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Abstract

Background: Amino acid sequences and features extracted from such sequences have been used to predict many
protein properties, such as subcellular localization or solubility, using classifier algorithms. Although software tools are
available for both feature extraction and classifier construction, their application is not straightforward, requiring users
to install various packages and to convert data into different formats. This lack of easily accessible software hampers
quick, explorative use of sequence-based classification techniques by biologists.

Results: We have developed the web-based software tool SPiCE for exploring sequence-based features of proteins in
predefined classes. It offers data upload/download, sequence-based feature calculation, data visualization and protein
classifier construction and testing in a single integrated, interactive environment. To illustrate its use, two example
datasets are included showing the identification of differences in amino acid composition between proteins yielding
low and high production levels in fungi and low and high expression levels in yeast, respectively.

Conclusions: SPiCE is an easy-to-use online tool for extracting and exploring sequence-based features of sets of
proteins, allowing non-experts to apply advanced classification techniques. The tool is available at http://helix.ewi.
tudelft.nl/spice.
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Background
The sequence of a protein contains valuable information
about its characteristics. Various sequence-based predic-
tion methods exploit this to classify proteins according
to specific properties, such as localization [1], function
[2], or solubility [3]. This has resulted in relevant and
frequently used bioinformatics tools [4] that are offered
by a growing number of easily accessible websites and
webservices [5-7].
Sequence-based protein classifiers assign class labels to

proteins based on a set of features, real numbers that cap-
ture some sequence property. This process entails three
distinct steps. First, feature extraction is required to map
protein sequences to points in a feature space (Figure 1A).
Next, a classifier is constructed to optimally separate pro-
tein classes in this feature space (training, Figure 1B),
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using a set of proteins with known class labels. Finally,
the trained classifier can be applied to predict class labels
for new proteins (testing, Figure 1C). Additionally, fea-
tures and feature distributions can be visualized to explore
differences between protein classes by eye.
Software tools are available for each of these three steps.

Feature extraction is available as software package [8]
and through web services [9-12] and an extensive range
of classification software has been developed [13,14],
some of which include feature visualization [15]. However,
combined application requires installing different soft-
ware packages and programming efforts to convert data
according to the requirements of each tool. For the con-
struction of specialized high-performance classifiers, the
overhead of deploying such a pipeline may be acceptable
or even required, because this usually involves exten-
sive exploration of many combinations of (customized)
features, types of classifiers, and parameter settings. How-
ever, it precludes easy access to these methods for non-
expert users.
We set out to offer basic protein classification function-

ality in a single environment to allow for quick and easy
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Figure 1 Protein classification. A) Feature extraction maps protein sequences to feature space. In this case, calculation of the sequence length
(x-axis) and the relative frequency of occurrence of alanines (y-axis) map each protein sequence to a point in two-dimensional feature space.
B) Classifier training using proteins with known class labels: class 1 (orange) and class 2 (green). After mapping to feature space, a classifier is trained
to obtain a decision boundary (dashed line) that optimally separates the classes. C) Predicting class labels of new proteins using the trained
classifier. After mapping to feature space, the point in feature space determines what label is assigned to the protein. Label class 1 will be assigned
to the example protein, because of its location on the class 1 side of the decision boundary.

exploration of user-defined protein classes, without the
need for any programming, data conversion or software
installation. To this end we introduce SPiCE, a web-based
tool for Sequence-based Protein Classification and Explo-
ration. SPiCEmakes powerful data exploration techniques
accessible to non-experts; additionally, expert bioinfor-
maticians can exploit the back-end software to perform
customized and/or computationally expensive tasks on a
local computer.

Implementation
Before describing the SPiCE functionality, some classifi-
cation concepts and the offered sequence-based features
will be introduced in the following two sections.

