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Abstract

Background: Genomic information allows population relatedness to be inferred and selected genes to be identified.
Single nucleotide polymorphism microarray (SNP-chip) data, a proxy for genome composition, contains patterns in
allele order and proportion. These patterns can be quantified by compression efficiency (CE). In principle, the
composition of an entire genome can be represented by a CE number quantifying allele representation and order.

Results: We applied a compression algorithm (DEFLATE) to genome-wide high-density SNP data from 4,155 human,
1,800 cattle, 1,222 sheep, 81 dogs and 49 mice samples. All human ethnic groups can be clustered by CE and the
clusters recover phylogeography based on traditional fixation index (Fsy) analyses. CE analysis of other mammals results
in segregation by breed or species, and is sensitive to admixture and past effective population size. This clustering is a
consequence of individual patterns such as runs of homozygosity. Intriguingly, a related approach can also be used to
identify genomic loci that show population-specific CE segregation. A high resolution CE ‘sliding window’ scan across
the human genome, organised at the population level, revealed genes known to be under evolutionary pressure. These
include SLC24A5 (European and Guijarati Indian skin pigmentation), HERC2 (European eye color), LCT (European and
Maasai milk digestion) and EDAR (Asian hair thickness). We also identified a set of previously unidentified loci with high
population-specific CE scores including the chromatin remodeler SCMHT in Africans and EDA2R in Asians. Closer
inspection reveals that these prioritised genomic regions do not correspond to simple runs of homozygosity but
rather compositionally complex regions that are shared by many individuals of a given population. Unlike Fsy, CE
analyses do not require ab initio population comparisons and are amenable to the hemizygous X chromosome.

Conclusions: We conclude with a discussion of the implications of CE for a complex systems science view of
genome evolution. CE allows one to clearly visualise the evolution of individual genomes and populations
through a formal, mathematically-rigorous information space. Overall, CE makes a set of biological predictions,
some of which are unique and await functional validation.
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Background

The history of life is written in genomes. Evolutionary
forces and historical artefacts leave discernible footprints
on DNA sequence, and their identification and subsequent
interpretation is an active area of genetic research. Single
nucleotide polymorphism microarray (SNP-chip) data
capture within species variation. SNP data are typically
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used to investigate the genetic origin of diseases and
other phenotypes, identify genetic differences between
populations, and to infer the shared evolutionary history of
those populations [1]. These inferences are usually derived
from analyses of percent heterozygosity (HET), explorations
of allele frequency using fixation index (Fst) and principal
component analysis (PCA) [1]. While being one of the most
recognized and commonly implemented metrics, the use of
Fsr to quantify the genetic distance between populations is
not free of challenges. It has been demonstrated [2] that the
choice of estimator, the method of combining estimates
across SNPs, and the scheme of SNP ascertainment can
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impact the Fst results. Similarly, according to [3] a
weakness of Fgr is that it implicitly assumes that popula-
tions have the same effective size and were independently
derived from the same ancestral population. If this as-
sumption is violated, which is often the case, genome
scans can yield false positives. Strengths and weaknesses
of applying PCA to population genetics are discussed in
detail elsewhere [4,5].

The linear data strings produced by SNP-chips possess
two very simple numerical properties — the order and
proportion of 0’s, 1’s and 2’s (corresponding to the three
possible genotypes for a given bi-allelic SNP). These
compositional numerical properties have not been fully
explored but may be amenable to novel pattern recognition
analyses thereby yielding unique new biological insights. It
has long been recognized that regularities in data structure
enforce statistical redundancies that can be quantified
by the related concepts of entropy and compression [6].
This compressibility is a proxy for the minimum amount
of information required to reproduce a data set, i.e. its
Kolmogorov complexity [7]. The compression output can
be queried to identify patterns that may have otherwise
remained obscure. Clustering large data sets by com-
pression metrics has been successfully applied to whole
mitochondrial genome phylogenetic reconstructions [8],
microbiota composition comparison [9], interpretation and
segregation of gene expression data [10], virus phylogeny,
relatedness of languages, and even clustering of musical
genres [11].

Here we use dense genome-wide SNP-chip data as a
proxy for genome composition, which facilitates exploit-
ation of broad patterns of genomic organization relating to
the order and proportion of homozygote and heterozygote
genotypes. By expressing the compressed file size to its
uncompressed form one gets a measure of Compression
Efficiency (CE). This output reflects data regularities in a
convenient manner. Our approach spans datasets derived
from five mammalian species, and includes humans and
several domestic animals. The inclusion of domestic an-
imals allowed us to explore genomic patterns in popula-
tions with well-defined phenotypes, varying periods and
intensities of artificial selection, and variations in past
effective population size [12]. We show that CE analyses
can be successfully deployed to discriminate between pop-
ulations and breeds in a computationally efficient manner
that has an appealingly simple methodology.

Results

Genome-wide compression efficiency reveals

population structure

In this study SNP data were used as a proxy for genomic
DNA sequence composition. The data regularities exploited
by the compression efficiency metric were derived from
the patterns of allele order and proportion across both
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individuals and populations. Our expectation is that SNP
data are dense enough to provide a reasonable reflection
of overall genomic composition. However, some clear
differences between real sequence versus SNP data in-
clude the absence of DNA repeat regions on SNP arrays.
Furthermore, SNP are intended to capture allele variation
relative to a reference, and in this sense are abstracted
from raw genome sequence. Finally, caution is needed
as SNP ascertainment bias may complicate interpretation
across populations.

The CE output for some exemplar data strings are shown
in Table 1. They reveal that the two properties driving data
regularity (and therefore CE) - order and proportion - bear

Table 1 The rationale behind Compression Efficiency (CE)

Sequence based on 30 SNPs Rationale CE,%

000000000011111111112222222222 100" +10“1"+10"2" 3833

012012012012012012012012012012 10 “012" 40.00

001202020022111221100211121200  Random location of 10 11.66
‘0", 1" and 2"

000000000011111111112222222222 100"+ 10“1"+10"2" 7548

000000000011111111112222222007  "ePlicated 5 times

000000000011111111112222222222

000000000011111111112222222222

000000000011111111112222222222

012012012012012012012012012012 10 “012" replicated 5 times 7613

012012012012012012012012012012

012012012012012012012012012012

012012012012012012012012012012

012012012012012012012012012012

001202020022111221100211121200  Randorn location of 100", 67.10

001202020022111221100211121200 ;mili 2" replicated

001202020022111221100211121200

001202020022111221100211121200

001202020022111221100211121200

001202020022111221100211121200 5 different random 4064

"

locations of 10 “0", "1

112220101200102022010110102212 and 2"

210200221211112120020122001010
120221110000202110122021012210
210010201112220012100101222012

Compression efficiency for hypothetical sequences based on 30 SNPs for one
individual (first three rows) or five individuals (last four rows). In all cases the
Shannon’s Entropy would be identical i.e. 1.585 (= —3 (1/3) log(1/3) ) because
each SNP call is equi-probable. Compression efficiency exploits patterns in order
as well as proportion allowing it to discriminate data that cannot be discriminated
by Shannon’s entropy. The Rationale column is a verbal approximation of the
algorithmic complexity. Regular sequences have a small algorithmic complexity
and high Compression efficiency. However, complex, irregular sequences
embedded in a homogeneous population can still exhibit a relatively high
Compression efficiency %. Our sliding window heterozygosity corrected
compression efficiency approach exploits this combination (the last four rows). In
effect, a population-level assessment is made of a region’s sequence entropy,
detecting high co-sharing of even very complex regions.
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a strong mutual relationship with each other. High levels of
proportional bias will serve to enforce bias in order,
and vice versa. In contrast, Shannon’s entropy [6], an
information theory statistic for measuring regularities in
data streams, exploits proportion. Like Shannon’s entropy,
CE captures proportion, but it also reflects sequence regu-
larity in scenarios where Shannon’s entropy is uninforma-
tive (Table 1), because Shannon’s entropy does not exploit
patterns relating to order.

