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Abstract

Background: Gene selection is an important part of microarray data analysis because it provides information that
can lead to a better mechanistic understanding of an investigated phenomenon. At the same time, gene selection is
very difficult because of the noisy nature of microarray data. As a consequence, gene selection is often performed
with machine learning methods. The Random Forest method is particularly well suited for this purpose. In this work,
four state-of-the-art Random Forest-based feature selection methods were compared in a gene selection context. The
analysis focused on the stability of selection because, although it is necessary for determining the significance of
results, it is often ignored in similar studies.

Results: The comparison of post-selection accuracy of a validation of Random Forest classifiers revealed that all
investigated methods were equivalent in this context. However, the methods substantially differed with respect to
the number of selected genes and the stability of selection. Of the analysed methods, the Boruta algorithm predicted
the most genes as potentially important.

Conclusions: The post-selection classifier error rate, which is a frequently used measure, was found to be a
potentially deceptive measure of gene selection quality. When the number of consistently selected genes was
considered, the Boruta algorithm was clearly the best. Although it was also the most computationally intensive
method, the Boruta algorithm’s computational demands could be reduced to levels comparable to those of other
algorithms by replacing the Random Forest importance with a comparable measure from Random Ferns (a similar but
simplified classifier). Despite their design assumptions, the minimal optimal selection methods, were found to select a
high fraction of false positives.

Background
DNA microarrays, with their ability to capture a substan-
tial fraction of a cell state, are one of the most powerful
tools in the molecular biology. From a machine learning
point of view, standard microarray experiments generate
an information system in which each object (measure-
ment) is described by a vector of features corresponding
to expression levels of a large number of genes (often
approaching full set of the identified genes for a certain
organism). Additionally, microarray experiments generate
a decision corresponding to the investigated state, such
as the presence of a disease, the application of a certain
stimulation, the state of the organism, the tissue, etc.
Because the number of investigated genes is always

much larger than the number of measurements in a DNA
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microarray experiment, gene selection with these data
belongs to the p � n-class of problems, which is known
to promote a number of issues related to the stability,
statistical power and feasibility of certain methods. More-
over, because a measured set of genes is almost always not
specifically targeted for a certain decision (in the machine
learning sense), these data will contain a large number of
redundant features.
For these reasons, it is usally desired to reduce the

dimensionality of a microarray dataset. Dimension reduc-
tion is often achieved by feature selection (i.e., the removal
of unnecessary features) because it is the only method
that maintains a direct relationship between a feature and
a gene [1]; this is why this process is often called gene
selection in the context of microarray data.
It is often assumed that gene selection both provides

meaningful insight into the data (e.g., by providing a list of
genes relevant to the investigated condition) and serves as
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a pre-processing step that optimises next methods in the
analysis pipeline.
However, this assumption is wrong [2] and fature selec-

tion may only have one of two aims that require differ-
ent approaches and tools: finding the minimal optimal
subset of features that is the smallest that will allow a
given classifier to achieve maximal accuracy, or fiding the
all relevant subset, that is of all features relevant to the
analysed phenomenon.
This is because the goal of the minimal optimal selec-

tion is to optimise certain classifier, thus it will be affected
by inherent biases of that method. For example, it may
favour genes with expression levels that have certain char-
acteristics, like follow a specific distribution. Also, in
p � n datasets, false associations that are equal to or
stronger than the true association are very likely to arise
at random. While minimal optimal selection will greed-
ily reduce blocks of redundant features, such artefacts can
displace relevant genes from the final selection and lower
the stability and recall of the method.
Unfortunately, only the minimal optimal problem is

traditionally tackled because both its application and
assessment (in terms of post-selection accuracy) are
straightforward. Yet only the solution to the all relevant
problem can enable deeper insight in mechanics of an
analysed phenomenon that go beyond just identifying the
brightest signs of its occurrence.
The Random Forest algorithm is popular in the life sci-

ences because it supports p � n datasets, is robust to
large amounts of noise, requires little parameter tuning
and requires no predictor transformation [3-6]. Random
Forest also natively produces a feature-importance mea-
sure that directly expresses the role of a feature in all
interactions utilised in the model, including weak and
multivariate ones. These characteristics make Random
Forest a promising classification algorithm for gene selec-
tion tasks [4].
To this end, a number of Random Forest-based fea-

