of protein distance maps, based on the similar
machine learning approach previously developed for
contact map predictions [30].
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Figure 4 Correlation between the quality of the predicted distance maps and the quality of the reconstructed structures exemplified
on the CASP9 targets. The x-axis depicts the RMSD [A] between the predicted and native distance maps of the CASP9 targets. The y-axis depicts
the GDT_TS [%] score between the reconstructed and native CASP9 targets. The correlation coefficient between the RMSD and GDT_TS values is
0.78. Ab initio maps are given in red, whereas template-based maps are given in black. Proteins with different secondary structure content are
shown separately.

We show that when a physically realizable distance
map is used as target, even a simple geometry-based
reconstruction algorithm is able to reproduce a 3D
structure that is almost identical to the target. In con-
trast, a full set of discrete restraints, in terms of binary
and 4-class distance maps, used with the same recon-
struction protocol yield a 3D structure with considerably
lower resolution. When non-physical target maps are
used, the quality of the reconstructed structure gets
degraded when the amount of noise in the map increases.
However, the distance map has been shown to be more
resistant to noise than initially envisioned. Even when a
random error of +6A is introduced into the distance map,
the reconstructed protein structure is more accurate than
the corresponding structures reconstructed from the
binary and 4-class map, giving an average RMSD to the
target below 2A.

We have presented two systems for the prediction of
distance maps: the ab initio and the template-based
system trained on protein sequences with less than 200
residues. The ab initio system was implemented using
various degrees of evolutionary content: 7 classes of amino
acids with different physicochemical properties, 20 com-
mon amino acid, and 20 common amino acids com-
plemented with correlated mutations in the MSA. The
performances of all three ab initio models are comparable
implying that the evolutionary information in terms of 7
classes of amino acids with different physicochemical
properties provides sufficient information in predicting

inter-residue distances using this machine learning
approach. Furthermore, the template-based system was
capable of exploiting both sequence and structure infor-
mation even in cases of dubious homology. In both
twilight [20, 30%) and midnight zone [0, 20%) of sequence
identity, where it is particularly hard to extract infor-
mation from the templates, the template-based model
outperforms the best template hit with a clear margin of
up to 3.7A, and outperforms the weighted average model
with a clear margin of up to 1.2A

Finally, we have shown that predicted real-value
distances do not lack the ability to reconstruct near-
native structures compared to the predicted contacts.
When distance maps were tested on the CASP9 targets
sequences, the performance of the distance-based algo-
rithm was comparable to the performance of the 4-
class-based approach, implemented in the Distill server,
for targets shorter than 200 residues. However, in the
current implementation this approach is not suitable for
the targets longer than 200 residues. This is expected as
distance maps encode more structural information than
their discrete counterparts, and their complexity pre-
cludes their application on long sequences.

The methodology presented here in its current imple-
mentation is not as accurate as the existing techniques
that utilize complex force field functions, statistical
constraints or additional NMR spectra. However, it is
important to note here that the presented method does
not aim to replace the existing state of the art models.
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Instead, our goal was to explore the possibility of predict-
ing protein continuous features, as inter-residue distances,
using an efficient machine learning approach. Information
on inter-residue and inter-atomic distances in proteins
represents valuable information in structural biology, best
exemplified by the shown direct dependence of NMR
chemical shifts on inter-atomic distances [49]. Therefore,
possible application of this method is aimed not only in
structure prediction protocols, but also as an additional
tool to complement experimental data.

Conclusions

In this work we explore the possibility of predicting
protein inter-residue distances and further using them as
constraints in the protein reconstruction procedure. The
distance map representation of protein topology can
tolerate a large amount of noise and still lead to correct
3D structures even when a simple reconstruction protocol
is employed. Therefore, the methodology we presented, if
complemented by more complex reconstruction proto-
cols, may represent a possible path to improve machine-
learning algorithms for 3D protein structure prediction.