When genome-wide CE values were obtained for each
individual from the 11 human populations from HapMap3,
it successfully sorted individuals into their population of
origin with varying degrees of overlap (Figure 1, Figure 2A).
Although the spread of the data is narrow, it clearly segre-
gates the populations such that the African show low CE
values and high heterozygosity, while the Asian popula-
tions have high CE values and low heterozygosity. Indeed,
all populations within the HGDP and Pan Asian data were
discriminated to some extent by the CE approach, yielding
population resolution in all cases (Figure 2B, C). Com-
paring all human SNP data sets, the indigenous Brazilian
populations (i.e. the Surui and Karitiana) exhibited the
highest CE.

Relationship between CE and Fsy

The correlation between Fgp and CE is 0.885 implying
CE reflects to a large extent the population resolution of
Fst. The pairwise relationship for all 55 population pairs
can be found in Figure 3.
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Given that only a fraction of the human genome is
protein-coding, and that canonical genes are on average
more highly conserved and have a substantially lower
mutation rate [13], we explored the possibility in the
human HapMap data that human protein-coding and
non-protein-coding regions would segregate by CE. We
would normally expect an increase in CE to correspond
with a decrease in heterozygosity. For all populations,
coding regions have lower HET than non coding regions
(Additional file 1: Figure S1A). However, when exam-
ining CE of the low HET coding regions in isolation the
expected increase in CE was only observed in the African
populations (Additional file 1: Figure S1B). For the re-
mainder, i.e. all the non-African populations, there
was no increase in CE when examining coding regions
in isolation.

We find that in all human populations there is a rela-
tionship between high heterozygosity and low CE. This
is because a more even proportion of 0’s, 1’s and 2’s
(approaching 33% heterozygosity) naturally increases
the entropy of the data stream, for the same reason the
outcome of a 3-sided dice roll is less certain than that
of a 2-sided dice roll. However, heterozygosity does not
fully account for the CE output because 1) much genomic
regularity is a product of order in combination with pro-
portion and 2) the percentage of 1’s does not exclusively
govern either the order or proportion of 0’'s and 2’s that
comprise the remainder. We also note that in addition
to being easier to implement than Fgsr the CE approach

30
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Frequency

0.868

0.870

Figure 1 Compression efficiency discriminates human populations. Empirical density function of compression efficiency calculated using

0.872
Compression Efficiency

0.874

gzip. The eleven human populations from HapMap 3 are discriminated. The clusters resonate with known phylogeographic relationships. The Han
Chinese in Beijing (CHB), the Chinese in metropolitan Denver (CHD) and the Japanese in Tokyo (JPT) are co-located by high compression
efficiency, and conversely the South-West USA with African ancestry (ASW), the Luhya in Kenya (LWK), the Maasai in Kenya (MKK) and the Yoruba
in Nigeria (YRI) are co-located by low compression efficiency. The middle cluster encompasses the Mexican (MEX), Indians (GIH), Italian (TSI) and
central Europeans (CEU).
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Figure 2 Compression efficiency against heterozygosity resolves human populations. Compression efficiency (y-axis) against heterozygosity
(x-axis) for the three human data sets: (A) HapMap 3 (1,184 individuals across 11 populations), (B) HGDP (1,043 individuals representing 51 populations
from 14 geographical regions) and (C) Pan-Asia (1,928 individuals across 75 populations). We find that plotting the genome-wide compression
efficiency data versus genome-wide heterozygosity reinforces the strength of the population discrimination in all cases. Although the broad
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coloured boxes in the first panel representing Asian and Africans as extreme with the Europeans intermediate.
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was computationally more efficient, taking 16 seconds
compared to 94 seconds.

Analysis of non-human populations demonstrated that
CE was able to successfully reveal known aspects of
population history (Figure 4). Large SNP datasets were

available from cattle and sheep populations, where mul-
tiple animals per breed were drawn from a diversity
of breeds and geographic regions. Clear evidence for
population substructure was evident in cattle, which is
composed of two sub-species (Bos taurus and Bos indicus)
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Figure 3 The positive correlation between absolute difference in CE and Fsy suggests CE accurately reflects aspects of population
structure. Each of the 55 dots represents every population pair from the 11 human Hapmap populations. The blue box encapsulates closely
related populations i.e. comparisons between two Asian, two African or two European populations. The red box encapsulates the most distantly
related populations i.e. the comparisons between the various Asian and African populations.
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Figure 4 Compression efficiency against heterozygosity resolves non-human populations. Compression efficiency (y-axis) against
heterozygosity (x-axis) for the four non-human data sets: (A) cattle (n = 1,800), (B) sheep (n=1,222), (C) mouse (n =49) and (D) dog (n = 83). The
discrimination afforded by genome-wide compression efficiency and heterozygosity is effective in all species under consideration. Inclusion of
wild as well as domestic populations shows the compression efficiency is sensitive to selection pressures, past effective population sizes, pedigree
structures, different heterozygosities and different levels of linkage disequilibrium. The Brahman are the only Indicine cattle in panel A, the remainder
being Taurine breeds.
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(Figure 4A). CE distinguished Brahman cattle (Bos indicus)
from all other populations. The combination of CE and
heterozygosity separated populations on the basis of their
ancestral genomic composition. For example, breeds with
a high proportion of Bos indicus ancestry (Droughtmaster
and Santa Gertrudis) had high heterozygosity and low
CE, while purebred taurine breeds (Charolais, Angus
and Shorthorn) showed generally higher CE and reduced
heterozygosity.

Domestic sheep are not composed of separate sub-
species and have a population history characterized by
frequent gene flow between breeds [14]. This generally
weak population substructure (compared with cattle and
dogs) was reflected in the data as domestic breeds from
six major geographic regions were positioned in a single
large undifferentiated cluster (Figure 4B). Feral sheep,
however, clustered separately from modern domestic
breeds, due to their low heterozygosity and high CE. The
mouse population data shows variation in the CE and het-
erozygosity relationship (Figure 4C). The German mouse
population is arranged in a linear fashion whereas other
populations are arranged more diffusely. This implies that
at a whole genome level the German mice possess a par-
ticularly tight relationship between CE and heterozygosity,
although the heterozygosity itself is variable. Like the mice
data, the dog data is based on a single representative
individual for each breed (Figure 4D). The extreme
position of the village dog (rural, free-ranging), considered
to be neither wild nor feral, is noteworthy. Taken together,
CE and heterozygosity recapitulated known aspects of
population history for each animal species tested.

High resolution sliding window CE reveals regions that
discriminate populations including signatures of selection
Given the ability of genome-wide CE to recreate phylo-
geographic relationships, we investigated if CE could be
employed to identify individual genomic loci that showed
significant deviations in allele order and composition. We
speculated that since positive selection is known to leave
detectable signatures in genomic patterns of variability
[15], CE may be able to not only identify regions under
common constraint across human populations, but also
loci that differed systematically between populations. In
this analysis a heterozygosity corrected CE (CEh) score,
which was subsequently normalized (to allow for cross-
population comparisons) by its Z-score (i.e. CEhZ), was
computed for sliding windows of 50 SNPs across all 11
human HapMap populations. Regions of interest were
identified by taking SNPs with CEhZ scores 3-fold higher
than the mean, and clustering SNP within 20 Kb of one
another.