ture selection methods have been proposed for gene
selection. In this work, four state-of-art methods of this
class are analysed: the Artificial Contrasts with Ensem-
bles (RF-ACE) [7,8] and Boruta [9] methods, which are
all relevant approaches, and the Recursive Feature Elimi-
nation (RFE) and Regularised Random Forest (RRF) [10]
methods, which are minimal optimal approaches.
Whenever possible, methods were re-evaluated with all

three feature importance measures provided by the Ran-
dom Forest algorithm as well as the importance scores
provided by the Random Ferns [11] algorithm, which is
similar to a Random Forest but relies on a simpler and
more stochastic base classifier.
Because all machine learning algorithms are heuristic

methods, the correctness and optimality of their solutions
cannot be guaranteed. Consequently, any methodology

implementing these approaches must properly validate
the results. In particular, if only a single application of a
machine learning algorithm is applied to an entire dataset,
subtle errors with very serious consequences may be
introduced [12,13]. To avoid this limitation, the work pre-
sented here employed bootstrap [14], method where each
selection procedure was re-applied 30 times on resamples
of the original dataset. Moreover, apart from performing
the usual analysis of post-selection classification accuracy,
a novel self-consistency-based approach for assessing the
stability and robustness of a gene selection method was
developed and applied.
Because the sole aim of this work was to investigate the

characteristics of various gene selection methods, all tests
were performed on four standard pre-processed microar-
ray datasets: Colon, Leukemia, SRBCT and Prostate.
Moreover, for clarity, no additional sources of informa-
tion about the datasets, such as temporal context, gene
ontology or microarray calibration techniques (e.g., RNA
spike-ins) [15] were considered.

Results and discussion
Post-selection classification accuracy
The most common method for the assessment and tun-
ing of feature selection methods is to perform an error
analysis on a classifier trained on a set containing only the
selected features. This method is motivated by the seem-
ingly obvious assumption that because the presence of
noise and redundant features decrease classification accu-
racy, minimal error will be achieved with a set lacking
these artefacts.
Following this approach, each set of gene selections

over bootstrap iterations was used to build a corre-
sponding set of Random Forest validation models that
were tested on objects not present in the corresponding
resamples, and thus not used in feature selection or in
the model training step. These results are presented in
Figure 1.
It is clear that, with the exception of the RRF method,

all investigated methods produced nearly indistinguish-
able post-selection errors. Due to high variability in the
results, however, even the result of the RRF method for
the SRBCT and Prostate sets were not significantly differ-
ent from the results of the best performingmethod in each
respective set.
This results also suggests the selection of the Random

Ferns’ depth and the Random Forest importance source
did not influence the post-selection error.
Consequently, although an analysis based on post-

selection error will obviously detect the removal of a
significant amount of non-redundant information that
is usable for the classifier, it is clear that its resolu-
tion is too low to serve as a reliable assessment of
gene selection quality. Because the post-selection error
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Figure 1 Post-selection error rates. Post-selection errors of a Random Forest classifier over bootstrap iterations, presented directly and as
boxplots. Colour is used for clarity.

is also a highly variable statistic, one should never rely
on a single estimate of its value. In the most strik-
ing example from this analysis, the application of the
RFE method to the Colon dataset produced a range of
error values over all iterations sampled that varied by
almost 50% (producing random guesses as well as perfect
classification).
On the other hand, no significant improvement over

the models built from an entire dataset was observed.
This result demonstrates the established fact that, due
to its ensemble construction, the Random Forest method
can handle a large number of noisy features without a
significant increase in error.

