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Abstract

Background: A number of evolutionary models have been widely used for sequence alignment, phylogenetic tree
reconstruction, and database searches. These models focus on how sets of independent substitutions between amino
acids or codons derive one protein sequence from its ancestral sequence during evolution. In this paper, we regard
the Empirical Codon Mutation (ECM) Matrix as a communication channel and compute the corresponding channel
capacity.

Results: The channel capacity of 4.1875 bit, which is needed to preserve the information determined by the amino
acid distribution, is obtained with an exponential factor of 0.26 applied to the ECMmatrix. Additionally, we have
obtained the optimum capacity achieving codon distribution. Compared to the biological distribution, there is an
obvious difference, however, the distribution among synonymous codons is preserved. More importantly, the results
show that the biological codon distribution allows for a “transmission” at a rate very close to the capacity.

Conclusion: We computed an exponential factor for the ECMmatrix that would still allow for preserving the genetic
information given the redundancy that is present in the codon-to-amino acid mapping. This gives an insight how
such a mutation matrix relates to the preservation of a species in an information-theoretic sense.

Background
Markov models for the protein sequence evolution have
been widely used for the past 40 years. These evolutionary
matrices highlight the most common mutational changes
between amino acids and codons. Protein sequence evo-
lution has been investigated at both amino acid and codon
levels. The evolutionary matrices on the basis of amino
acids are widely used for sequence alignments and phylo-
genetic tree construction. Asmore than one codon encode
to the same amino acid, it is easy to estimate alignments
in amino acids as compared to codons.
Codon-level models demonstrate the mutational changes

among the codons. This gives us more information by
highlighting the tendency of mutations between codons
encoding the same amino acid (synonymous changes) as
well as the mutational effects between codons that code
for different amino acids (non-synonymous changes).
As codons are the smallest genetic information unit in
protein-encoding regions, it is obvious to model mutations
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by a codon-based communications channel model high-
lighting all codon-to-codon changes in nature.
Substitutionmatrices define the rate at which one amino

acid in the protein sequence is changed into another
amino acid. Dayhoff et al. [1] estimated the first such
model in 1972, resulting in the widely used point accepted
mutations (PAM) matrix. It is computed by counting the
mutations in the closely related proteins. Henikoff and
Henikoff proposed the block substitutionmatrix (BLOSUM)
for divergent protein sequences, which uses log-likelihood
ratios to construct scoring matrices from the transition
matrices between amino acids [2]. Later on, Whelan and
Goldman (WAG) proposed a novel approach to estimate
amino acid replacement matrices from a large database
of aligned protein sequences in 2001 [3]. It combines
the estimation of transition and scoring matrices by a
maximum-likelihood approach that accounts for the phy-
logenies of sequences within each training alignment.
As the codon (a tri-nucleotide) is the basic genetic

information that directly encodes the amino acid as the
building block of proteins, we have used the first empiri-
cal codon substitution matrix (ECM) in our analysis. This
was proposed by Schneider et al., where sequences of five
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vertebrates were aligned and the number of codon sub-
stitutions were counted among them [4]. According to
conversations with the authors, it is estimated that these
mutations on average happened in roughly 300 Million
years.
Yockey was one of the first to model and describe a

central dogma using information theoretic tools [5]. He
viewed the flow of information fromDNA or RNA to pro-
teins as a communication system and employed entropy,
rate, and capacity calculations with a transition matrix he
developed by considering base changes of equal probabil-
ity. A detailed analysis of the application of information
theory to molecular biology can be found in his book
[6]. Relatively recently, L. Gong, N. Bouaynaya, and D.
Schonfeld have proposed a communicationmodel for pro-
tein evolution [7]. They used the amino acid based PAM
matrix and a matrix they produced, similar to Yockey’s, as
a communication channel and performed capacity calcu-
lations over it.
We computed an exponential factor for the ECMmatrix

that would still allow for preserving the genetic informa-
tion given the redundancy that is present in the codon-to-
amino acid mapping. This gives an insight on how such a
mutation matrix relates to the preservation of a species in
an information-theoretic sense.
For the underlying capacity computation, we used the

Arimoto-Blahut algorithm [8,9] to determine the input
distribution that maximizes the mutual information.