We identified ~450 regions per population with statisti-
cally significant CEhZ scores, with an average size ~97 kb
(hereafter “CEhZ loci”). Analysis of CEhZ loci revealed that
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their distribution varies between populations (Additional
file 2: Figure S2A) and that most of them have substantial
heterozygosity and so do not correspond to simple runs of
homozygosity (Additional file 2: Figure S2B). Rather, the
CEhZ loci include complex mixes of homozygotes and
heterozygotes that are co-shared by many members of a
population.

Intriguingly, only nine CEhZ loci were common across
all 11 human HapMap populations. These contained
retinoblastoma 1 (RB1, tumour suppressor and cell-cycle
regulator), dihydropyrimidine dehydrogenase (DPYD, pyr-
imidine catabolic enzyme), histone deacetyase 1 (HDACI,
chromatin remodeller) citrate synthase (CS, pace-making
enzyme in the first step of the Citric Acid Cycle), peroxi-
some proliferator-activated receptor delta (PPARD, nuclear
hormone receptor that controls the size and number of
fat metabolizing peroxisomes and mitochondria), and
Neutral alpha-glucosidase C (GANC, a key enzyme in
glycogen metabolism) among others (see Additional file 3:
Data S1) — all genes involved in fundamental cellular,
developmental and metabolic processes. Since the CEhZ
metric is detecting population-level regions of homogen-
eity, it is tempting to speculate that CEhZ loci common
to all human populations are coincident with regions of
fundamental importance to the human lineage.

To investigate if high CEhZ scores may be indicative
of evolutionary pressure, CEhZ loci were intersected with
regions recently identified as harbouring signals of natural
selection in central Europeans (CEU), Chinese (CHB) or
Yoruba Africans (YRI) using the composite of multiple
signals (CMS) test [16]. This revealed that 20% of the
CEU, 13% of the YRI, and 10% of the CHB regions identi-
fied by CEhZ and CMS overlapped (Additional file 4:
Data S2). Importantly, this set contains loci that are exem-
plars of natural selection in modern humans. For example
SLC24A5 which is associated with skin lightening in cold
climate Europeans [17] Tuscans and Gujarati Indians [18]
is specifically detected by CEhZ in the CEU, TSI and GIH
populations (Figure 5A); HERC2 is associated with variation
in eye colour in Europeans [19] and is similarly detected by
CERZ specifically in CEU and MEX (Figure 5B); and EDAR
has recently been associated with variation in hair texture
in Asians [20], and is detected in both Chinese populations
but not Japanese (Figure 5C).

A detailed example of the sort of population-level shared
patterns identified by CEhZ is illustrated for the skin
lightening SLC24AS5 region in light skinned CEU compared
to darker skinned ASW (Figure 6). We created three heat-
map matrices, clustered on rows. Patterns of population
sub-structure based on haplotypes are clearly evident
within the CEU and JPT, as are systematic differences
between the three populations. The darker skinned ASW
are much more heterogeneous (entropic) in this region at
the population-level than the other two populations. A
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Figure 5 CEhZ on an overlapping sliding window basis clearly highlights known signatures of selection in humans. (A) Skin lightening

in Europeans (SLC24A5), (B) Blue eye colour in Europeans (HERC2) and (C) Hair texture in Asians (EDAR).
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CEUCE = 93.3%, Het = 24.9%

JPTCE =93.6%, Het=16.4%

Figure 6 The detailed allele composition of the SLC24A5 skin
pigmentation region in dark skinned ASW versus lighter skinned
CEU and JPT. The alleles are represented by color as follows: red =0,
green = 2, black = 1. Population-level regularities in allele order are very
evident in both European and Japanese populations but not South
West with African Ancestry. The Japanese were included for illustration
purposes. Their compression efficiency was no higher than the
CEU despite a much lower heterozygosity. Following correction
for heterozygosity no peak was detected over this region. The region
exactly overlying the SLC24A5 coding sequence (Chr15:48/413,169 —
48,434,589) is coincident with almost identical allele pattemns in both
European and Japanese. Downstream of the coding sequence both
European and Japanese possess population-level regularities in
composition, but the regularities differ.

substantial reduction in HET is apparent in the JPT
but not the CEU. It is noteworthy that the CEU show a
compression peak as strong as the JPT, but without the
reduction in HET.

Intriguingly, CEhZ analysis reveals peaks for both the
CEU and the Maasai overlapping LCT, or lactase (Figure 7).
We note that the CEhZ data show a more pronounced
peak in the Maasai compared to CEU.

To identify high-confidence CEhZ loci that may warrant
further investigation, regions specific to population clusters
were collated. This revealed 162 African (ASW, MKK,
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LWK, YRI), 47 European (CEU, TSI and GIH), and 69
Asian (JPT, CHB, and CHD) CEhZ loci. These sites in-
clude a European CEhZ peak that corresponds to an
apparent “gene desert” containing a long non-coding
RNA of unknown annotated function (Figure 8A) prefer-
entially expressed in placenta (data not shown), an African
peak (Figure 8B) over a chromatin remodeller and poly-
comb group protein that has been previously associated
with genetic determinants of height (SCMH1I) [21], and an
Asian peak (Figure 8C) over the X chromosome gene,
EDAZ2R, which encodes the ectodysplasin A2 receptor and
neighbours the androgen receptor. These regions have been
uniquely identified by the CEhZ approach. We hypothesize
that further investigation of these loci will reveal a possible
role in population-specific biological processes.

Extending the CEhZ approach to two cattle species,
Angus and Brahman, comparing to the literature revealed
that 16 of 30 the most extreme CEhZ loci overlap with
genomic regions previously described as being under se-
lection. Similarly, in an analysis equivalent to the human
sliding window approach we found 6 of the top 10 regions
also have been previously documented as harbouring sig-
natures of selection (see Table 2) [22-27]. Furthermore, we
also identified CEhZ loci overlapping with known QTL
for production traits, including BTA14:~25 Mb which
contains the PLAG1 gene [28-30] (Figure 9A) previously
associated with cattle growth and fertility [28-30]. We
have highlighted 3 other regions that also discriminate
the breeds, in each case coincident with genes encoding
proteins of fundamental developmental importance: EN1
(Figure 9B) plays a role in central nervous system pattern
formation [31], EYAI (Figure 9C) plays a role in muscle
fibre composition [32] and ARID4A (Figure 9D) plays a
role in male fertility [33].

Unlike Fst CEhZ is computed on a within genome basis.
No contrasting population is required (although clearly it
is informative to contrast CEhZ loci across populations),
which means the analysis can be run on newly genotyped
populations in isolation, identifying regions of interest
even in species whose genome has poor functional an-
notation. Furthermore, CEhZ can also be computed on
the mammalian X chromosome whose hemizygosity in
males normally precludes population-level analyses by
conventional methods.

The CEhZ human and bovine data (both SNP-level
scores and CEhZ loci) are available as a hub that can be
visualized using the UCSC Genome Browser: https://surf.
genome.at.uq.edu.au/~uqrtaft/ CEhZ/hub.txt).

Defining the compression efficiency parameter space

In the discipline of complex systems science there exists
the concept of ‘The Edge of Chaos’ capturing the prop-
erties of the phase transition that exists between order
and chaos. This transition zone is important because it
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Figure 7 CEhZ on an overlapping sliding window basis clearly highlights the signature of selection over lactase. Adult lactase persistence
following co-evolution with livestock in Europeans and pastoral Maasai Africans (LCT).

has been found to possess desirable evolutionary and
computational properties.