Self-consistency
Gene selection quality was assessed by comparing the
sets of genes selected by a given method over the 30
bootstrap iterations. From these data, genes that were
selected in more iterations of the bootstrap than would be
expected to occur at random were identified as significant

selections; these genes are referred to as significantly
self-consistent selections (SCSs) in this paper.
Table 1 summarises the average number of self-

consistent and all selected genes as well as their ratios
for all investigated sets and methods. It is clear that the
RF-ACE algorithm selected the most genes for all sets,
with values ranging from 62% to 99% of all present genes
in a set. However, in the case of the Colon and SRBCT
sets, the fraction SCSs was negligible, while in the case
of the Leukaemia and Prostate datasets, it reached only
approximately 20%. These results suggest that this method
produces a large number of false positives that overwhelm
the signal.
Overall, the highest number of SCSs were produced

by the Boruta method; in the best cases, the SCSs cov-
ered 56–64% of all selections and approximately 55% on
average. While more SCSs were found in all sets using
the Random Ferns importance measure than with any of
the Random Forest-based measures, the difference was
noticeable only in the case of the Prostate set. Moreover,
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Table 1 Selection consistency analysis

Method Colon Leukemia SRBCT Prostate

c f c/f c f c/f c f c/f c f c/f

RF-ACE 0.0 1354.2 0% 398.0 1946.1 20% 0.0 1569.1 0% 1356.0 7778.6 17%

Bor. Ferns 1 91.8 176.6 52% 228.9 391.9 58% 336.8 567.8 59% 480.3 757.3 63%

Bor. Ferns 2 93.0 182.8 51% 249.0 423.3 59% 354.5 652.2 54% 520.7 840.4 62%

Bor. Ferns 3 104.9 192.2 55% 247.5 439.6 56% 375.0 720.2 52% 582.1 916.6 64%

Bor. Ferns 4 118.8 210.8 56% 252.9 453.0 56% 383.6 786.7 49% 621.9 986.5 63%

Bor. Ferns 5 120.6 227.2 53% 270.9 482.7 56% 396.2 864.2 46% 670.3 1046.3 64%

Bor. Ferns 6 135.9 246.8 55% 275.3 513.2 54% 395.8 959.4 41% 692.1 1077.3 64%

Bor. Ferns 7 145.0 277.9 52% 296.4 550.1 54% 357.0 1058.3 34% 705.8 1104.5 64%

Bor. RF Gini 77.2 137.8 56% 230.2 407.6 56% 358.4 626.7 57% 267.2 462.1 58%

Bor. RF Raw 116.9 214.7 54% 256.9 446.2 58% 403.9 807.6 50% 422.7 728.0 58%

Bor. RF Norm. 103.3 199.1 52% 237.5 403.3 59% 400.8 839.2 48% 301.5 529.9 57%

RFE Ferns 1 23.2 95.5 24% 4.4 8.5 51% 39.0 72.8 54% 28.9 503.9 6%

RFE Ferns 2 18.6 55.2 34% 4.4 8.0 55% 36.6 75.2 49% 73.8 854.0 9%

RFE Ferns 3 23.1 88.5 26% 4.3 8.3 52% 30.6 78.1 39% 47.2 125.9 38%

RFE Ferns 4 18.0 77.3 23% 3.9 8.5 46% 38.6 70.9 54% 34.9 402.9 9%

RFE Ferns 5 18.6 52.5 35% 4.9 9.1 54% 38.0 104.3 36% 99.5 321.1 31%

RFE Ferns 6 18.5 58.7 32% 5.1 9.6 53% 33.1 52.5 63% 75.6 280.8 27%

RFE Ferns 7 13.8 70.9 19% 5.0 9.6 52% 32.8 49.1 67% 36.6 81.3 45%

RFE RF Gini 17.7 110.1 16% 4.8 8.5 57% 26.5 38.9 68% 71.7 163.2 44%

RFE RF Raw 18.6 51.2 36% 4.8 8.3 58% 31.3 46.9 67% 43.6 274.9 16%

RFE RF Norm. 11.9 32.5 37% 4.3 8.0 53% 28.1 43.7 64% 34.6 60.0 58%

RRF 1.4 15.9 9% 0.0 3.8 0% 1.9 8.3 22% 1.1 19.2 6%

No. features 2000 3051 1586 12533

The average number of significantly self-consistent and all selected genes by a given method in one bootstrap iteration. c – the average number of significantly
self-consistent genes, f – the average number of selected genes.

