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Abstract

Background: Inconsistencies are often observed in the genome annotations of bacterial strains. Moreover, these
inconsistencies are often not reflected by sequence discrepancies, but are caused by wrongly annotated gene starts
as well as mis-identified gene presence. Thus, tools are needed for improving annotation consistency and accuracy
among sets of bacterial strain genomes.

Results: We have developed eCAMBer, a tool for efficiently supporting comparative analysis of multiple bacterial
strains within the same species. eCAMBer is a highly optimized revision of our earlier tool, CAMBer, scaling it up for
significantly larger datasets comprising hundreds of bacterial strains. eCAMBer works in two phases. First, it transfers
gene annotations among all considered bacterial strains. In this phase, it also identifies homologous gene families and
annotation inconsistencies. Second, eCAMBer, tries to improve the quality of annotations by resolving the gene start
inconsistencies and filtering out gene families arising from annotation errors propagated in the previous phase.

Conculsions: eCAMBer efficiently identifies and resolves annotation inconsistencies among closely related bacterial
genomes. It outperforms other competing tools both in terms of running time and accuracy of produced annotations.
Software, user manual, and case study results are available at the project website: http://bioputer.mimuw.
edu.pl/ecamber.
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Background
The number of bacterial genome sequences available in
public databases is growing rapidly, due to advances in
high-throughput sequencing technologies [1]. For exam-
ple, from June 8, 2011 to February 12, 2014, the total num-
ber of whole-genome sequences available in the PATRIC
database grew from 3303 to 14114 [2]. By December
16, 2013, there were 1452 whole-genome sequences of
Escherischia coli and 435 whole-genome sequences of
Salmonella enterica strains available in the database.
Larger datasets of bacterial genome sequences enable

new interesting comparative genome analysis [3-7]. How-
ever, it has been shown that a wide range of comparative
analyses (such as identification of overlapping genes and
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estimation of core genome size) may be complicated or
biased due to the common inconsistencies in genome
annotations among closely related bacterial strains [8-13].
The observed inconsistencies are mostly of two types:

mis-identification of gene presence (false positive and
false negative predictions are possible) and inconsistent
gene starts (or TIS — translation initiation sites). It has
also been argued thatmost of these inconsistencies are not
reflected by sequence discrepancies, but arise as a result
of different annotationmethodologies applied by different
laboratories [10,14]. In fact, has been shown that using the
same tool to annotate a set of bacterial genomes increases
annotation consistency [10]. However, as we will observe
later in section “Annotation consistency”, these annota-
tion inconsistencies among closely related genomes can
even arise from annotations produced by the same anno-
tation tool or made by the same laboratory.
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There is also an interesting question regarding TIS
inconsistencies: can a bacterial gene have multiple TISs?
For example, it has been recently estimated, based on an
experimental study, that as many as 26.5% of genes in
E. colimay have multiple transcription start sites [15]; that
may also suggest multiple TISs. Nevertheless, according
to our knowledge, multiple real TISs in bacteria is not a
confirmed phenomenon yet. It should also be noted that
there is only one TIS per gene in manually curated anno-
tations. Thus, in this study, we assume that each gene has
only one correct TIS.
Interestingly, the presence of annotation inconsisten-

cies is an expected phenomenon when single-genome
prediction tools are applied independently. For example,
suppose we annotate independently k = 20 genomes, and
assume that the missing gene error rate is ε = 0.035,
which is the corresponding Prodigal [16] error rate esti-
mated on the E. coli dataset. Then, since 1 − (1 − ε)k =
0.51, about 51% of core gene families would have at least
one missing gene annotation.
A promising idea to improve annotation accuracy by

combining outputs of several single-genome annotation
tools has been explored with a few proposed approaches
[17-20]. However, these meta-approaches can be viewed
as single-genome annotation tools.
Recently, it has also been proposed that the accuracy of

single-genome annotation tools can improved by compar-
ative annotation among multiple genomes [21]. However,
even though there are many annotation tools dedicated
to a single-genome, there are relatively few tools sup-
porting comparative annotation and analysis of multiple
bacterial genomes [21]. Hence, there is a need to develop
more tools to improve consistency of genome annotations
across multiple bacterial strains.
Mugsy-Annotator is a tool which may assist in the

curation of annotations of multiple bacterial genomes
by identifying annotation inconsistencies [22]. First, this
tool computes whole-genome multiple alignment by
employing Mugsy [23]. Then, based on annotated gene
coordinates mapped on genomes in the multiple-genome
alignment, Mugsy-Annotator identifies orthologous gene
families, annotation inconsistencies and proposes changes
to the input annotations. Notably, Mugsy-Annotator does
not make any assumption about the reference strain.
However, it suffers from the quadratic time complexity
with respect to the number of strains, since in the first
step it employs Mugsy to compute pairwise all-against-all
alignments of whole genomes.
Recently, two new mojority voting-like approaches have

been proposed to improve annotation accuracy and con-
sistency among multiple genomes: ORFcor [24] and GMV
[25]. However, ORFcor requires a set of ortholog gene
families to be supplied as the input, and GMV is embed-
ded within a pipeline which starts from input genome

sequences and genome annotations generated by Prodi-
gal. It should also be noted, that since the GMV pipeline
uses BLAST in the all-against-all manner it has quadratic
time complexity with respect to the number of strains.
In our previous work, we developed CAMBer [11], a

tool conceptually similar to Mugsy-Annotator and the
GMV pipeline. It supports comparative analysis of mul-
tiple bacterial strains. CAMBer unifies input gene anno-
tations by homologous gene transfer among all strains.
Then, based on acceptable BLAST hits, it identifies
orthologous gene families. During this procedure annota-
tion inconsistencies are identified. Similarly, as in Mugsy-
Annotator and the GMV pipeline, it does not make
any assumption about the reference strain, and it has
quadratic time complexity in the number of strains.
This property makes both tools weakly scalable to large
datasets.
Another notable tool which employs the idea of com-

paring gene annotations among closely related genomes
is GenePRIMP [26]. This tool identifies and reports gene
annotation anomalies based on protein BLAST queries
run against the NCBI nr database. These reports are
helpful for manual curation of genome annotations. A
similar feature has also been implemented in CAMBerVis
[27] — our previously published tool for visualization and
analysis of annotation inconsistencies.
In this work, we present a new version of CAM-