It did not escape our notice that the CE approach allows
one to formalise and test this concept in the context of
genomics. One can scramble the data, measure the
CE consequences, and compare it to the informational
properties of the real genomes. We scrambled the order
of SNPs using both the proportions from that particular
individual (RAND1) but also a deeper randomization
based on proportions derived from the population at
large (RAND2). RAND?2 is valuable in defining the par-
ameter space we are interested in, as it can be explored
for the entire range of conceivable heterozygosity i.e.
from 0 to 100. Here, 100% produces a highly compressible
string of 1’s while 0% is composed of a random string
of 0’'s and 2’s only. Because this RAND2 sequence is
maximally chaotic the resultant curve defines the signal to
noise threshold for every level of heterozygosity. Intri-
guingly, it can be observed that the real mammalian DNA
sequences align to, or emanate from, the point of mini-
mum CE coincident with ~33% heterozygosity (Figure 10;
Additional file 5: Figure S3).

The outcome is similar across species. That is, the CE of
genomes always aligns with the point of minimum CE.
Superimposed in Figure 10 are lines intended to elucidate
possible mechanisms for driving genomic movement
through information space. Overall, this creates an impres-
sion that genomes evolve from (or to) the point of mini-
mum CE, reflecting the combined impacts of inbreeding,
LD (linkage disequilibrium) and other unidentified factors.
There is a strong negative relationship between CE and

HET. However, through outbreeding, HET values beyond
33% can be achieved and, in this region increases in HET
can be associated with increases in CE. From a numerical
perspective, proportion-based regularity (bias) increases as
one moves farther away from the ~33% HET (the point of
equilibrium) on both sides of the x axis, while order-based
regularity (pattern) increases as you increase CE moving
upwards on the y axis.

Discussion

Given that the purpose of genomes is to encode and
transact information, it is not surprising that principles
from Information Theory have been previously used to
quantify their informational properties [38-46]. However,
the historical use of compression per se in genomics has
been more from a practical and technical perspective
[47,48], such as how to store large datasets in an efficient
manner, rather than that of pattern recognition and
biological interpretation. The only previous example of
clustering by compression in the genomic area that we are
aware of is the mitochondrial work of [8] which recon-
structed eutherian and mammalian phylogenies.

Here, we have illustrated that CE analysis of SNP data
allows one to 1) discriminate populations reconstituting
known aspects of their diversity, 2) identify at very high
resolution genomic regions of evolutionary interest in-
cluding validated signatures of selection 3) visualise evo-
lution through informational space and 4) achieve these
goals using a method that has an appealing logical sim-
plicity. The hypothesis-free pattern recognition qualities
of CE allow exploitation of order as well as proportion,
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Figure 8 CEhZ on an overlapping sliding window basis makes unique new predictions of regions of evolutionary interest in humans.
(A) A European and Mexican peak in a gene desert containing a long non-coding RNA transcribed preferentially in placenta (B) An African peak
over a gene encoding a chromatin remodeller (SCMHT) and (C) An Asian peak over EDA2R encoded on the X chromosome.
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Table 2 Compression efficiency identifies bovine signatures of selection’
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Chr Mbp  Angus Brahman Genes (300 Kb up and down) Cross ref
Het (%) CE Z-score Het (%) CE Z-score
2 62.1 8.596 0976  2.886 22053 0962 0622 DARS, LCT, MCMé6, R3HDM 1, UBXN4, ZRANB3 [22,34,35]
3 285 1499 0.985 57316 33.883 0.949 -0.798 AMPD1, CSDET, NGF, NRAS, SIKET, TSPAN2 -
5 479 30.669 0.961 -0.014 5.737 0977 13.380 GRIP1, HELB, IRAK3, LLPH, TMBIM4 [22,23,34,36,37]
5 1211 31960 0936 0023 9453 0956  6.100 ALG12, CRELD2, MLC1, PANX2, TRABD *
6 776 9.009 0.976 0.259 13.584 0.963 4293 LPHN3 -
12 24.7 26.202 0953  —0.004 12.780 0958 4202 ALG5, EXOSC8, FAMA48A, POSTN, RFXAP, SMAD9  [34]
19 63.9 27.905 0945 0013 8.545 0965 7798 CACNGI, CACNG4, CACNG5, HELZ [34]
22 513 33490 0.936 -0.026 9.342 0.963 6.091 AMT, APEH, ARIH2, CCDC36, CCDC71, DAGT, [24,34]
IMPDH2, IP6K1, KLHDC8B, LAMB2, MST1, NICN1,
P4HTM, QARS, QRICH1, RHOA, RNF123, TCTA,
USP19, USP4, WDR6
X 39.1 0.644 0.982 1.185 3639 0.964 1536 DKC1, F8, FUNDC2, GAB3, KIR3DL2, MPP1, MTCP1 *
X 86.9 0.081 0.986 3.149 5.991 0.951 =011 EFNBI, PJA1, STARDS, YIPF6 [24]

'Heterozygosis, Compression Efficiency and Z-scores values are averages of a window (+/— 300 Kb) from the reference position. The SNPs giving the signal in these

regions were unassigned on the bovine assembly Btau4.2.

Enomic regions with noteworthy (Top 1%) Z-score normalized heterozygosity corrected compression efficiency across bovine Brahman and Angus populations.

the two sources of regularity in any data stream. This is
important because the detection of patterns can be used
to cluster data based on guilt-by-association and drive
the inference of biological meaning.

One conceptual advantage of using a proxy for direct
genetic evidence (CE) rather than the direct evidence itself
(such as Fgr) is that previously unrecognized informational
footprints may be present in the data which we may wish
to exploit but whose expected properties we do not need to
identify, nor fully understand, a priori.

Overall, we document a promising new perspective on
analysing genomic data which is intended to be comple-
mentary to existing mathematical approaches, not to sup-
plant them. Given this is the first publication of a wholly
new approach, we are not yet in a position to formally
connect our ideas to existing population genetics theory
in a rigorous mathematical sense. Nevertheless, given its
particular biological interest to human genetics, we do
explore the population-level allele pattern content of
the CEU and ASW SLC24A5 skin pigmentation region
in some more detail. From the broader genome-wide
perspective we have to rely on less quantitative verbally
expressed arguments. These draw intuitive connections
between CE and various aspect of population genetic
theory.

Population discrimination

In order to infer population history, molecular geneticists
conventionally look for specific genomic sites across
individuals and search for changes in abundance or even
fixation of an ancestral or derived allele [49]. Here we have
taken a complementary strategy, exploiting various longi-
tudinal patterns along an individual’s genome (i.e. the rows

of Table 1 rather than just the columns). The assumption
we make is that closely related individuals will be more
likely to share these longitudinal patterns of genome
composition (i.e. haplotypes), however complex they
may be. One appeal of this approach is we do not lose the
informational context provided by physically proximate
SNPs.

In terms of the whole genome, we find CE allows all
human populations to be discriminated, sometimes with
little or no overlap. Using the Human HapMap3 dataset,
the lowest CE is exhibited by the African American and
other African populations and the highest CE by the
Asian populations (Chinese and Japanese). The groupings
resonate with published phylogeographic reconstructions
based on Fstand PCA analyses [50] but are computation-
ally much quicker and cheaper, consuming only a fraction
of CPU time. In broad terms, at heterozygosity levels less
than a third, there is clearly a strong negative relationship
between CE and heterozygosity. However, this observation
does not explain the CE output, with populations of
similar heterozygosity discriminated by differential CE.
The population discrimination is robust across mamma-
lian species (Figure 4). Runs of homozygosity are clearly
an obvious compositional feature that will be exploited by
Gzip to compress the SNP data string in the whole gen-
ome version of the CE analysis, but there are many others
sources of regularity.