Methods
In order to compute the mutation probability in the ECM
matrix, 17502 alignments of sequences from five verte-
brate genomes yielded 8.3 million aligned codons from
which the number of substitutions between codons were
counted. This matrix has 64×64 entries stating the muta-
tion probability of each codon to every other codon. Basi-
cally, the substitution from sense codons to stop codons
is not included in the ECM matrix, which makes the
matrix block diagonal with a 61 × 61 matrix for cod-
ing codons and a 3 × 3 entries for substitutions between
stop codons. Therefore, we will consider only substitu-
tions between coding codons and regard the ECM matrix
as 61 × 61. From the communication perspective, this
mutationmatrix describes channel transition probabilities
P(y|x).
There is also another matrix in [4], which gives the

actual count of substitutions observed. From this substi-
tution count matrix C, we obtained the biological proba-
bility distribution of the codons as

px =

∑
j
Cij

∑
i

∑
j
Cij

. (1)

Thereafter, we combined the codons which encode for
the same amino acid and computed the probability distri-
bution of amino acids, denoted pa. Using this distribution,
the to be preserved information content of the 64 codons
representing the 20 amino acids can be computed as

R20 = −
20∑
i=1

pa(i) log2(pa(i)). (2)

According to Shannon’s channel coding theorem, a
communication through a noisy channel of capacity C
at an information rate of R is possible with an arbitrar-
ily small probability of error, if R < C [10]. Hence, the
channel capacity has to, at least, exceed the value of R20.
In communication systems, the channel capacity is

determined by maximizing the mutual information
between input (X) and output (Y) over the input probabil-
ity distribution px.

C = suppx I(X;Y ). (3)

I(X;Y ) is the mutual information which measures the
mutual dependence between input and output distribu-
tions, and is defined as

I(X;Y ) = H(Y ) − H(Y |X), (4)

where H(Y ) is the entropy of the codon distribution at
the output of the ECM “channel”, and H(Y |X) is the
conditional entropy, called prevarication or irrelevance.
However, in the system we are considering, the input

distribution (i.e., probability distribution of codons) is
not something to adjust. It is defined by nature. There-
fore, we determine the channel capacity corresponding
to the mutation “channel” matrix for a biological codon
frequency obtained by Eq. (1).H(Y ) is computed as

H(Y ) = −
61∑
i=1

pyi log2(pyi), (5)

where pyi is the output probability distribution of the ith
codon. The conditional entropy H(Y |X) between input
and output distribution of codons is computed as

H(Y |X) = −
61∑
i=1

p(xi)
61∑
j=1

p(yj|xi) log2 p(yj|xi). (6)

p(yj|xi) is the conditional probability between codons,
which is given by the empirical codon mutation (ECM)
matrix.
We now compute, what exponent of the ECM matrix

would be needed to make the capacity just match the
required rate obtained by Eq. (2). Hereto, we use the
singular value decomposition (SVD) yielding

[P(y|x)]F = U(�)FV∗, (7)
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where U,V are unitary matrices, � is a diagonal matrix
with nonnegative real numbers in the diagonal, and F is
an exponent to be fine-tuned. The value of the exponent
is changed in steps from zero to one. A value of 1 means
the original ECM matrix is used.
Moreover, we would like to find the optimum codon

distribution by solving Eq. (3) and compare it with the
biological distribution. For solving the optimization prob-
lem, the Arimoto-Blahut algorithm was employed [8,9].
The Arimoto-Blahut algorithm is an iterative numerical
algorithm that monotonically converges to the capacity
value. To compute the capacity, it is starting from any arbi-
trary input probability distribution px (usually uniform)
and performs the following two steps until the algorithm
converges.

1. Compute a quantity related to the mutual
information per input symbol

c(xj) := exp
∑
k

p(yk |xj) log p(yk |xj)∑
j p(xj)p(yk |xj)

. (8)

This results from a Lagrange multiplier step in [9].
2. Update the input probability distribution according

to

p(xj) = p(xj)c(xj)∑
j p(xj)c(xj)

. (9)

The termination criteria is based on the lower and upper
bounds of the channel capacity,

log

⎛
⎝∑

j
p(xj)c(xj)

⎞
⎠ ≤ C ≤ log

(
max
xj

c(xj)
)
. (10)

The iterations are terminated when the upper and lower
bounds are equal up to a certain accuracy.
Once the optimized codon distribution is obtained

using the Arimoto-Blahut algorithm, to note the similarity
with the biological distribution, we applied the so called
Kullback-Leibler divergence (DKL) [11].DKL is a quantita-
tive measure of how similar a probability distribution P is
to a model distribution Q, and is defined as

DKL(P||Q) =
∑
i
Pi log2

Pi
Qi

. (11)

DKL is non-negative and gives a zero result when the
distributions are perfectly matched. Technically speaking,
DKL measures the average number of extra bits required
(coding penalty) for using a code based on Q instead of P.