Ber, which we call eCAMBer (efficient CAMBer). It also
aims to identify annotation inconsistencies and orthol-
ogous gene families. However, unlike Mugsy-Annotator
and CAMBer, it has significantly better running time by
taking advantage of working with highly similar genome
sequences. A dramatic speed up offered by eCAMBer
can be seen when working with a large number of bac-
terial strains. The running time is reduced (for 41 strains
of E. coli) from 2 days, in the case of CAMBer, to less
than half an hour, in the case of eCAMBer. Furthermore,
eCAMBer tries to resolve annotation inconsistencies in
order to produce more accurate annotations. For this pur-
pose, it implements a majority voting-like approach for
selecting the most reliable TISs and implements a proce-
dure for identification and removal of gene families which
are likely to be propagated annotation errors.
The concept of annotation may refer to many differ-

ent aspects of attaching biological information to genome
sequences, such as: identifying of gene locations, assign-
ing functions to genes or assigning network context to
gene products [14,28,29]. In this work we focus on identi-
fying locations of protein-coding genes. We use the term
gene annotation (or ORF annotation) to refer to genome
coordinates of a protein-coding gene from its translation
initiation site TIS (alternatively called gene start) to the
nearest stop codon (alternatively called gene end). Note
that each ORF annotation is unambiguously determined
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by specifying strand and position of its start codon. Thus,
we can use the term TIS annotation as a synonym to
ORF annotation.We will be using this whenmultiple ORF
annotations share the same stop codon.

Methods
eCAMBer requires as its input a set of genome sequences
and annotations for multiple bacterial genomes. It should
be noted, however, that eCAMBer supports automatic
download of bacterial annotations from the PATRIC [2]
database and, as an option, it allows the use of Prodigal to
generate the input annotations. It works in two phases. In
the first phase it uses BLAST+ [30] to transfer each gene
annotation amongmultiple strains. Based on the results of
this procedure, homologous multigene clusters are identi-
fied. In the second phase eCAMBer applies subsequently
the procedures for refinement, TIS voting and clean up.
Figure 1 presents a schematic view of these subsequent
procedures of eCAMBer.
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Figure 1 Schematic view of subsequent procedures in eCAMBer.
Boxes of the chart represent the subsequent sets of annotations.
Edges indicate application of eCAMBer procedures to process these
annotations. We call a set of ORF annotations,multigene annotations, if
multiple ORF annotations may share the same stop codon, indicating
possible starts of translation (TISs). We use a notion of amultigene to
represent multiple ORF annotations sharing the same stop codon.

The main improvements in eCAMBer as compared to
CAMBer [11] are:

• Significant speed up of the closure procedure for
unifying genome annotations among bacterial strains;

• Modified refinement procedure for splitting
homologous gene families into orthologous gene
clusters;

• New TIS voting procedure for selecting the most
reliable TIS;

• New clean up procedure for removal of gene clusters
that are likely to be gene annotation errors
propagated during the closure procedure.

Here, we describe the details of the above listed proce-
dures. The default values for parameters introduced below
were chosen arbitrarily. However, based on our experi-
ments, the program is robust for other choices of the
parameters from a reasonable spectrum. eCAMBer allows
users to specify values of all the parameters.

The closure procedure
The closure procedure is the first step of eCAMBer. The
input consists of genome sequences and genome anno-
tations for a set of closely related bacterial strains. In
this procedure gene annotations are iteratively transferred
among the set of considered strains, until no new ORFs
(open reading frames) are identified.More precisely, a
gene annotation is transferred to a new location if its
BLAST hit extended to the nearest in-frame stop codon
is acceptable. Analogous to CAMBer, a BLAST hit exten-
sion to the nearest stop codon is acceptable if it satisfies
the following conditions:

• The hit has one of the appropriate start codons:
ATG, GTG, TTG, or the same start codon as in the
query sequence;

• The hit has its beginning aligned with the beginning
of the query sequence;

• The BLAST e-value score is below a given threshold
et (in the default setting et = 10−10);

• The ratio of the length of the extended hit to the
query length is less than 1 + pt and greater than
1 − pt , where pt is a given threshold (in the default
setting pt = 0.2);

• The percentage of identity of the hit (calculated as the
number of identities divided by the query sequence
length, times 100) is above a length-dependent
threshold given by the adaptation of the HSSP curve
introduced in our previous work [11], defined by the
parameter nt (in the default setting nt = 60.5).

In this procedure eCAMBer, unlike CAMBer, takes
advantage of working with closely related genomes. In
contrast to the old approach, in each iteration, instead
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of using each ORF sequence as a query, it first identifies
groups of ORFs with exactly identical sequences. This
approach avoids use of the same ORF sequence multiple
times as a BLAST query.
The pseudocode for the closure procedure implemented

in eCAMber is given in Algorithm 1, which we now
describe in more details. First, we start with the set of
input annotations A0

s , for each strain s in the set of con-
sidered strains S. Each ORF annotation (or simply ORF) is
defined by a tuple (start, end, strand, contig, strain). Then,
in ith iteration we compute the set of BLAST queries Qi

as the set of distinct ORF sequences among all strains,
which have not been used as BLAST queries yet. Next,
we calculate in parallel, for each strain, BLAST results
for all sequence queries in Qi. For each strain s ∈ S,
all acceptable BLAST hit extensions Hi

s are added to the
strain annotations, defining Ai+1

s ← Ai
s ∪ Hi

s . Next, the
set of newly identified sequences across all genomes Hi

is computed, which is then used to update the set of
BLAST queries for the next iteration Qi+1 ← Hi \ Di,
where Di denotes the set of all distinct sequences before
the ith annotation. The procedure stops when no new
ORF sequences are identified, hence Qi = ∅. For each
strain s ∈ S, we denote by Ac

s the set of annotations
produced by the closure procedure above. We further
denote by Ac the set of all ORFs produced by the closure
procedure.