One appealing analytical implication of the genome-
wide CE approach is that the different scales of the various
informational regularities can be assessed simultaneously
by a single metric, irrespective of their size, direction or
crypticity. The genomes of domesticated species offer a use-
ful model in which to explore the genomic consequences
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Figure 9 CEhZ applied to Brahman and Angus cattle. (A) Contrasting the heterozygosity corrected compression efficiency of Brahman and
Angus coincides with a known signature of selection around the 25 Mb region of bovine chromosome 14 incorporating the gene PLAGT
associated with tropical adaptation and a number of phenotypic traits such as fertility and growth. New regions predicted include ENT for

J

imparted by population histories characterized by bottle-
necks and artificial selection, as the genetic similarity of
the various breeds provides a relatively stable background
against which various evolutionary forces can be inferred
[51]. In each domestic species broadly similar patterns
were observed. Genome-wide CE increased for popula-
tions likely to have been founded from a small number
of founders, and it decreased for outbred populations
expected to be highly heterogeneous. CE was plotted
against heterozygosity showing that signals of popula-
tion substructure were evident in non-human species
(Figure 4).

Genomic regions harbouring signatures of selection

Given the ability of whole genome CE to discriminate
populations, we next explored within-genome structure
to prioritise regions of particular biological interest. We
used a high resolution sliding window expressed relative

to heterozygosity and normalized by Z-score (CEhZ). The
correction for heterozygosity means the CE differences
are more likely to be attributable to the pattern in order
of heterozygotes and homozygotes and less to changes
in proportion. The approach integrates a combination of
individual genome regularity in the context of population
homogeneity in that region (Table 1). Regions of even
quite complex composition will yield a compression peak
by CERZ if they are shared by many members of a given
population. This feature discriminates the window-based
CEhZ analysis (which compresses shared complex regions
as well as shared simpler ones) from the whole genome
CE (where compression will be most strongly influenced
by low information content regions such as simple runs of
homozygosity).

That is, for CERZ not only would we expect to find peaks
over regions characterized by shared runs of homozygosity
(as exemplified by the MSTN locus in muscular Texel
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sheep which has recently been swept clean of genetic
diversity), but other compositionally more complex
regions as well. The application of a matrix structure
that permits comparisons of the same genomic regions
across individuals clearly connects the output to existing
population-level metrics such as LD. However, CEhZ
finds loci over many different kinds of compositional
regularities in a manner that defies a simple summary.
A more detailed examination of allele composition in
the SLC24AS region in ASW, CEU and JPT reinforces
the challenge of describing the mathematical nature of
the compressible patterns exploited by Gzip (Figure 6).
Irrespective of this, the data can be exploited to find
commonalities and differences across any set of popu-
lation groupings, in this particular case highlighting
population substructure and showing the CEU and JPT
are awarded similarly high CEhZ peaks for different
reasons, and with different background HET.

In attempting to interpret the biological relevance of
the compression peaks we examined the extent to which
our new regions overlap with known signatures of selection.
We find CEhZ successfully detects many of the known
major signatures of selection in the various species.
With regard to the human output we used [16] and
found substantial overlap (Additional file 4: Data S2). The
CE approach has the appeal of pinpointing particular gen-
omic regions, such as coding sequence or parts of coding
sequences, at very high resolution. In human populations
the highlighted regions capture genes encoding proteins
involved in skin pigmentation (SLC24A5), blue eye colour

(HERC2), lactase persistence (LCT) and hair texture
(ECAR).

A recent paper [18] detected a signature of positive
selection in SLC24A5 in CEU, GIH and TSI exactly
concordant with our observations based on CEhZ. They
used a new method (haploPS) which leverages 2 sources
of information relating to haplotype length and structure.
HaploPS is similar to EHH and XP-EHH except that it
estimates the population frequency of the allele under
question and identifies the haplotype sequence on which
the selected allele sits.

Furthermore, the LCT gene encodes the lactase protein
that allows milk digestion into adulthood. It is known to
be under selection only in those European (CEU) and
African (MKK) populations with an extensive pastoral
history characterised by livestock domestication and an
adaptation favouring regular milk and dairy consumption
(Figure 7). The lactase signature recently detected in MKK
was notable in that a combination of 3 computationally
intensive measures had to be leveraged (fixation index, in-
tegrated haplotype score and cross population extended
haplotype homozygosity) [52]. Moreover, in contrast to
CEhZ which provides strong evidence for the exact gene,
the alternative methods could resolve the region only to a
relatively broad 1.7 Mb [52]. In our data the nature of the
LCT-specific peak in CEU and MKK is visibly different,
consistent with the purported evolutionary independence
of the selection event [15].

New human population predictions unique to CEhZ
imply hitherto unrecognised roles for a long non-coding
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RNA in European populations, a chromatin remodeller
(SCMH1) in African populations and the EDA2R gene in
Asian populations (Figure 8). The EDA2R is noteworthy
in that it is present on the X chromosome which is not
amenable to conventional analyses because it is hemizy-
gous in males.

A number of CEhZ peaks are shared by all the human
populations. We might speculate these represent genomic
constraint at a much deeper taxonomic level, perhaps the
branch point of modern humans from other primates. It is
interesting to note that the more homogeneous Asian
populations exhibit a frequency distribution of CEh Z-scores
characterised by a low mean value, but a number of very
extreme outliers compared to the more heterogeneous
African populations (Additional file 2: Figure S2).

In the cattle divergent regions contrasting Angus (Bos
taurus) and Brahman (Bos indicus) breeds aligned to
previously described signatures of selection. The recently
documented PLAGI is considered fundamental to tropical
adaptation in Brahman cattle (Figure 9A, Table 2). New
predictions for the cattle breed comparison include ENI,
EYAI and ARID4A (Figure 9B, C, D). Overall, it appears
CEhZ is a useful metric for exploiting intra-chromosomal
heterogeneity in a rapid, straightforward fashion.

Evolution and information compression

What are the biological implications of the CE values we
have computed? As a first step, we defined the total par-
ameter space (Additional file 5: Figure S3). This allows
us to encapsulate the boundaries of the DNA informational
universe. In turn, this universe enables us to envisage
how real DNA sequence evolves at a whole genome level.
We modelled ‘totally regular’ (highly compressible) by first
sorting each individual SNP genotype prior to compression,
and ‘totally irregular’ (uncompressible) through several dif-
ferent randomisation procedures set at both the individual
and population levels that account for proportion and
order. The initial randomisation provided by RANDI1
breaks LD by scrambling the identical “0, 1, 2” proportions
into chaotic order (Additional file 5: Figure S3).

This result shows that in practice LD serves to enforce
data regularities (rather than irregularities) on real-world
DNA sequences. The deeper randomisation provided by
RAND2 (that borrows the proportions of 0’s and 2’s
from the entire population, not the individual) is perhaps
surprising. It suggests each individual genome possesses
highly cryptic proportional regularities not present in the
population at large (Additional file 5: Figure S3). We
found that all populations in all species occupy a very
specific zone, clearly converging at — or emerging from —
a very well defined point in CE genomic space. They inter-
sect at the point at which highly complex sequence most
deeply explores the disordered space, without actually
becoming chaotic. The overall uniformity of the shape
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of the output across all the populations/breeds of all the
species, despite considerable compositional differences
in both the density and functional bias of the SNP chip
technologies, points to the very high robustness of the
result. Nevertheless, SNP chips characterise highly vari-
able (i.e. chaotic) regions, so the translation of this output
to full genome sequence remains uncertain and should be
a focus of future work. We were next interested in direc-
tion of travel through this space. Are we observing an
emergence or a convergence from the point of minimum
CE and maximum noise?