the use of both algorithms led to very similar SCS ratios.
Out of the Random Forest-based importance measures,
there was no measure that was clearly the best, but the
raw importance measure seemed to be the most reliable
choice. The increase in the Random Ferns depth parame-
ter consistently contributed to an increase in the number
of genes found by the Boruta method. For the Colon,
Leukemia and Prostate datasets this effect was accompa-
nied by a proportional increase in the number of SCSs,
which caused the SCS ratio to be approximately constant.
This was not the case for the SRBCT set, however. In the
SRBCT set, the number of SCSs did not increase and,
therefore, its ratio dropped with the fern depth. Still, the
overall performance of the Boruta method was surpris-
ingly stable across the investigated importance sources,
and it is unlikely that an incorrect set-up will substantially
diminish its performance.
As expected for a minimal-optimal method, the RFE

algorithm selected a much smaller number of genes than
the RF-ACE or Boruta methods (selecting, on average,

from 0.2–3.9% of all genes in a set). Except in case
of Prostate set, the number of SCSs was fairly stable
and was approximately an order of magnitude smaller
than when the Boruta method was used. However, the
number of found genes varied in an inconsistent man-
ner across different importance sources. While the SCS
ratios in the Leukemia and SRBCT sets were reasonably
stable and reached 58% and 68%, respectively, the SCS
ratios were less than 40% in the Colon set and ranged
from 6% to 58% in the Prostate set (with an average
of 28%). Therefore, it is likely that the minimal opti-
mal sets still contained a significant fraction of irrele-
vant genes (although in much smaller numbers than that
produced by the all relevant methods). Moreover, RFE’s
results can be significantly altered by the importance
source.
The RRF algorithm selected the least number of genes

from all sets, ranging from 4 to 20 (or 0.1% to 0.8%, respec-
tively, of all genes in a set). Moreover, the results from
the RRF algorithm were very inconsistent. The largest
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SCS ratio achieved by the RRF algorithm was 22% in the
SRBCT set, while the number of SCSs found by the RRF
algorithm never exceeded 2.

Execution time
The average execution time of the selected algorithms
is provided in the Table 2. The slowest method was the
Boruta algorithm using the Random Forest importance
measure, with computational training time ranged from
hours to days, especially for larger sets. The RF-ACE and
RRF algorithms required far less execution time, which
never exceeded 1 hour for the Colon, Leukemia and
SRBCT sets or 2.5 hours for the much larger Prostate set.
However, while the difference in the computational time

of the Boruta algorithm was minor for Random Forest
importance sources, the employment of Random Ferns
resulted in significant increases in speed that ranged
from 20 to 200 times faster. Consequently, the execution
time of the Boruta algorithm was comparable to or even
shorter than that of RF-ACE and RRF. In the case of RFE,
the gain from using Random Ferns was much smaller
because this algorithm also relies on Random Forest for
assessing the classifier accuracy from the current subset
of genes.

Conclusions
As far as post-selection classification accuracy is con-
cerned, all investigated methods were effectively equiva-
lent. This proves that assessing gene selection algorithms
in this way may be deceiving or inconclusive and,

Table 2 Execution time

Method Colon Leukemia SRBCT Prostate

RF-ACE 40’ 24’ 57’ 2 h 47’

Boruta Ferns depth 1 01’ 01’ 01’ 03’

Boruta Ferns depth 7 05’ 05’ 11’ 09’

Boruta RF Gini 2 h 27’ 2 h 19’ 10 h 52’ 30 h 48’

Boruta RF Raw 3 h 30’ 2 h 43’ 14 h 35’ 40 h 23’

Boruta RF Norm. 3 h 28’ 2 h 34’ 16 h 04’ 35 h 27’

RFE Ferns depth 1 10’ 08’ 15’ 6 h 43’

RFE Ferns depth 7 10’ 08’ 16’ 7 h 24’

RFE RF Gini 21’ 16’ 31’ 13 h 34’

RFE RF Raw 21’ 16’ 33’ 13 h 49’

RFE RF Norm. 22’ 17’ 32’ 13 h 17’

RRF 03’ 02’ 04’ 1 h 04’

No. features 2000 3051 1586 12533

No. objects 62 38 83 102

The execution time of selected algorithms, represented as the mean over 30
bootstrap iterations. All algorithms investigated in this study were run
single-threaded.