Algorithm 1 The closure procedure (pseudocode)
Require: A set S of bacterial strains; and for each s ∈ S, a

set A0
s of annotations, a setGs of sequences constituting

the genome of s, and a mapping function sequencess(A)

which returns the set of sequences in the genome Gs
corresponding to the set of annotations A.
Q0 ← D0 ← ⋃

s∈S sequencess(A0
s )

i ← 0
while Qi �= ∅ do

for all s ∈ S do
Hi
s ← acceptable BLAST hit extensions from Qi

on genome Gs
Ai+1
s ← Ai

s ∪ Hi
s

end for{The above operations are done in parallel for
each s ∈ S. Also, for a query sequence q ∈ Qi, if
its BLAST hits are available in a database of precom-
puted BLAST results, eCAMBer takes results from
the database instead.}
Hi ← ⋃

s∈S sequencess(Hi
s)

Di+1 ← Di ∪ Hi

Qi+1 ← Hi \ Di

i ← i + 1
end while
return annotations Ai

s, for all s ∈ S

Here, we also recall the notion of a multigene, intro-
duced in our previous work [11], to account for the situ-
ation when multiple ORFs share the same stop codon in
the annotations produced during the closure procedure.
These ORFs are called multigene elements and represent
putative gene translation units. Each multigene is repre-
sented by a tuple (end, strand, contig, strain, elts), where
elts is the set of ORFs constituting the multigene. Also, for
each strain s ∈ S, we denote by Mc

s the set of multigenes
resulting from the closure procedure.
Figure 2 presents a schematic view of the implementa-

tion of the closure procedure in eCAMBer.
The careful reader may also notice two important

differences between the closure procedure in CAM-
Ber and eCAMBer. In particular, eCAMBer uses unique
ORF sequences, rather than ORF annotations, as queries
against all strain genomes and, thus, does not repeat a
BLAST query when the same ORF sequence corresponds
to multiple ORF annotations. In contrast, firstly, CAM-
Ber uses all ORF sequences as queries and, thus, may
repeat a query BLAST several times. Secondly, CAMBer
BLASTs a query against all strains’ genomes except the
strain from which the query is taken. The second differ-
ence may potentially lead to different outcomes generated
by these two approaches.
Since BLAST computations are the most time-

consuming operation in each iteration of the closure
procedure, we express the time complexity of one itera-
tion of the closure procedure by the number of performed
BLAST computations. Let k = |S| denote the number of
considered strains and let n = maxs∈S|Ai

s| be the maximal
number of gene annotations per strain, in iteration i. Let,
d = |Di| denote the number of distinct gene sequences
among all gene annotations in all considered strains.
Then, the time complexity of one iteration of the closure
procedure implemented in eCAMBer can be expressed
as O(d · k), whereas it is O(n · k2) for CAMBer. Here, it
should be noted that, potentially, if every annotated ORF
sequence in S is different, then |Di| = ∑

s∈S |Ai
s| = O(n·k).

However, as our case study experiments show, d is usually
much smaller than n · k (see Figure 3).
Importantly, the number of I/O operations per iteration

is also significantly decreased, from O(n · k2) in CAMBer
to O(k) in eCAMBer.

Consolidation graphs
Having the closure procedure computed we represent its
results in the form of graph structures, called consolida-
tion graphs.
First, we introduce the conceptual representation, called

theORF consolidation graph. In this graphGO = (VO,EO),
each node o ∈ VO represents an ORF annotation in Ac

s ,
for some s ∈ S. There is an undirected edge {o1, o2} ∈ EO
between a pair of ORFs, if there is an acceptable BLAST
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Figure 2 Schematic view of the closure procedure in eCAMBer. Schematic view of the closure procedure in eCAMBer. Annotations with
multiple ORF annotations sharing the same stop codon may be produced. This situation gives rise to the notion of amultigene, which represents
the set of ORFs sharing the same stop codon. These multigene elements correspond to putative gene translation units.

hit from the sequence of o1 to o2 or from the sequence of
o2 to o1. We additionally assume, that there are no self-
edges, i. e. o1 �= o2.
Second, we recall the definition of themultigene consol-

idation graph, introduced in our previous work [11]. In
this graph GM = (VM,EM) each nodem ∈ VM represents
a multigene inMc

s , for some s ∈ S. There is an undirected

edge {m1,m2} ∈ EM between a pair of multigenes, if there
is a pair of ORFs o1 ∈ elts(m1) and o2 ∈ elts(m2), such that
there is an edge between them in the ORF consolidation
graph (i.e., such that {o1, o2} ∈ EO).
Finally, we introduce the sequence consolidation graph,

which is the structure used in the implementation of
eCAMBer, as it is a compact representation of the infor-
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Figure 3 Number of genes vs. number of distinct gene sequences. Comparison of the number of distinct gene sequences to the total number
of genes in original annotations of 569 strains of E. coli. Strains were included cumulatively in the order of increasing genome sizes. In the figure the
x-axis corresponds to the number of strains included.

mation stored in the ORF consolidation graph and the
multigene consolidation graph. In this graph GS =
(VS,ES,EB), nodes represent distinct ORF sequences.
There are two types of edges, EB called BLAST-hit edges,
and ES called shared-end edges. There is an undirected
shared-end edge {x, y} ∈ ES between a pair of sequence
nodes if there is a multigene having two elements with
these sequences. There is an undirected BLAST-hit edge
{x, y} ∈ EB between a pair of sequence nodes if there is an
acceptable BLAST hit from x to an ORF with sequence y,
or if there is an acceptable BLAST from y to an ORF with
sequence x.
Figure 4 illustrates the correspondence between the

ORF consolidation graph, sequence consolidation graph
and the multigene consolidation graph.

Homologous gene clusters
The second step of eCAMBer is to determine homologous
gene families as connected components of the multigene
consolidation graph GM. There is a natural one-to-one
correspondence between the connected components of
the multigene consolidation graph and the connected
components of the sequence consolidation graph (the lat-
ter connected components are obtained by taking the
union of ES and EB). So, in eCAMBer, we do this using
connected components of the sequence consolidation
graph GS, because it tends to be smaller for closely related
genomes. The obtained set of homologous gene families is
represented as a set of disjointmultigene clusters, denoted
by CM.

Refinement procedure
The third step of eCAMBer is the refinement proce-
dure. The goal of the refinement procedure is splitting
the homologous gene families, represented by multigene

Figure 4 Schematic view on the correspondence between
different representations of the closure procedure results in the
form of consolidation graphs. Schematic view on the correspondence
between different representations of the closure procedure results in
the form of consolidation graphs; A) the genomes with marked ORF
annotations. Round and square brackets represent the ORF start and
stop codons, respectively. Round brackets with stars indicate original
TIS annotations, whereas those without starts indicate the transferred
TIS annotations; B)multigene representation of the annotations with
the ORF consolidation graph edges shown between multigene
elements, edges of themultigene consolidation graph are not shown
for the readability; C) the sequence consolidation graph in which
nodes correspond to the distinct ORF sequences, shared-end edges
are drawn dashed, whereas BLAST-hit edges are drawn solid.
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clusters, to obtain anchors. We call a multigene clus-
ter an anchor, if it includes at most one multigene for
every strain. Analogously, we call a multigene cluster
non-anchor, if there is a strain which includes at least
two multigenes in the cluster. Multigenes in the same
anchor are potentially orthologous to each other, whereas
a non-anchor contains at least two multigenes that are
non-orthologous. Following CAMBer, we use genomic
context information to decompose non-anchors into
smaller multigene clusters that can emerge as anchors, as
described below.
The input for the refinement procedure consists of the