Our first attempt to answer this question was to exam-
ine the domestic species data. These species have a clearly
identified progenitor which provides an unambiguous
evolutionary sequence. However, SNP ascertainment bias
confounds interpretation here. What we can say though,
is that life - characterised by negative entropy [53] evolved
from non-life which is usually characterised by high
entropy. It is therefore tempting to assume that the
more ancestral compositional states would have been
more entropic. Further, another source of sequence data
in a range of species supports this idea. In the context of
particular protein coding sequences, we have previously
noted that when genome-wide codon bias is quantified
informationally, it is those proteins apparently most
relevant to (or diagnostic of) the lineage under scrutiny
that exhibit the lowest entropy.

Examples of these low-entropy ‘derived’ molecules
include proteins influencing chloroplast physiology in
plants, mitochondrial function in birds and hair formation
in mammals [41]. Generalizing this broad line of reasoning
(high entropy ancestral, low entropy derived) is appealing
as it places representatives of the modern African popula-
tions as relatively basal (Figure 10), which seems to be
consistent with the consensus “Out of Africa” hypothesis
of modern human evolution [54]. In the future the hy-
pothesis that derived genome sequences possess relatively
low entropy could be validated using domestic species as
a resource. One could compare the whole genome CE of
the extant representative of the wild ancestor to various
domestic populations. For example, we would predict the
CE of the red jungle fowl genome, at an individual level,
to be lower (i.e. more entropic) than individual genomes
representing meat and egg producing domestic chickens.
We would also predict population-level CEhZ sliding
window scores to possess a more extreme distribution
in the domestic breeds. Some of these CEhZ peaks would
characterise signatures of selection for egg and meat
production.

What else does this mean for our understanding of bio-
logical encoding systems? The phase transition between
regularity and irregularity is theorised to be a high-impact
zone of enormous computational power and evolutionary
potential [55,56]. This interests us given a genome is a
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computing device made of nucleic acid that is the product
of evolution. The overall position of all the human pop-
ulations supports a controversial concept from complex
systems science [55,57-61] that genomes are poised at
or close to “The Edge of Chaos.” This conclusion resonates
closely with that of Kong et al., [62] who analysed 384
prokaryotic and 402 eukaryotic genomes using an novel
regularity/order index called ¢ and based on averages of
nucleotide distributions in a given sequence of pre-
defined length.

Figure 10 also summarise the possible mechanistic
explanations for the various trajectories taken by the
populations and individuals through information space,
based on considerations of both the implications of our
data modelling coupled with the real world mammalian
genomes. We see different spatial impacts of LD and extent
of outbreeding depending on the particular population
under consideration.

The meaning of CE in the context of population

genetics theory

To finish, it is appropriate to more directly connect our
CE work to existing population genetics theory, whose
goal is to study the frequency and interaction of alleles
and genes in populations. In population genetics theory,
various evolutionary processes, particularly natural selec-
tion (in numerous guises), drift, mutation and gene flow
are explored to make inference about population history.
The Hardy-Weinberg principle says that the frequency
of alleles will remain constant in the idealised absence of
selection, mutation, migration and drift [63] and this
provides a theoretical expectation (equilibrium) against
which population level deviations from equilibrium
(dis-equilibrium) can be quantified and subsequently inter-
preted. In Information Theory terms, the point of equi-
librium corresponds to maximum entropy, and extent
of dis-equilibrium reflects differing amounts of negentropy.

At a population level, nearby pairs of alleles have a
high tendency to be correlated with each other (LD). In
genetic ‘hitchhiking’ an allele at one locus rises to high
frequency in a population because it is linked to an allele
under selection at a nearby locus, not because it has
been selected itself. The same phenomenon applies to
genes under runaway sexual selection [64]. Clearly, this
phenomenon culminates in population-level homogeneity
(pattern) in allele combinations because of genomic similar-
ity between individuals. Adding further dynamism, these
population-level patterns are gradually broken by the in-
dividual cellular/molecular process of genetic recombin-
ation, but at a slow rate.

This ebb and flow of allele pattern formation and de-
struction among individuals can be exploited to detect
the action of natural selection via selective sweeps, and
to view the impact of migrations and founder effects.
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For example, it is well known that there is higher LD in
Asian populations, presumably due to the founder effects
that occur during migrations limiting the number of
haplotypes. LD is often viewed by a decay plot e.g. [65],
where it can be shown that deviation from equilibrium
is considerably stronger for nearby loci. These decay
plots are relatively extreme for Africans due to faster LD
decay and correspondingly smaller haplotype blocks than
in the comparison Asian and European populations. A
number of existing metrics for selection (EHH, IHH) are
based on considerations of local decay of haplotypes.

What does this mean for the various CE metrics and
what are the phenomena that serve to underpin the pat-
terns quantified by CE? Whole genome CE is computed
on an isolated individual basis. The coordinates (i.e. shape
and location) of the population cluster describes the data
at the population level. However, given this is funda-
mentally an individual-level metric, its relationship to
LD might not be straightforward. For example, other
sources of (unknown) compositional regularity may apply
including segmental duplications [66] and G4 muotifs and
structures [67]. It is also true in theory, that one can achieve
the same compression efficiency for different reasons, but
in practice we find that the accurate phylogeographic
population-level clustering implies it is only similar related
genome compositions that are awarded similar CE scores.
Also, we know that the RAND1 modelling procedure
serves to break LD and reduces CE (Additional file 5:
Figure S3). Based on this reasoning, it is tempting to
speculate that individuals with high CE presumably belong
to populations that have even higher LD. This conclusion
is clearly consistent with the population-level CE ranking
we observe in Figures 1,2, 3 that mirrors known differences
in LD between human populations, that is the Africans
showing the least LD and the Asians the most LD, with the
Europeans intermediate.

Next we will consider the relationship of this thinking
to the particular genomic regions identified by the slid-
ing window CEhZ. From our informational perspective,
remnant population-level patterns can clearly be quanti-
fied by CEhZ, and contrasted across populations, no
matter how cryptic or complex the genomic composition
may be at an individual level. A detailed specific example
is given by the CEU and GIH skin lightening signature of
selection that resides over SLC24A5 (Figure 6). At this
stage, a confident determination of CEhZ'’s exact biological
origin — i.e. is there a particular compressible pattern diag-
nostic of natural selection versus genetic drift versus a
founder effect? — is not possible.

That being said, there are clearly numerous reliable
patterns present at very specific genomic regions in one
population, but not another. Many of these have not been
described before including those specifically overlying
known functionally important parts of the genome, such
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as protein-coding genes, non-coding RNA and so on.
These new discoveries may reflect the fact that the
mathematical nature of the population-level patterns we
have highlighted did not have to be specified a priori,
unlike Fgr which is more tightly expressed. The guilt-by-
association heuristic tells us there is some bona fide
population-level meaning in those regions. It is our con-
tention that a post-publication community effort and a
range of techniques will be required to ascribe functional
significance or not on a case-by-case basis. To expedite
this process, we have uploaded the CEhZ tracks onto the
UCSC genome web browser.

Slower LD decay in Asian populations seems consistent
with our finding that the Asians possess extreme outlier
peaks in CEhZ reflecting high homogeneity in certain re-
gions not observed in the other populations (Additional
file 2: Figure S2). It is worth pointing out that direct
comparisons of two specified loci between populations
are not apparent in decay plots, as all conceivable pairs
are simultaneously plotted. By contrast, one strength of
the CERZ sliding window approach is we maintain the
identity of the genomic region such that the population
contrasts are directly comparable, and therefore biological
interpretation can conveniently be made on a fine-grained
regional basis. An example would be the European and
Gujarati Indian selection events around the SLC24AS gene
(Figure 6).