Methods

Distance map prediction using 2D-Recursive Neural
Network

The artificial neural networks we used for predicting dis-
tance maps are based on the general-purpose 2D-RNN
adaptive architecture previously described in [17,39] and
further outlined here in SI. A description of the architec-
ture of the 2D-RNN together with details on the learning
algorithm we employ is also provided in SI. 2D-RNN-
based models are used for mapping 2D matrices of vari-
able size into matrices of the same size. Here, the output
of the model O represents the distance map itself, whereas
the input I encodes a set of pairwise properties of the
residues in the protein (Additional file 1: Figure S1).

The input vector [;; associated with the j™ and k™
residue pair contains evolutionary information, second-
ary structure, solvent accessibility and contact density
information. The frequencies of amino acids observed in
the two columns, j and &, of the MSA are used as an
evolutionary input to the network, therefore, represent-
ing two 20-dimensional probability vectors. Structural
information in the form of standard secondary structure
classes (a-helix, B-sheet, random coil) is encoded using
two 3-dimensional vectors, whereas relative solvent
accessibility (2 classes: buried, 0-25%; and exposed, 25-
100%) and contact density (4 classes) are encoded using
two 2-dimensional and two 4-dimensional vectors, re-
spectively. In total, a vector of 58 units is used as an
input to the ab initio model of the distance map
prediction.
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The model that encodes 20 common types of amino
acids is termed the ‘classical’ model here. In addition
to this classical model, two additional models with
different evolutionary contents are created. The first,
so-called “complementarity” model restricts the input
to seven classes of amino acids that are expected to
be relevant to the stability of the fold. The comple-
mentarity model clusters 20 amino acids into 7 clas-
ses based on their structural and physicochemical
properties: (i) hydrophobic (A, F, I, L, M, V), (ii)
polar (N, Q, S, T, W, Y), (iii) negatively charged (D, E),
(iv) positively charged (H, K, R), (v) cysteine (C), (vi)
glycine (G) and (vii) proline (P). In the second model, so
called “correlation” model, amino acid information is
augmented by the correlated mutation signal (1 unit)
extracted from the MSA. Correlated mutations are calcu-
lated using the PAM70 substitution matrix and Gobel's
algorithm [50], in which completely conserved positions
and the positions with >20% gaps are discarded from the
analysis.

In the template-based model an additional 2-dimen-
sional vector extracted from template PDB profiles is
appended to the input vector, similarly to [30]. The first
unit in this vector encodes the weighted average distance
from the templates:

M
g ~ wpdﬁ(
= (1)

E w
p=1"P

where w, represents the weight attributed to the p tem-
plate. The weight w,, depends on the template’s quality,
q,» and its sequence identity, id,, to the target sequence:

Wy, = qpid?; (2)
The template quality further depends on the nature of

the 3D structure (X-ray, NMR), its resolution and R-
factor [51], which for X-ray structures is given by:

1
qp [me] = o R (3)
resolution [A] + 5=
and for NMR structures:
1
q,INMR] = (4)

resolution [A] + %

Taking into account the cube of the sequence iden-
tity between the query and the template in Equation 3
allows us to favour those distances extracted from good
templates over the distances calculated from low-similarity
templates.
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Finally, the last unit in the input vector encodes
the weighted average of the template coverage and it is
given by:

N

M
S
Ry

(5)

where ¢, represents the coverage of the query by the tem-
plate, i.e. the fractions of the non-gaps in the alignment.
The template-based vector defined this way performed
better than the number of alternatives in the preliminary
testing (data not shown) and is used in the template-based
models of distance maps.

The input vector If ,lfer provided to the filtering NN

contains the predicted distance dj; obtained from the
previous 2D-RNN network (1 unit), sequence separation
between residues j and k (1 unit), the protein sequence
length (1 unit) and global information extracted from
the predicted distance map (15 units). The global infor-
mation contains the average distance between all pairs
of amino acid (m, n) within the segments j-5<m<j+5
and k-5<n<k+5 In addition to the average dis-
tance of this 11x11 residue patch positioned around
the (j, k) residue pair, the average distances of 14
additional patches are also provided to the network
by keeping the same separation between the pairs of
residues, as in [52].