set of multigene clusters CM, the sequence consolidation
graph GM, and the multigene annotations Mc

s , for each
strain s ∈ S. We start with classifying the set CM of multi-
gene clusters into two disjoint sets of anchors and non-
anchors, denoted CA and CN , respectively. We also sort
all multigenes within strain contigs by positions of their
stop codons. We reconstruct the subgraph of the multi-
gene consolidation graph, called the refinement graph. In
this graph GR = (VR,ER), nodes VR are constituted by the
subset of multigenes, which belong to non-anchor clus-
ters. There is an edge {m1,m2} ∈ ER, between a pair of
multigenes coming from different strains, if there is an
edge {m1,m2} ∈ EM, and the twomultigenes belong to the
same multigene cluster. By E{s1,s2}

R we denote the subset of
edges between multigenes from a pair of strains s1 and s2.
We omit details of the reconstruction of the refinement
graph for brevity.
Then, for each unordered pair of strains {s1, s2} we per-

form the following procedure in parallel. First, for each
multigene m we identify a pair of its nearest neighbours
which belong to anchors with amultigene element present
on the opposite strain. Such left and right neighbours of
m are denoted as l{s1,s2}m and r{s1,s2}m , respectively. Then, for
each edge {m1,m2} ∈ E{s1,s2}

R we check whether it is sup-
ported in the sense that it satisfies one of the following
conditions: (i) it connects multigenes belonging to a clus-
ter, such that m1 and m2 are its only elements in strains
s1 and s2; (ii) the corresponding pairs (l{s1,s2}m1 , l{s1,s2}m2 ) and
(r{s1,s2}m1 , r{s1,s2}m2 ) belong to the same anchor; (iii) the corre-
sponding pairs (l{s1,s2}m1 , r{s1,s2}m2 ) and (r{s1,s2}m1 , l{s1,s2}m2 ) belong
to the same anchor. If any of the four neighbours does not
exist we substitute it with a dummy node, which virtually
belongs to any anchor.
Finally, we obtain the refined graph G∗

R by removal of
unsupported edges from GR. Then, the set of connected
components CR of G∗

R defines the set of multigene clus-
ters after the split. Finally, we update the set of multigene
clusters as C∗

M ← (CM \ CN ) ∪ CR.
The careful reader may also notice the differences

between the refinement procedures implemented in
CAMBer and eCAMBer. First, the refinement procedure

in CAMBer performs in iterations until nomultigene clus-
ters can be split. In eCAMBer the refinement procedure
consists of only one iteration. However, since the input
and output for the procedure are of the same type, it can
be used multiple times, until no new clusters are split.
Second, the condition for an edge to be supported in
eCAMBer is more relaxed than that in CAMBer. Both
approaches, for a pair of multigenes on different strains,
identify pairs of their nearest left and right neighbour
multigenes (belonging to anchor clusters with elements on
both strains). However, CAMBer checks the actual pres-
ence of edges between the neighbours, whereas eCAMBer
only checks if the identified neighbours match the same
pair of clusters. This approach allows eCAMBer to avoid
a costly reconstruction of the whole multigene consolida-
tion graph.

TIS voting procedure
The fourth step of eCAMBer is the TIS voting procedure.
The goal of the TIS voting procedure is to select the most
reliable TIS for each multigene. To do this we implement
an approach based on the concept of majority voting. This
strategy has also been used to improve genome annotation
accuracy in several recent studies [24,31].
In this procedure, for each multigene m in each multi-

gene cluster c ∈ C∗
M, we try to find a TIS (originally

annotated or transferred) that belongs to a connected
component of the ORF consolidation graph, where the
connected component satisfies the following two condi-
tions: (i) it has TISs (originally annotated or transferred)
present in at least 80% of the multigenes in c; and (ii) it has
TISs originally annotated in at least 50% of the multigenes
in c, or it has TISs originally annotated in at least twice the
number of multigenes in c than all other connected com-
ponents in c. If such a TIS is found, it is selected as the
TIS for m. If such a TIS is not found, but m has an orig-
inally annotated TIS, then the originally annotated TIS is
selected as the TIS for m. If both of these two cases can-
not be applied, the TIS corresponding to the longest ORF
in the multigenem is selected. After the TIS voting proce-
dure, every multigene has exactly one TIS selected. Thus,
we obtain unambiguous TIS annotation for every gene.
Note that the connected components of the sequence

consolidation graph—after shared-end edges have been
removed— are in a natural one-to-one correspondence
with the connected components in the ORF consolidation
graph. So in eCAMBer, we implement the TIS voting pro-
cedure using the sequence consolidation graph, as it tends
to be smaller for closely related genomes.

Clean up procedure
The last step of eCAMBer is the clean up procedure,
which is designed to filter out multigene clusters which
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are likely due to gene annotation errors propagated during
the closure procedure.
The input for this procedure consists of the set of multi-

gene clusters C∗
M and multigene annotations Mc

s , for each
strain s ∈ S. For each multigene cluster c ∈ C∗

M we com-
pute the following features: (i) l, the median multigene
length in c; (ii) p, the ratio of the number of strains with at
least one element from c to the total number of strains; (iii)
r, the ratio of the number of strains with at least one orig-
inally annotated multigene to the total number of strains
with at least one element from c; (iv) v, the ratio of the
number of multigenes in the cluster that are overlapped
by a longer multigene to the total number of multigenes in
the cluster.
Then, we update the set of multigene clusters C∗

M, by
removing of multigene clusters for which (p < 1

3 or r < 1
3 )

and (l < 150 or v > 0.5).

Other features
In order to make eCAMBer more user friendly we have
added a functionality for downloading genome sequences
and genome annotations from the PATRIC database,
for the set of selected strains within a species. The
downloaded data is automatically formatted as input for
eCAMBer. Additionally, eCAMBer integrates Prodigal to
generate input gene annotations.
Furthermore, eCAMBer generates output compatible

with CAMberVis [27], a tool for simultaneous visualiza-
tion of multiple genome annotations of bacterial strains.
CAMBerVis also handles visualization of genome annota-
tion inconsistencies.

Results and discussion
In this section we present the results of our experiments,
which demonstrate that: (i) eCAMBer is much more effi-
cient than CAMBer, Mugsy-Annotator and the GMV
pipeline; (ii) it scales well to large datasets; (iii) it improves
annotation consistency; (iv) it improves annotation accu-
racy; and (v) eCAMBer outperforms Mugsy-Annotator
and the GMV pipeline in terms of accuracy.