Results and discussion
The to be preserved information content of the amino
acids, using the amino acid distribution and computed

according to Eq. (2) is 4.1875 bit, which is less than the
maximum value of log2(20) = 4.3219 bit. Likewise, the
required rate obtained by using the amino acid probabil-
ity distribution provided by King & Jukes in [12], derived
from 5492 residues of 53 vertebrate polypeptides is 4.2033
bit. Thus, it is reasonable to look for a capacity that is
at least greater than 4.1875. Hence, using the biologi-
cal codon distribution in the five vertebrates obtained
by using Eq. (1), we stepwise reduced the exponent of
the ECM matrix until it satisfies the rate requirement.
Furthermore, we used the Arimoto-Blahut algorithm to
find the optimal input probability distribution of the 61
codons to maximize the mutual information and compare
it with the biological distribution of codons. The optimal
capacity-achieving codon distribution and the observed
biological codon distribution are both shown in Figure 1.
The corresponding values are also tabulated in Table 1 and
Table 2.
The capacity obtained by optimizing the codon distri-

bution, the mutual information based on the observed
biological codon distribution, and the required rate are
shown together in Figure 2. When the exponent of the
ECM matrix is reduced, the output codon distribution
changes and the prevarication H(Y |X) will be smaller.
As a result, the capacity increases. The maximal expo-
nent which satisfies the rate requirement of 4.1854 bit for
an error-free “transmission” using the biological codon
frequency is found to be ≈ 0.26. At the same exponent,
the optimized “channel” capacity is 4.2586 bit. It can also
be seen that the capacity curve is very close to the one
found by using the biological codon distribution. This
indicates that the biological probability distribution is
almost optimally “chosen” to achieving the capacity of the
“channel”.
It is not surprising that the exponent is not one, since the

matrix was obtained comparing five different vertebrate
DNAs, the times corresponding to time spans between 40
M – 350 M years. However, the exponent is not extremely
small, which indicates that the matrix is at least roughly in
agreement with information-theoretic calculations. One
may also see this as an argument to recompute the matrix
using the obtained coefficient.
To see how well the biological and the optimized codon

distributions agree, we applied the Kull-back–Leibler
divergence (DKL) and obtained a value of 0.0926 bit, which
is not a very small difference (comparable with the DKL
of two Gaussians of equal mean and a variance differing
by a factor of two) but still, similarities are obvious. Both
of the probability distributions satisfy the rate require-
ment of 4.1875 bit. In addition, the distribution among
synonymous codons is very similar. Tomention one exam-
ple, codons encoding Alanine (A) in decreasing order of
abundance, is GCC, GCT, GCA, and GCG, for both the
biological and the capacity-achieving distributions.
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Figure 1 Probability distribution of codons (Biological and Optimal). The optimum codon distribution to maximize mutual information and
the biological distribution of codons in the five vertebrates. Consecutive bins indicate that the codons belong to the same encoded amino acid
(one letter symbol). The synonymous codons are arranged alphabetically.

Conclusion
From the so-called empirical codon substitution matrix
(ECM), a mutation probability matrix, we derived the
capacity when regarding the matrix as a communication
channel. We found that an exponent of 0.26 would lead to

a capacity of 4.1875 bit that is at least required to preserve
the genetic information represented by the 20 amino acids
encoded by 64 codons. Additionally, for the desired chan-
nel capacity, we have presented the optimal codon distri-
bution found by searching the distribution that maximizes