Finally, population genetic diversity has been quantified
by allelic diversity — namely, the proportion of all copies
of a gene made up of a particular variant [68]. The 1000
genomes consortium [69] showed that CEU, JPT and YRI
possess many SNPs displaying substantial absolute differ-
ences in allele frequency, and that this ability to differenti-
ate populations decays rapidly as one increases physical
distance from genic SNPs. Our observations are consistent
with some of these findings, namely the whole genome
discrimination determined by CE, the concordance of
some CEh peaks over genic regions in particular, and
the elevation of African CE when examining coding
SNPs only.

Caveats
CE operates by exploiting regularities within a sequence
regardless of the origin of the sequence. CE is not based
on any theory of segregation inheritance, nor does it
require knowledge of ancestry to phase the genotypes.
In light of the strong correlation between Fgr and CE
(r=0.885) we conclude that CE accurately estimates
genetic relatedness among populations without recourse
to additional sources of information. The same conclusion
is reached when CE is used a sliding window approach to
capture genes under selection.

Because CE is a hypothesis-free pattern recognition
method that detects regularities in segments of the genome,
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it is more in the spirit of the various haplotype-based
methods, rather than single marker methods of population
differentiation. The main weakness we have identified is -
like EHH and Fst - it does not allow for population
stratification. Further work is required to formalise other
strengths and weaknesses relative to existing methods.
Our implementation of CE requires the use of the gzip
tool which incorporates the DEFLATE algorithm. This is
included in all unix environments. However, other com-
pression tools exist and could be used. Also, from the
computational perspective, the sequential use of gzip (ie.
one genotype sequence at a time) requires a great deal of
parsing arguments and I/O operations. This is not an issue
when compressing a whole matrix comprising genotype
sequences from individuals within a population. Neverthe-
less, if we were to program the DEFLATE algorithm and
perform CE analyses entirely in memory then the computa-
tion efficiency of CE analyses would be greatly improved.

Conclusions

We have exploited the pattern recognition qualities of
information compression efficiency to assess genome
patterns within and between genomes. This approach rec-
reates established phylogeography and highlights known
signatures of selection. Some new regions with high popu-
lation level scores overlying functional apparatus such as
non-coding RNA have also been identified. These regions
are not simple runs of homozygosity so direct assessments
of this nature cannot identify them. Rather they are com-
positionally complex regions shared by individuals of a
given population. We hypothesise some of these regions
to be previously unidentified signatures of selection.

Methods

Exemplar data strings

To explore the patterns exploited by CE on an individual
genome level we calculated the metric for several exemplar
data strings of 30 SNPs. These ranged from simple and
ordered to informationally complex and irregular. We
chose two regular strings, each containing an even pro-
portion of 0 s, 1 s and 2 s. The first contained a given
SNP clustered together (i.e. 10 0 s followed by 10 1 s
followed by 10 2 s), whereas the second had the 012
pattern repeated 10 times. These represent the two
ways of generating the simplest patterns. We also gen-
erated a random sequence of 30 0 s, 1 s and 2 s. To
model a population-level analysis we used 5 individual
sequences per population.

Datasets

We used seven SNP genotype datasets across five species
(human, mouse, dog, sheep and cow). Genotypes were
codified as “0” (homozygous wildtype or “AA”), “1” (het-
erozygous or “AB”), “2” (homozygous variant or “BB”), or
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“9” (missing data). These analyses were performed on
publicly available data, each of which has previously
documented ethics approval.

Human

We obtained the HapMap-formatted genotype files corre-
sponding to the HapMap phase III release 3 data (http://
hapmap.ncbi.nlm.nih.gov/downloads/index.html.en). For the
11 populations, alleles from the ‘forward strand’ were used
for the 22 autosomal and the X chromosome. This totaled
1,184 individuals and 1,457,897 SNPs. Details about num-
ber of samples genotypes for each population are given in:
Table S1 of the original publication by the HapMap3 Con-
sortium  (http://hapmap.ncbi.nlm.nih.gov/downloads/pre
sentations/nature09298-s1.pdf) [50].

We also utilized genotype data from the Human Genome
Diversity Project (HGDP; http://hagsc.org/hgdp/files.html;
[70-72]), comprising 660,918 SNPs and 1,043 individuals
representing 51 different populations from 14 geographical
regions of Africa, Europe, the Middle East, South and
Central Asia, East Asia, Oceania and the Americas.

Additionally, we obtained the SNP genotypes from the
Pan-Asia SNP Consortium (http://www4a.biotec.or.th/
PASNP; [73]). The consortium provides the genotype data
of 75 Pan-Asian and HapMap populations with 1,928 in-
dividuals, 54,794 SNPs on autosomal chromosome and
1,216 SNPs on chromosome X.

Mouse

We accessed the data from Staubach et al., [74]. This
comprises SNP calls from Affymetrix Mouse Diversity
Genotyping Arrays. They were applied to 49 individual
samples including 11 individuals from two populations each
of Mus musculus domesticus and Mus musculus musculus.
Additionally, there were single individuals representing 5
Mus outgroups.

Dog

We used the SNP genotype data from Boyko et al., [75]
comprising 60,968 SNP for 81 domestic animals, including
a village dog, and four wild canids (wolf, red wolf, jackal
and coyote).

Sheep

We used genotype data from the International Sheep
Genomics Consortium (http://www.sheephapmap.org/)
described in [14]. From this resource, we used the geno-
type on 49,034 SNPs across 1,222 individual samples
from 9 sheep populations including: South-East Europe
(n=177), North-East Europe (n=209), Middle East (n=
196), Africa (n=135), Americas (n=126), Asia (n=210)
and feral sheep (n =52).
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Bovine

We used genotype data from the Cooperative Research
Centre for Beef Genetic Technologies (http://www.beefcrc.
com/) originally described by [23]. From this resource, we
used the genotype on 729,068 SNPs across 1,800 individual
cattle samples comprised of 200 individuals from each of
the following 9 breeds: Angus, Brahman, Belmont Red,
Charolais, Drought Master, Hereford, Santa Gertrudis,
Shorthorn and Tropical Composite.

Compression efficiency

For each of the individual samples described above, we built
a single-column file with the genotype profile across all the
available SNPs sorted by chromosome (first the autosomal
chromosomes and then the X chromosome) and by
genome location within chromosome. Kolmogorov com-
plexity can be approximated through the use of real world
compression algorithms [9]. To apply the concept here
the size of the genome SNP file (s) in bytes were noted be-
fore and after compression using the gzip application tool
of UNIX systems http://www.gzip.org/.

The application gzip is based on DEFLATE, a lossless
data compression algorithm originally described by [76].
DEFLATE exploits two compression strategies, the LZ77
algorithm and Huffman coding. The LZ77 algorithm is a
sliding window approach that identifies exact repeats and
encodes their presence with two numbers, a distance and
length. Huffman coding builds a binary tree representing
the overall proportions of each element in the data stream,
with the most frequent characters being denoted by short
path lengths. Gzip has previously been used to cluster data
on compression e.g. [10].

Compression Efficiency (CE) was computed as follows:
CE = 85

Sp
SNP genotype file in bytes before and after compression,
respectively.

where Sz and S, represent the size of the

Relationship between CE and Fst

To formalise the concordance between Fgr and CE mea-
sures of population differentiation, we computed the
correlation between the two metrics as applied to the
human HapMap data [50]. First, we acquired the Fgr
values for the 55 pair-wise comparisons from the 11 popu-
lations using Table S6 [50]. We then computed the abso-
lute difference in population-level CE for each pair and
correlated this value against Fgr.