Learning and initialization

The 2D-RNNs composing the distance map predictors
are trained by minimizing the squared error between
the output and the target distances. To avoid large
plateaux in the error function at the beginning of the
training, a modified form of the gradient-descent al-
gorithm is used. This algorithm employs a piecewise
linear function in three different ranges for the net-
work update weights, and is discussed in detail in
[39]. The transfer functions in all network units are
implemented using the tanh function. We adopt a
hybrid between on-line and batch training with 1,450
batch blocks per training set, i.e. two proteins per a
batch. That is, the weights of all networks are up-
dated based on the gradient computed on groups of
two proteins. To prevent the error to decrease mono-
tonically, the training set is shuffled at the beginning
of each epoch. If the error does not decrease for 50
consecutive epochs, the learning rate is divided by 2.
Prior to learning, the weights in each unit in all
neural networks are randomly initialized. Their stand-
ard deviations are controlled in a flexible way, so as
to avoid any bias and ensure that the expected total
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input into each unit remains approximately in the
same range.

Due to the large number of training instances and
limited computational power/time, all systems are
trained in 5-fold cross validation. Each of the five
networks is trained for 1000 epochs by saving the
parameters every 5 epochs. For each network the last
three saved models are combined in the single pre-
dictor. Finally, all 5 networks are combined in a
single system. This is known to slightly improve the
performance over individual models [39].

Reconstruction algorithm

The reconstruction algorithm of protein C, -traces is
organized into two sequential phases, as described in
detail in [53]. Shortly, in the first phase a random
structure is generated by adding C, positions until
the whole backbone is produced. The bonds of adja-
cent C, atoms in this phase are added in a random
direction with the lengths restricted to lie in the
interval 3.803+0.07 A using uniform distribution. The
positions of the C, atoms belonging to a helix struc-
ture are modelled using the coordinates of the ideal
helix with random orientation. In the last phase, the
algorithm refines the initial structure by optimizing
the pseudo-energy function using local moves and
simulating annealing [15]. The moves we adopt dis-
place a single residue at a time, and keep its distances
to its neighbours constant.

The pseudo-energy function used here is shaped to
encode the constraints represented by the distance map
and various geometrical limitations. Let S,=1{r};-1..,
be a sequence of n 3D coordinates, with r; = (x;y; z))
being the coordinates of the i C.. atom of the current
protein conformation and dj;=|r;-r]| the distance
between the atoms i and j. Then, the set of con-
straints guiding the reconstruction of the protein
structure can be written by M = DuBuCuS . The first
set of constraints D comes from the predicted distance

map Ds, = {d;mp }i</, containing 7 x (n — 1) mutual dis-

tances between C. atoms. The distances d;mp are obtained

as outputs from the second step of the overall pipeline
(Figure 1). The rest of the geometricconstraints include:
B ={d;j€[Dg -0.07, Ds+0.07],|i-j| =1, Dy =3.8034}
which  limits neighbouring Ca distances;
¢ ={dy > Dcr, |i~j| > 1,D¢; = 4A} which defines clashes
between residues; and &= {Diud < gred < pstand

Ditand — [ % (3.436-0.05107 x [) - 0.04 x I*, Dstand — [ x
(3.436 —0.05107 x [) 4+ 0.04 x I’} which defines the
dependence of the distance between the first and the

last residue in the B-strand d*”*"¢ on the amino acid
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length of [ of the strand. Using these constraints the
pseudo-energy function can be written by:

(SH,M) —0(0{0[12 Z‘
+ “22\5-j|>1

strand strand \ 2
+as Zstmnds (d D )

map

(dy-Ds) }

loldt/'_DCL|

(6)

In all the experiments, we run the annealing protocol
for 10,000 x protein length iterations, in each of which
the perturbation of a single residue is attempted.
Pseudo-energy parameters are set to, ag=0.2 a; = 0.025
(distance penalty), a, = 0.5 (clashes) and a3 =2.0 (strand
length), so that the conformational search is biased
towards the generation of compact, clash-free structures
with the recommended length of B-strands and with
C. distances approaching to distances provided by the
distance map.