Table 1 Biological codon relative frequency

Codon Frequency Codon Frequency Codon Frequency Codon Frequency

T TTT 0.0191 TCT 0.0171 TAT 0.0132 TGT 0.0110 T

TTC 0.0196 TCC 0.0160 TAC 0.0160 TGC 0.0119 C

TTA 0.0085 TCA 0.0133 TAA 0.0003 TGA 0.0003 A

TTG 0.0141 TCG 0.0043 TAG 0.0001 TGG 0.0125 G

C CTT 0.0150 CCT 0.0176 CAT 0.0116 CGT 0.0054 T

CTC 0.0173 CCC 0.0150 CAC 0.0144 CGC 0.0087 C

CTA 0.0080 CCA 0.0178 CAA 0.0137 CGA 0.0062 A

CTG 0.0373 CCG 0.0059 CAG 0.0337 CGG 0.0085 G

A ATT 0.0175 ACT 0.0144 AAT 0.0182 AGT 0.0136 T

ATC 0.0200 ACC 0.0160 AAC 0.0206 AGC 0.0191 C

ATA 0.0094 ACA 0.0169 AAA 0.0282 AGA 0.0135 A

ATG 0.0219 ACG 0.0059 AAG 0.0319 AGG 0.0118 G

G GTT 0.0136 GCT 0.0200 GAT 0.0252 GGT 0.0115 T

GTC 0.0138 GCC 0.0213 GAC 0.0246 GGC 0.0176 C

GTA 0.0084 GCA 0.0179 GAA 0.0311 GGA 0.0184 A

GTG 0.0265 GCG 0.0060 GAG 0.0389 GGG 0.0133 G

T C A G

The codon relative frequency of the five vertebrates genomes (human, mouse, chicken, frog, and zebrafish) from the data presented by Schneider A., Cannarozzi G.,
and Gonnet G. [4].
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Table 2 Calculated codon relative frequency

Codon Frequency Codon Frequency Codon Frequency Codon Frequency

T TTT 0.0257 TCT 0.0113 TAT 0.0207 TGT 0.0215 T

TTC 0.0264 TCC 0.0150 TAC 0.0260 TGC 0.0247 C

TTA 0.0097 TCA 0.0100 TAA * TGA * A

TTG 0.0119 TCG 0.0066 TAG * TGG 0.0439 G

C CTT 0.0118 CCT 0.0159 CAT 0.0141 CGT 0.0073 T

CTC 0.0150 CCC 0.0162 CAC 0.0183 CGC 0.0129 C

CTA 0.0054 CCA 0.0161 CAA 0.0144 CGA 0.0077 A

CTG 0.0277 CCG 0.0085 CAG 0.0337 CGG 0.0065 G

A ATT 0.0162 ACT 0.0071 AAT 0.0160 AGT 0.0130 T

ATC 0.0205 ACC 0.0128 AAC 0.0212 AGC 0.0163 C

ATA 0.0088 ACA 0.0093 AAA 0.0251 AGA 0.0157 A

ATG 0.0330 ACG 0.0079 AAG 0.0261 AGG 0.0122 G

G GTT 0.0096 GCT 0.0132 GAT 0.0234 GGT 0.0114 T

GTC 0.0114 GCC 0.0172 GAC 0.0228 GGC 0.0162 C

GTA 0.0060 GCA 0.0110 GAA 0.0235 GGA 0.0183 A

GTG 0.0260 GCG 0.0048 GAG 0.0263 GGG 0.0126 G

T C A G

The codon relative frequency that maximizes the mutual information between input and output and yielding a capacity close to what is required for preserving the
information content of amino acids. An exponential factor of 0.26 is applied to the ECMmatrix.

the mutual information starting from a random initial-
ization. A comparison of the biological distribution with
the optimized codon distribution shows that the two dis-
tributions are not too similar. However, the biological
distribution is not too far from the capacity-achieving dis-
tribution in terms of “channel” capacity, which indicates

that the biological distribution is well “chosen”. Addition-
ally, the optimal codon distribution has preserved the
relative abundance of synonymous codons. We concluded
that the ECM as a channel is not too far from what would
be expected following information theoretic arguments
although it was derived from 5 different species.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2

2.5

3

3.5

4

4.5

5

Exponent

R
at

e 
an

d 
C

ap
ac

ity
 [b

it]

Capacity

Mutual information
with biological input
distribution

Required rate (uniform distribution)

Required rate (biological distribution)

Figure 2 Capacity as a function of an exponential factor. The required rate for error-free transmission and the achievable capacity are plotted as
a function of the exponent of the ECM matrix.
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