Comparison of running times
First, we compare the efficiency of eCAMBer and CAM-
Ber by running the closure procedure for both tools on
four datasets from our previous work on CAMBer [11].
All computations in this experiment were performed on
the same desktop machine with 4 processor cores being
used. In this experiment eCAMBer significantly outper-
forms CAMBer (Table 1). For example, the running time
on 9 strains of M. tuberculosis was reduced from about 1
hour 22 minutes to only 42 seconds.
Second, we also compare the running time of eCAM-

Ber against CAMBer, Mugsy-Annotator and the GMV
pipeline by running them on the four datasets from our

Table 1 eCAMBer vs. CAMBer

CAMBer eCAMBer

Dataset BLASTs closure BLASTs closure

2 strains of S. aureus 1 m 47 s 2 m 5 s 8 s 18 s

9 strains of M. tuberculosis 1 h 22 m 1 h 27 m 27 s 41 s

22 strains of S. aureus 6 h 6.5 h 3 m 15 s 4 m

41 strains of E. coli 42 h 48.5 h 22 m 25 m

previous work on CAMBer [11]. Since Mugsy-Annotator
does not support multiple thread processing, in this
experiment we use only one processor core for the compu-
tations. Table 2 presents running times in this experiment.
It is clear from this table that the running time speedup
achieved by eCAMBer is much more pronounced for
larger datasets. This is an expected phenomenon since the
other tools have quadratic running times with respect to
the number of strains included.
The above results also suggest that eCAMBer scales well

to larger datasets.

Large case studies
We examine the scalability of eCAMBer to large datasets
by running it on 10 datasets for the 10 species with
the highest number of sequenced strains in the PATRIC
database [2], in the 16 March 2013 release. All datasets
consist of genome sequences and annotations for the sets
of strains within the same species. Experiments for all
of these datasets were conducted on a machine with 24
processor cores, out of which 20 were used.
Table 3 shows a distribution of running times of all pro-

cedures of eCAMBer. The reader may observe that the
running times are not necessarily monotonically increas-
ing with the number of strains. For example, the closure

Table 2 Comparison of running times for different tools

Dataset CAMBer eCAMBer Mugsy-Ann. GMV

2 strains of 7 m 31 s 26 s 2 m 21 m
S. aureus

9 strains of M. 4 h 12 m 2 m 37 s 1 h 25 m 13 h 53 m
tuberculosis

22 strains of 37 h 5 m 16 m 30 s 4 h 11 m 28 h 36 m
S. aureus

41 strains of 273 h 22 m 1 h 48 m 19 h 21 m 368 h 31 m
E. coli

Comparison of running times between eCAMBer, CAMBer, Mugsy-Annotator
and the GMV pipeline on four datasets from our previous work on CAMBer. All
computations were executed on a machine with 1 processor core being used.
The machine used in this computational experiment was different than the one
used in the previous experiment. Columns correspond, in left-to-right order, to:
short detaset description, total time consumed by the closure procedure in
CAMBer, total time consumed by eCAMBer, total time consumed by
Mugsy-Annotator, total time consumed the the GMV pipeline.
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Table 3 eCAMBer on large datasets

Detaset description Running times

Species name Strains Genes Distinct seq. Closure Graph Refine. TIS v. Clean up

E. coli 569 2923165 487141 (0.17) 12 h 59 m 2 h 51 m 14 m 10 m

S. enterica 293 1366439 244450 (0.18) 3 h 56 m 18 m 36 m 4 m 4 m

S. agalactiae 250 517648 56215 (0.11) 29 m 2 m 5 m 37 s 53 s

S. pneumoniae 238 529076 99578 (0.19) 2 h 29 m 5 m 9 m 1 m 30 s 1 m 10 s

S. aureus 195 523557 98562 (0.19) 1 h 7 m 3 m 4 m 1 m50 s 1 m

H. pylori 163 267302 208790 (0.78) 1 h 42 m 12 m 5 m 5 m 10 s 2 m 10 s

L. interrogans 139 649916 175899 (0.27) 1 h 30 m 4 m 7 m 1 m 30 s 1 m 50 s

V. cholerae 130 467413 97258 (0.21) 24 m 2 m 2 m 20 s 35 s 51 s

A. baumannii 131 487775 129089 (0.27) 34 m 3 m 2 m 30 s 52 s 58 s

B. cereus 104 602986 395477 (0.66) 1 h 13 m 6 m 3 m 50 s 2 m 57 s 1 m 52 s

Running times of eCAMBer on the 10 large datasets. All experiments were performed on the samemachine with 24 processor cores, where 20 of them were used. The
columns correspond in left-to-right order to: the species name, the number of sequenced strains within the species, the total number of annotated genes, the number
of distinct sequences for the set of annotated genes (in the brackets we also provide the ratio between the number of distinct sequences to the total number of
annotated genes), running time to compute all BLASTs for the closure procedure, total running time to compute the closure procedure (including BLAST
computations), the running time to construct the sequence consolidation graph, the running time to compute the refinement procedure, the running time for the TIS
voting procedure, and the running time for the clean up procedure.

procedure computations for the dataset of 162 strains of
H. pylori took longer than the larger dataset of 195 strains
of S. aureus. This may be explained by the fact that the
total number of distinct sequences for annotated genes
in S. aureus (98562) is much smaller than in H. pylori
(208790).
In order to further investigate the scalability of eCAM-

Ber, we check how the number of distinct gene sequences
increases, when more strains are included. For this exper-
iment, we chose the largest dataset of 569 strains of
E. coli. Next, we sorted all genomes from the smallest to
the largest. The plots (Figure 3) present the number of
annotated genes and the number of gene sequences in a
cumulative manner. We observe that the total number of
distinct sequences growsmuch slower than the total num-
ber of gene annotations, suggesting sub-linear growth of
the number of distinct gene sequences. Thus, according
to our theoretical considerations, the algorithm imple-
mented in eCAMBer for computing the closure procedure
is sub-quadratic with respect to the number of strains
included.
This experiment also shows that the strategy applied in

eCAMBer to work with unique ORF sequences, rather
than ORF annotations, leads to a sequence consolidation
graph that is significantly smaller than the correspond-
ing ORF consolidation graph. For example, in the largest
dataset for 569 strains of E. coli, there is about 12.4mln
nodes (ORF annotations) and 2.8bln edges in the ORF
consolidation graph, whereas there are only about 1.6mln
nodes (unique ORF sequences), 1.3mln shared-end edges,
and 55.9mln BLAST-hit edges in the sequence consolida-
tion graph.