Coding versus Non-coding analysis

For the SNPs in the Human HapMap dataset, we used
the UCSC snp131 annotations [77] which has, as part of
its annotation set, the genomic location of each SNP.
Using these annotations, we parsed the list into six mutu-
ally exclusive groups: Group 1 — annotated with missense;
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nonsense; frameshift; splice-3; Group 2 - coding-
synonymous; Group 3 — untranslated 3’ end; untranslated
5 end; Group 4 — near-gene 3’ end; near-gene 5 end;
Group 5 — intron; Group 6— unknown (i.e. not in a protein
coding gene). The parsing was done in the order above —
i.e. annotations from Group 1 received precedence, followed
by Group 2 through to Group 6. The “unknown” group
only contained unknown SNPs; but Group 1 contained
those annotations plus others if the SNPs happens to
overlap multiple features. A general comparison between
coding and non-coding was performed by combining
Groups 1 to 3 (coding) and Groups 4 to 6 (non-coding).
Intersections were performed using the UCSC backend
tool bedIntersect, with the hgl8 reference genome and
canonical Refgene annotations.

High resolution window-based search for genomic regions
under constraint and signatures of selection

Using the human HapMap3 data and the Angus and
Brahman bovine data, we surveyed the entire genome
using sliding overlapping windows of 50 consecutive SNPs.
Hence, each window shared 49 SNP with its neighboring
windows. These windows corresponded to approximately
0.1 Mb and 0.2 Mb for the human and bovine data sets,
respectively. Because CE was highly influenced by the
window-wide percent heterozygosity (%Het), CE was
adjusted for %Het, termed CEh and computed as follows:

CE

CEh=—+—
%Het

This heterozygosity correction partly accounts for regu-
larities attributable to allele proportion, leaving those re-
gularities attributable to allele order or pattern. Plotting
CE against HET, as opposed to Shannon’s Entropy or, say,
Principal Component 1 is appealing from a biological per-
spective. After all, HET is a basic statistic whose relevance
to genetics is well recognized.

For the window-based search, we applied CEh to the
data matrix comprising the genotypes of the 50 SNPs in
the window (in columns) across all the samples in that
population (in rows). We elected to use 50 SNP windows
because this yields a convenient size when translated into
genomic bases. The most sensitive window size will vary
with the particular genomic region under investigation
and the particular population, and would need to be opti-
mized on a case by case basis.

The incorporation of population-level data means
that even genomic regions that are complex (relatively
uncompressible) in isolation will still be detectable by
a compression peak because they are shared by many
members of a given population. This contrasts with a
sliding a window performed on an isolated individual basis,
which would exclusively prioritize low information content
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areas (e.g. highly compressible runs of homozygosity -
string of 0 s or 2 s). The method and its implications are
summarized in Table 1.

In order to allow for unbiased comparisons within and
across populations, the CEh was normalized. We com-
puted its z-score by subtracting the genome-wide average
CEh and dividing by the genome-wide standard deviation.
The X chromosome was normalized separately due to its
homozygosity.

To obtain high resolution windows of CEh each SNP
was assigned the average z-score CEh (CEhZ) of all the
windows in which it was represented — ie. each SNP
was assigned a value that was derived from the average
of all CE sliding windows that it overlapped (which for
all but those SNPs at chromosome termini was 50). To
pinpoint regions of extreme allele order (i.e. high CEhZ
scores), SNPs with CEhZ scores 3fold higher than the
average CERZ score across each chromosome were identi-
fied. SNPs within 20 Kb of each other were then clustered
and BED files of the regions of interest generated for the
immediate incorporation into the genome browser. To
expedite this process, we have uploaded the CEhZ tracks
onto the UCSC genome web browser (http://www.genome.
ucsc.edu/cgi-bin/hgGateway).

Modeling genomic information content

In order to ask further questions about the evolution of
genomic information content we undertook an in silico
modeling approach. We wanted to better understand the
biological implications of the observed genome-wide CE
scores. CE lends itself to modeling order and disorder in
a convenient manner that incorporates any regularities
present, irrespective of whether they derive from pro-
portional bias or order, or indeed the size, direction or
crypticity of the various longitudinal patterns.

A combination of randomization (to generate chaos)
and ranking (to generate order) allowed us to define the
outermost boundaries of the parameter space in which
to embed and visualize the real-world data. For each of
the genotypes built for each individual in the human
HapMap3 data, we explored two randomization schemes,
each of which serves to systematically destroy two different
sources of regularities.

In the first scheme (RANDI1), we generated a random
sequence that preserved the exact same genotype propor-
tions as the real individual-level data. In the second scheme
(RAND?2), we explored a deeper level of randomness.
RAND?2 sequences were generated from a random se-
quence that preserved the exact same proportion of HET
observed in the real sequence of the individual under
scrutiny, but the proportion of the two homozygous were
obtained from those observed in the entire population
where the individual came from. For instance, if the se-
quence of the individual in question was heterozygote
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for 20% of the SNPs, and the entire population showed
a ratio of 3 to 1 between the homozygotes of the first
allele (‘A’) and the second allele (‘B’), then the RAND2
sequence for this individual will comprise 60% ‘AA;
20% ‘AB’ and 20% ‘BB’.

Finally, for each individual, ten RAND1 and ten RAND2
sequences were generated and the average CE recorded to
be compared with the CE of the real sequence. The appli-
cation of this procedure means that for every individual
point on the plot, there is a corresponding RAND1 and
RAND?2 value. These can be used to formalize observed
versus expected CE scores for the various individuals and
populations.

Additional files

Additional file 1: Figure S1. Compression Efficiency in Coding and
Non-Coding Regions. The impact of SNPs in coding regions: For the
Human HapMap population, relationship between (A) heterozygosity and
(B) compression efficiency using either all 1.4 M SNPs (x-axis) or using only
the 56,571 SNPs located in coding regions (y-axis). The straight line
represents the line of unity. As extensively reported, there exits less
heterozygosity in coding regions with the magnitude of the decrease
in heterozygosity similar in all populations. A decrease in heterozygosity
coupled with an increase in compression efficiency is only observed for the
African populations. For the other populations, the compression efficiency
using only coding SNPs is unchanged or slightly smaller.

Additional file 2: Figure S2. A Genome-wide frequency distribution of
CEh peaks in human populations. The highly heterogeneous ‘ancestral’
African populations have an even distribution of heterozygosity corrected
compression efficiency peaks possessing a relatively high mean value. In
contrast, the 'derived’ Asian populations with a smaller effective population
size have a distribution characterised by a number of very extreme
heterozygosity corrected compression efficiency peaks against a substantially
lower background. B The distribution of heterozygosities of the heterozygosity
corrected compression efficiency peaks clearly shows many peaks have
substantial heterozygosity and therefore cannot be attributed to simple
runs of homozygosity. In these box and whisker plots, the mean average
is the solid black line within the box, the boundaries of the box are the
25% and 75% quartiles, the whiskers are 95% confidence intervals and
the solid black dots represent outliers.

Additional file 3: Data S1. The genomic location of the CEhZ peaks in
the various human populations.

Additional file 4: Data S2. Those CEhZ peaks in common with regions
identified by Grossman et al [16].

Additional file 5: Figure S3. Positional Orientation of Real Genomes in
Information Space. The randomization strategy termed "RAND2" can be
explored beyond the limits of heterozygosity observed in the HapMap
population (i.e. 23.9% to 31.2%) across its entire parameter space i.e. 0 to
100% (blue line). Zooming into the real genomic data we discovered that
all sequences including the modelled RAND1 (represented in red)
converge towards a single point corresponding to that where a
minimum compression efficiency (maximum noise) can be obtained.
From a complex systems science perspective this point in informational
space is a graphical representation of The Edge of Chaos.’ This phase
transition is important because computational capacity and evolutionary
potential are thought to be maximised here.
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