therefore, calls for deep and careful investigation of the
significance of the observed accuracy differences.
Out of all the analysed methods, the Boruta algorithm

found the most genes predicted to be important and, at
the same time, achieved the highest ratio of self-consistent
selections in its results. Although it remains unknown
how many of these novel genes are biologically relevant,
these results provide strong justification that the selec-
tions generated by this method are promising candidates
that should be explored further to identify more sub-
tle aspects of the phenomena investigated via microarray
experiments.
Despite the fact that Boruta requires an impractical

amount of computation time in its default set-up, using
the importance source produced by the Random Ferns
algorithm decreased its running time to levels compara-
ble with other investigated methods without sacrificing or
improving the selection quality.
As expected, the minimal optimal RFE and RRF meth-

ods selected a much smaller subset of genes than the all
relevant methods. However, the RFE and RRF methods
achieved a similar level of selection stability and, thus,
also generated a substantial amount of false positives. This
result suggests that, even when focused on the most pro-
nounced associations, it is important to be aware of the
effects of the p � n issues that are inherent to microarray
data.

Methods
Feature selection algorithms
Both the RF-ACE [7,8] and Boruta [9] algorithms are
based on the idea first introduced by [16]. That is, they
extend the information system with shadows, which are
artificial features created by permuting the order of values
in the original data, and then using shadows’ importance
scores to judge the significance of the scores obtained by
the actual features.
The algorithms differ in the testing scheme used, how-

ever. RF-ACE performs a predefined number of iterations
(the default value used in this study is 20) and, at each
step, collects the importance of real features and the mean
importance of all shadows. For each feature, Student’s
t-test is applied to check whether its mean importance
is significantly larger than the mean importance of the
shadow attributes. Features with p-values less than 0.05
are returned as relevant.
On the other hand, Boruta checks which features in

an iteration achieved higher importance than the best
shadow; such events are counted for each feature until
their number becomes either significantly higher or lower
than what is expected at random, using a default p-value
cut-off of 0.01. In the first case, the feature is deemed rel-
evant and in the latter case, it is deemed irrelevant, which
leads to the removal of the feature and its shadow from
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the information system. This procedure is repeated until
the status of all features is decided or until a previously set
limit of iterations is exhausted, in which case, the status
of some features may be undecided. To make fair com-
parisons with methods that perform only a relevance test,
in this work, all undecided features are assumed to be
irrelevant.
Both RF-ACE and Boruta re-shuffle shadow features

after every iteration.
Recursive Feature Elimination (RFE) is a group of meth-

ods where selection is performed by iterative stripping
of less important features from the set until the classifier
error becomes minimal. There are many implementa-
tions of this method that differ in the importance source
used, the stripping criterion and the accuracy assess-
ment method. In this study, the following algorithm was
adapted from the R caret [17] package. First, the accuracy
is assessed via 10 iterations of bootstrap validation of a
50000-tree Random Forest classifier and stored along with
the current list of features. Then, the arbitrary importance
source is applied to a set. This result is used to remove
the least important features so that the number of features
will decrease to the highest power of 2 that is lower than
the current number. This procedure is repeated until the
number of features drops to 4. Finally, the list of features
for which the error was minimal is returned as the final
selection.
Regularised Random Forest (RRF) is a modification

of a Random Forest that incorporates regularisation
into the tree growing algorithm [10,18]. Specifically,
RRF establishes a penalty for the use of a feature that
was not previously used in a current tree construction.
This penalty is proportional to the potential information
gain from building a split on this feature, so that only
features with significant information that is not redun-
dant with respect to already built splits will be included
in the model. Obviously, this approach leads to a sit-
uation where only a subset of all features is actually
used in the ensemble. This subset represents the final
result produced when RRF is used as a feature selection
algorithm.