Annotation consistency
We also investigate ability of eCAMBer to identify anno-
tation inconsistencies and to improve the consistency of
annotations. As a case study, we use the set of 20 E. coli
strains with manually curated annotations, deposited in
the ColiScope database [5], available through the web-
based interface MaGe [32]. Pseudogenes were excluded
from the analysis. On this dataset we run the closure
procedure, followed by: the refinement procedure, the
TIS voting procedure, and the clean up procedure. For
comparison we also include annotations for the same set
of strains, but downloaded from the PATRIC database
[2].
In order to assess the improvement of annotation con-

sistency, after running eCAMBer, we calculated the mean
absolute difference in the number of annotated multi-
genes between two neighbour strains. It is 311 for the
original annotations from ColiScope vs. 159 after apply-
ing eCAMBer. Analogous statistics on the dataset from
PATRIC are 409 for the original annotations and 311 after
applying eCAMBer.
In the dataset of 20 E. coli strains from ColiScope

database, after the closure procedure, eCAMBer identifies
73 gene families which have the following property: each
family has a member in every strain, and for each fam-
ily exactly one strain has a missing original annotation in
that family. The top three strains with the highest num-
ber of missing gene annotations of that type are: Sd197
(13), 2a 2457T (8) and 536 (7). The most well-studied
strain K-12 MG1655 has four missing annotations of the
above described type. These annotations were added by
eCAMBer during the closure procedure.
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Based on this case study, we also investigate how eCAM-
Ber improves consistency of TISs. There are 8038 pairs of
originally annotated genes with different TISs, but with
identical sequence (including 100bp. upstream region
from the TIS of the longer annotation). This number was
reduced to 4230 after applying the TIS majority voting
procedure and the clean up procedure.
This case study also shows that inconsistencies, which

come from annotation errors, are present even for a very
well-studied bacterial organism like E. coli. Note also
that the discussed annotation inconsistencies were identi-
fied among strains with annotations curated by the same
laboratory.

Comparison of features of eCAMBer and other tools
CAMBer, eCAMBer, Mugsy-Annotator and the GMV
pipeline aim to improve annotation consistency and
accuracy. But there are some important differences
between these approaches and their features (Table 4). For
example, CAMBer and Mugsy-Annotator require gene
annotations to be provided, whereas the GMV pipeline
generates the input annotations using Prodigal and there
is no straightforward way to substitute these annotations
with any other. Thus, in all computational experiments
involving the GMV pipeline were run only on Prodigal
annotations. eCAMBer also integrates Prodigal as a tool
to generate input annotations; however, it also allows the
user to provide any other annotations as the input. All the
tools require genome sequences at the input.
Different tools also aim in solving different annotation

problems. For example, the GMV pipeline only identi-
fies and solves TIS annotation inconsistencies, whereas
Mugsy-Annotator also tries to identify missing genes. Our
new tool, eCAMBer, is capable of resolving TIS incon-
sistencies, as well as removal of overannotated genes and
addition of missing genes (Table 4). Our previous tool
only identifies annotation inconsistencies, but it does not
propose corrections.

Support for multithreading is a valuable feature for
computationally demanding problems. Thus, it should be
noted that eCAMBer has the most comprehensive sup-
port for multithreading among the tools considered. It
allows the use of multiple threads for each of its steps.
The GMV pipeline and CAMBer support multithread-
ing only for BLAST computations.Mugsy-Annotator does
not support it (Table 4).

Evaluation of annotation accuracy
In order to evaluate accuracy of annotations produced
by eCAMBer, Mugsy-Annotator and the GMV pipeline,
we apply the tools to annotations produced by the auto-
matic annotation pipeline in PATRIC [2] for the set of 20
E. coli strains with manually curated annotations in the
ColiScope database [5]. As an alternative dataset of input
annotations for the same set of strains we use annotations
generated using Prodigal [16].
In all our comparative experiments we run Mugsy-

Annotator and the GMVpipeline with default parameters.
It should also be mentioned that both Mugsy-Annotator
and the GMV pipeline output lists of suggestions of
changes to input annotations, rather than actually output
the corrected annotations. We post-processed these pro-
posed lists of changes to generate the output annotations
used for the comparative experiments.
First we assess the correctness of the changes intro-

duced to the input annotations based on the dataset of
gene annotations with experimental support available in
the EcoGene 3 database [31]. This dataset consist of 922
gene annotations for the K-12 MG1655 strain. From this
set we excluded four genes: fdhF, prfB, rph’, insN’; since
their sequences corresponding to the annotated coor-
dinates are disrupted (the length of the sequence from
the start codon to the stop codon is not divisible by
3). Additionally, we ran one iteration of the eCAMBer
closure procedure to transfer the set of 918 gene annota-
tions on the remaining 19 strains. The transferred gene

Table 4 Qualitative comparison of different tools

CAMBer eCAMBer Mugsy-Annotator GMV

Input data GS, GA GS, optional GA GS, GA GS

Mapping of similar sequences BLAST BLAST Multiple WGA BLAST

Detection of gene presence inconsistencies Yes Yes Yes No

Detection of gene start inconsistencies Yes Yes Yes Yes

Correction of gene presence annotations No Yes (add. and rem.) Yes (only add.) No

Correction of gene start annotations No Yes Yes Yes

Multithreading Partial Yes No Partial

Qualitative comparison of different tools. Columns correspond to the tools, whereas rows correpond to different qualitative features of these tools. Acronyms “GS”
and “GA” denote genome sequences and genome annotations, respectively. Acronym “WGA” stands for whole genome alignment. Both CAMBer and the GMV
pipeline have partial support for multithreading computations since only BLAST computations can be executed in parallel.
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annotations share at least 80% of sequence identity with
original annotations for strain K-12 MG1655.
Table 5 presents statistics for the TIS changes intro-

duced by different tools compared against the dataset
described above. There are three different scenarios: (i)
a correct TIS annotation is changed to an incorrect one
(orange); (ii) an incorrect TIS annotation is changed to
another incorrect TIS (yellow); (iii) an incorrect TIS is
changed to the correct one (green). Since for each gene,
there is only one TIS annotation considered as correct,
there is no possible change from one correct TIS to
another one. For each strain the majority of TIS changes
introduced by eCAMBer is correct. In this experiment
eCAMBer made 89 TIS changes from incorrect to cor-
rect and only 12 TIS changes from correct to incorrect
on the dataset of Prodigal annotations. For comparison,
GMVmade 47 incorrect to correct TIS changes and 8 cor-
rect to incorrect TIS changes, on the same dataset. Thus,
the number of correct TIS annotations has increased by 77
in case of eCAMBer and by 39 in case of GMV. Applica-
tion of Mugsy-Annotator made more wrong changes than
correct. Additional file 1 shows panel figures for results of
eCAMBer, Mugsy-Annotator and GMV on both PATRIC
and Prodigal annotations.
Since the extended dataset of annotations from Ecogene