A distance map contains no information about
chirality. When an overall structure is reconstructed, the
mirror-image structure is equally legitimate, having the
same distance map. Therefore, in the final step we
generate the mirror image of the reconstructed structure
and refine it for additional 5,000 iterations. The choice of
the final reconstructed structure depends on the pseudo-
energy penalty needed for the original and mirror image
reconstructed 3D structure (Equation 6).

In addition to this simple geometry-based reconstruc-
tion algorithm, we use a fragment-based reconstruction
to predict the structures of CASP9 targets from non-
native 4-class maps and distance maps. In the fragment-
based reconstruction [54] implemented here, for each
protein segment of length 9, 50 candidate structures in
the PDB are identified using the fold recognition algo-
rithm described in [55]. A move consists in swapping a
segment at a random position with another (random)
one in the list. Since segment lengths are generally not
the same, mutual distances between any two residues in
the protein are affected by a move. Moves are accepted
or rejected based on the same pseudo-energy function
as in the previous protocol (Equation 6) and the simulat-
ing annealing protocol for 20,000 iterations. Lastly, the
mirror image of the reconstructed structure is generated,
a brief further reconstruction is attempted and its fitness
is assessed. Given that segments from the PDB incorpor-
ate chirality information, we observe that, in the major-
ity of cases, the correct mirror image is selected directly
based on fitness.

Datasets
The dataset used to train and test the predictors is
extracted from the October 2009 25% pdb_select list
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containing 4,818 proteins [56]. Since the training is com-
putationally demanding (and its complexity quadratic in
the protein length) we created a reduced version of the
dataset by excluding proteins longer than 200 residues.
The final dataset contains 3,645 proteins with 360,971
residues and 21,918,875 residue pairs (Additional file 1:
Table S2). All systems are trained in 5-fold cross valid-
ation by splitting the dataset into 5 approximately equal
folds. Inter-residue distances used for training are mea-
sured between C, atoms, and their distribution is plotted
in Additional file 1: Figure S2. If we include only the
distances between residues separated by at least 2 amino
acids in the sequence, then, it becomes clear from
Additional file 1: Figure S2 that the majority of data
(76%) are distributed in the range [10A, 30A] with a
mean value of 20.7A.

Secondary structure and relative solvent accessibility
of each residue are assigned using DSSP [57], whereas
contact density is calculated as in [44]. True structural
information is used for training of both the ab initio and
the template-based models. For testing purposes, we use
predictions from in-house servers [42,44,45] to predict
secondary structure, solvent accessibility and contact
density, respectively.

Evolutionary information in the form of amino acid
probability vectors, amino acid classes and correlated
mutations are calculated from MSAs. The alignments
for the proteins in the training/test dataset are extracted
from the non-redundant (NR) database. The alignments
are generated by three runs of position specific iterative
BLAST (PSI-BLAST) [58] with parameters 5=3,000,
e=107 and h=10"°.

To generate the structural templates for a protein, we
run PSI-BLAST against the PDB (available on April 30th
2008) using the position specific scoring matrix (PSSM)
generated during the alignment process. We deliberately
use a high expectation parameter (e=10) to include hits
that are beyond the usual comparative modelling scope
(e<0.01). Finally, in order to avoid perfect templates
coming from PDB resubmissions of the same structure
and close homologues, we exclude those templates
whose sequence similarity exceeds 95% over the whole
query.

The distribution of the sequence identity to the
average/best template identity is given in Additional file 1:
Figure S3. The average identity for all templates, not
surprisingly, is generally low with a median of 20% iden-
tity. Although the distribution is not uniform, all identity
intervals are adequately represented: 37% of all proteins
have the best hit with less than 20% sequence identity
(midnight zone), the best hit of 21% proteins is between
20-30% sequence identity (twilight zone), and for the rest
of 42%, close homologues can be found with sequence
identity in the interval 30-95%.
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