Importance sources
For the importance source, I have used the three impor-
tance measures produced by the Random Forest [19] as

well as the importance score produced by the Random
Ferns algorithm, which is a variation of the Random
Forest.
The first Random Forest importance measure is the

overall decrease in node impurity due to splits performed
on certain features, which is expressed as the Gini index
(RF Gini). The second measure is calculated in a per-
tree manner by finding the difference between a tree’s
accuracy on an original out-of-bag (OOB) subset and its
version with randomly permuted objects within the anal-
ysed feature. These values are then averaged. Because
this measure was the only one mentioned in the origi-
nal Random Forest paper [5], I refer to it here as the raw
importance (RF Raw). The thirdmeasure is the raw impor-
tance normalised by the standard deviation of accuracy
differences over the trees (RF Norm).
The Random Ferns [20] is a simplified variation of the

Random Forest algorithm that is an ensemble of ferns,
which are modified decision trees with a fixed depth
(which is a parameter of the algorithm) and that have
the same splitting criterion for all splits at the same level.
While a regular classification tree stores the majority
classes in its leaves, a fern stores vectors of class prob-
abilities; to this end, ensemble voting is achieved by a
maximum a-posteriori rule instead of by selecting the
class with the most votes. The Random Ferns implemen-
tation used in this study, rFerns [11], produces fern splits
at random (i.e., based on a randomly selected feature and
a randomly selected threshold).
The original Random Ferns does not produce feature

importance. The one used in this study is native to the
rFerns implementation, and is similar to the raw impor-
tance of Random Forest, except rFerns considers differ-
ences in OOB probabilities for a correct class rather than
differences in the number of correct votes. In this work, I
have assessed the importance of rFerns independently for
fern depths that range from 1 to 7.
While both methods scan the space of features ran-

domly, it is crucial to build ensembles large enough to
ensure all features will have an equal chance to participate
in the model and generate a stable importance score.

Datasets
The testing of all methods enumerated in the previ-
ous sections used four well known microarray datasets

Table 3 Datasets

Dataset Reference Genes Objects Classification target Objects per class

Colon Alon et al [21] 2000 62 Normal/tumor colon tissue 40:22

Leukemia Golub et al [22] 3051 38 ALL/AML leukemia type 27:11

SRBCT Khan et al [23] 1586 83 4 SRBCT types 11:29:18:25

Prostate Singh et al [24] 12533 102 Normal/tumor prostate tissue 50:52

The microarray datasets used in this study.
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obtained from actual experiments. The summary and
characteristics of these data are provided in Table 3.

Testing and assessment of the results
First, to perform the bootstrap estimation, each dataset
was used to create 30 resampled sets that were obtained
by sampling with replacement an equal number of objects
as was present in the original set.
Then, each method of gene selection was executed on

all resampled sets, and the results were used to identify
SCSs. The expected distribution of the number of selec-
tions of each gene over bootstrap iterations was estimated
as a binomial distribution with parameter p estimated as
the mean fraction of features selected by a certain method
on a given set. This distribution was then used to find
genes with a number of selections significantly higher
than would be expected by random chance with a p-value
of 0.01. The Holm-Bonferroni [25] correction was applied
to remove the effect of multiple testing. These selections
were then identified as significantly self-consistent and
their count was averaged over all iterations.
Next, all investigated methods were tested by the analy-

sis of post-selection error made by a classifier trained on
a set reduced to the selected genes. For this purpose, for
each bootstrap iteration, a Random Forest model com-
posed of 50000 trees was trained on a set reduced to
objects belonging to the respective resampled set as well
as features that were selected by the given method; then,
this model was tested on the remaining objects that were
not used in its training. The obtained predictions were
also used to assess the significance of the accuracy dif-
ferences between methods. This was accomplished using
a paired one-sided Holm-Bonferroni-corrected Mann-
Whitney-Wilcoxon test with a p-value of 0.01 to compare
the errors from each bootstrap iteration of a givenmethod
to the errors from the best performing method on a par-
ticular dataset. The use of a non-parametric test was
required because of the non-normal distribution of the
errors across the iterations.
Finally, the running times of all executed algorithms

were collected. In order to make comparison meaningful,
all calculations were performed on a homogeneous cluster
of AMD Opteron 835X x86_64 Linux machines, using R
2.15.0 [26], randomForest 4.6-6, rFerns 0.3.1, RRF 1.2 and
RF-ACE 1.1.0. Moreover, each algorithm was run single-
threaded. The complete, raw results are collected in the
Additional file 1.

Additional file

Additional file 1: Results of all gene selections. This a zip archive
containing textual tables containing the results. The format is described in
detail in the README file included in the archive.
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