3 constitutes only about 20% of all genes in the 20 strains
of E. coli it is not sufficient for direct assessment of over-
all quality of changes introduced by eCAMBer and other
tools. In particular we cannot conclude if a gene annota-
tion is correct or not based on its absence in this dataset
(so that there is no gene annotations in the dataset sharing
the same stop codon). Thus, we perform further assess-
ment of the quality of changes introduced relying onman-
ually curated annotations for the set of 20 E. coli strains
in the ColiScope dataset [5]. It is a reasonable choice as a

Table 5 Overall statistics for TIS changes

PATRIC Prodigal

Statistic MA eCAMBer GMV MA eCAMBer

# of incorrect→correct 839 392 47 132 89
TIS changes

# of incorrect→incorrect 215 50 5 96 8
TIS changes

# of correct→incorrect 892 92 8 672 12
TIS changes

Overall statistics for TIS changes introduced by eCAMBer, Mugsy-Annotator
(MA) and the GMV pipeline. The tools were run on the dataset of 20 E. coli with
annotations from the PATRIC database (columns 2 to 3) and generated using
Prodigal (columns 4 to 6). Correctness of the changes introduced was assessed
by comparison them against the set of experimentally verified gene annotations
available in the EcoGene 3 database for the K-12MG1655 strain. Gold standard
annotations for the remaining 19 strains were obtained by homology transfer of
that set of 918 annotations. Statistic presented in this table include only that
subset of genes which share the same stop codon as any of the genes in the
gold standard.

gold standard, since many of the annotations have experi-
mental support. In particular, the annotation for the strain
K-12 MG1655 contains 901 out of 918 gene annotations
present in the dataset described previously. For compari-
son, for this strain, there are only 841 and 883 such gene
annotations for PATRIC and Prodigal, respectively.
Next, Figure 5 presents the assessment of TIS changes

introduced during the TIS voting procedure based on the
ColiScope dataset. It shows the assessment of the TIS
changes introduced to the input PATRIC annotations,
with respect to each of the 20 E. coli strains. Statis-
tic presented in this figure distinguishes three different
scenarios: (i) a correct TIS annotation is changed to an
incorrect one (orange); (ii) an incorrect TIS annotation is
changed to another incorrect TIS (yellow); (iii) an incor-
rect TIS is changed to the correct one (green). Since for
each gene, there is only one TIS annotation considered
as correct, there is no possible change from one correct
TIS to another one. For each strain the majority of TIS
changes introduced by eCAMBer is correct. Additional
file 2 shows analogous panel figures for results of eCAM-
Ber, Mugsy-Annotator and GMV on both PATRIC and
Prodigal annotations. Rows 5 to 8 of Table 6 summarize
the overall impact of eCAMBer and Mugsy-Annotator
on TIS annotations. Remarkably, 70% (1591 out of 2260)
of TIS changes introduced by eCAMBer to PATRIC
annotations were correct. For comparison, only 43% of
the TIS changes introduced by Mugsy-Annotator were
correct.
Figure 6 presents the assessment of gene additions and

removals introduced during the closure and the clean up
procedures, respectively. It shows the assessment of the
changes introduced to the input PATRIC annotations,
with respect to each of the 20 E. coli strains. Statistic
presented in this figure distinguishes four different sce-
narios: (i) a missing genome annotation is correctly added
during the closure procedure (blue); (ii) a wrong gene
annotation is correctly removed during the clean up pro-
cedure (green); (iii) a wrong gene annotation is incorrectly
added during the closure procedure (red); and (iv) a cor-
rect gene annotation is incorrectly removed during the
clean up procedure (orange). It can be seen that, for each
strain, the majority of changes introduced by eCAM-
Ber is correct. Additional file 3 shows analogous panel
figures for results of Mugsy-Annotator and eCAMBer on
both PATRIC and Prodigal annotations. The first four
rows of Table 6 summarize the overall impact of eCAM-
Ber and Mugsy-Annotator on gene presence. The results
show that eCAMBer outperforms Mugsy-Annotator in
this aspect. For example, 70% of the changes introduced by
eCAMBer to PATRIC annotations were correct, whereas
it was only 26% for Mugsy-Annotator.
Finally, we investigate how the whole pipelines imple-

mented in eCAMBer, Mugsy-Annotator and GMV
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Figure 5 Statistics for TIS voting procedure. Impact of the TIS voting procedure of eCAMBer on annotations from the PATRIC database.
Annotations from the ColiScope database were used to assess correctness of TIS changes. Note, that since for each gene, there is only one TIS
annotation considered as correct, thus there is no possible change from one correct TIS to another one.

improve the overall annotation accuracy. Here, the accu-
racy is measured by f1 statistic, defined as 2 · precision·recall

precision+recall ,
where precision = TP

TP+FP and recall = TP
TP+FN . Here,

TP, FP and FN denote true positive, false positive and
false negative prediction, respectively. Since a pair of gene
annotations may have the same stop codon, but different
TISs, we keep track on the results for both stop codon
predictions and for the TIS predictions.
Results of eCAMBer on PATRIC annotations in this

experiment are presented in Figure 7. Note that each cor-

rectly identified TIS determines also its correctly iden-
tified stop codon, but not the other way round. Thus,
the accuracy for the TIS prediction is lower than for the
stop codons. As the figure shows, eCAMBer improves
annotation accuracy, for each strain, both in terms of TIS
annotations and stop codon annotations. Additional file 4
shows analogous panel figures for results of eCAMBer,
Mugsy-Annotator and GMV on both PATRIC and Prodi-
gal annotations. Rows 9 and 12 of Table 6 summarize
the change in accuracy when running different tools on
PATRIC and Prodigal annotations. It is clear from this

Table 6 Overall accuracy statistics for different tools

PATRIC Prodigal

Statistic Input MA eCAMBer Input GMV MA eCAMBer

# of incorrectly removed genes NA 0 1224 NA 0 0 388

# of incorrectly added genes NA 1177 792 NA 0 344 331

# of correctly removed genes NA 0 3993 NA 0 0 1185

# of correctly added genes NA 410 701 NA 0 210 1447

# of incorrect→correct TIS changes NA 4812 1591 NA 149 1015 290

# of incorrect→incorrect TIS changes NA 2223 747 NA 28 1018 113

# of correct→incorrect TIS changes NA 4279 669 NA 78 3618 170

Precision for gene starts 0.665 0.663 0.699 0.764 0.764 0.734 0.775

Recall for gene starts 0.695 0.702 0.703 0.752 0.753 0.727 0.765

f1 for gene starts 0.680 0.682 0.701 0.758 0.759 0.731 0.770

Precision for gene ends 0.892 0.882 0.920 0.931 0.931 0.928 0.940

Recall for gene ends 0.931 0.935 0.926 0.917 0.917 0.919 0.927

f1 for gene ends 0.911 0.908 0.923 0.924 0.924 0.923 0.934

Overall statistics for accuracy of changes introduced by eCAMBer, Mugsy-Annotator (MA) and the GMV pipeline. The tools were run on the dataset of 20 E. coli with
annotations from the PATRIC database (columns 2 to 4) and generated using Prodigal (columns 5 to 8). Correctness of the changes introduced was assessed by
comparison with annotations from the Coliscope database. Columns Input correspond to the original annotations. “NA” stands for not applicable. Rows correspond to
different statistics of running each tool.
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Figure 6 Statistics for closure and clean up procedures. Impact of the closure and clean up procedures of eCAMBer on the annotations from the
PATRIC database. Annotations from the ColiScope database were used to assess correctness of gene removals and additions introduced by eCAMBer.

table that eCAMBer outperforms other tools. For exam-
ple, eCAMBer increased the f1 statistic of initial anno-
tations of Prodigal (for gene starts) from 0.764 to 0.775,
whereas the application of GMV improved it only by
0.001 and the application of Mugsy-Annotator decreased
it by 0.027. In the case of PATRIC annotations, appli-
cation of Mugsy-Annotator improved the accuracy from
0.680 to 0.682. However, the accuracy of annotations after
eCAMBer increased to 0.703.

Conclusions
We have developed eCAMBer, a tool for supporting large-
scale comparative analysis of multiple bacterial strains.
eCAMBer identifies and resolves annotation inconsisten-
cies among closely related bacterial genomes.
This tool works in two phases. First, it tries to transfer

gene annotations among all considered bacterial strains.

In this procedure, called closure, it also identifies homol-
ogous gene families and annotation inconsistencies. The
underlying idea behind the efficient implementation of
the procedure is to avoid redundant BLAST queries. This
approach greatly reduces the computational complexity,
thus leading to much shorter running time than other
tools. For example, on the dataset of 41 strains of E. coli,
computations took less than two hours (using only one
processing thread), whereasMugsy-Annotator (the fastest
competitor) took more than 19 hours. Moreover, eCAM-
Ber supports multithreading for all its procedures. This
allows eCAMBer to be used on much larger datasets
comprising hundreds of bacterial strains.
An idea, called compressive genomics, has recently been

proposed with new approaches to optimize BLAST search
time of sequence databases [33,34]. However, one sig-
nificant conceptual difference, between these methods
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and the closure procedure in eCAMBer, is that these
approaches try to reduce the size of the target database,
whereas the eCAMBer closure procedure reduces the
redundancy among BLAST queries. It may be interesting,
for further research, to combine these ideas.
In the second phase, eCAMBer applies a majority

voting-like approach, in the procedure called TIS voting,
to choose the most reliable TIS for each gene. Finally,
it removes possible gene annotation errors during the
clean up procedure. Our case study experiments show
that, in these steps, eCAMBer improves the quality of ini-
tial annotations generated with automatic pipelines, such
as PATRIC or Prodigal. For example, the application of
eCAMBer to PATRIC annotations performed 1575 TIS
changes, out of which 1183 (75%) were correct.
Moreover, eCAMBer outperforms its competitors,

Mugsy-Annotator and the GMV pipeline, in terms of
improving quality of annotations. In particular, when run
on Prodigal annotations for the set of 20 E. coli strains,
eCAMBer increased the f1 statistic of initial annotations
from 0.764 to 0.775, whereas the application of GMV
improved it only by 0.001 and the application of Mugsy-
Annotator even decreased it.
Finally, eCAMBer also has some limitations. One is

that it purely relies on the quality of original annota-
tions. Thus, for example, eCAMBer cannot identify genes,
whose annotations aremissing for all strains. Another lim-
itation of eCAMBer is that pseudogenes and non-protein
coding genes are excluded from the analysis. This follows
from the assumption that eCAMBer considers only genes
that start with start codon, end with stop codon, and have
length divisible by 3.

Additional files

Additional file 1: Assessment of the correctness of TIS changes based
on Ecogene 3.0. Comparison of the impact of applying eCAMBer,
Mugsy-Annotator and the GMV pipeline on the quality of TIS annotations.
The experiment was run on the dataset of 20 E. coli strains with
annotations downloaded from PATRIC and generated using Prodigal.
Correctness of changes introduced was assessed by comparison with the
set of annotations downloaded from the EcoGene 3 database for the K-12
MG1655 strain plus transferred annotations for the 19 remaining strains.

Additional file 2: Assessment of the correctness of TIS changes based
on ColiScope. Comparison of the impact of applying eCAMBer,
Mugsy-Annotator and the GMV pipeline on the quality of TIS annotations.
The experiment was run on the dataset of 20 E. coli strains with
annotations downloaded from PATRIC and generated using Prodigal.
Correctness of changes introduced was assessed by comparison with
annotations in the ColiScope database.

Additional file 3: Assessment of the correctness of gene removals
and additions. Comparison of the impact of applying eCAMBer,
Mugsy-Annotator and the GMV pipeline on the quality of gene ends
annotations. The experiment was run on the dataset of 20 E. coli strains
with annotations downloaded from PATRIC and generated using Prodigal.
Correctness of changes introduced was assessed by comparison with
annotations in the ColiScope database.

Additional file 4: Accuracy: eCAMBer vs. other tools. Comparison of
the impact of applying eCAMBer, Mugsy-Annotator and the GMV pipeline
on accuracy annotations. To asses the accuracy f1 statistic was used. The
experiment was run on the dataset of 20 E. coli strains with annotations
downloaded from PATRIC and generated using Prodigal. Correctness of
changes introduced was assessed by comparison with annotations in the
ColiScope database.
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