Classification
Classifiers are algorithms that assign discrete class labels
to objects. These objects are typically represented as vec-
tors of features, real numbers that reflect a property
thought to be potentially different for proteins in the dif-
ferent classes. Protein sequences should therefore first be
mapped onto such feature vectors, a process called feature
extraction (Figure 1A). This should ideally result in a small

number of discriminative features. In SPiCE, feature vec-
tors are always normalized to zeromean and unit standard
deviation.
Given a training set of proteins with known labels, a

classifier can then be trained, i.e. its parameters can be
tuned to yield optimal performance (Figure 1B). For prob-
lems with two classes A and B, performance is often esti-
mated based on a receiver-operator characteristic (ROC)
curve. Such a curve represents all possible trade-offs
between classifications of proteins in class A as being in
class B and vice versa. If class A corresponds to “positive”
and class B to “negative”, the ROC curve is traditionally
drawn as false positive rate vs. true positive rate and the
area under the ROC curve (AUC) is used as a measure
of classifier performance, with 1 indicating perfect classi-
fication and 0.5 random classification. Once trained, the
trained classifier can be used to predict the class label for
any new protein, a process called testing (Figure 1C).
To avoid overtraining, i.e. setting the parameters such

that the training set is classified well but test samples will
be classified poorly, a stratified cross-validation scheme
is used. This entails splitting the training set in k parts
reflecting the original class distributions (where the “fold”
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Table 1 Offered classifierswith corresponding parameter
ranges

Classifier Parameter optimization grid

SVM (linear kernel) C = 10−3, 10−2, . . . , 103

SVM (RBF kernel) C = 10−1, 100, 101

α = 10−1, 100, 101

k-neighbors (unif.1) k = 1, 2, . . . , 5, 10, 20, . . . , 50, 100

k-neighbors (dist.2) k = 1, 2, . . . , 5, 10, 20, . . . , 50, 100

Nearest centroid r = 1, 2, . . . , 10

LDA3 classifier -

QDA4 classifier -

Gaussian Naive Bayes -

Decision tree Default scikit-learn parameters

Random forest Default scikit-learn parameters

1uniform resp. 2distance-based neighbor weights, 3linear discriminant resp.
4quadratic discriminant analysis.

k is a parameter) and iteratively training classifiers on k−1
parts and estimating its performance on the remaining
part. The average performance is then an estimate of the
performance to be expected on new, unseen data.
A large number of classification algorithms are available,

differing in complexity and often applicable to specific

problems. SPiCE implements the most well-known classi-
fier types (see Table 1). In case the classifier has parame-
ters, they are optimized in an inner k-fold cross-validation
loop [16] using the parameter ranges in Table 1 as search
grid, optimizing for the AUC.
For a more in depth discussion of classification and fea-

ture extraction, the reader is referred to relevant reviews
[17,18] or textbooks [19,20]. Below, an overview of the
specific features SPiCE extracts from protein sequences is
given.

Sequence-based features
Table 2 lists the feature categories that can be calculated;
these categories are briefly discussed below. More details
can be found on the SPiCE documentation page (http://
helix.ewi.tudelft.nl/spice/doc).

Composition features
These features calculate letter counts divided by sequence
length for a number of sequence types: amino acid, codon,
secondary structure, and solvent accessibility. The ‘num-
ber of segments’ parameter subdivides sequences into
equal length parts and returns the composition of each
segment separately. For the amino acid sequence, there
is also the option to calculate the dipeptide composition,

Table 2 Sequence-based feature categories

Feature category Parameters Number of features

Composition features

AA composition∗ Number of segments 20× number of segments

Dipeptide composition Number of segments 400× number of segments

Terminal end amino acid count N- or C-terminal end, length 20

SS composition∗ Number of segments 3× number of segments

Per SS class AA composition∗ - 3 × 20

SA composition∗ Number of segments 2× number of segments

Per SA class AA composition∗ - 2 × 20

Codon composition - 64

Codon usage - 64

Protein length - 1

Property profile-based features

Signal average AA scale(s), window, edge 1 per AA scale

Signal peaks area AA scale(s), window, edge, threshold 2 per AA scale

Autocorrelation Type, AA scale(s), distance 1 per AA scale

Pseudo AA composition (type 1)∗ AA scale(s), λ 20 + λ

Pseudo AA composition (type 2)∗ AA scale(s), λ 20 + λ

Amino acid distance-based features

Property CTD∗ Property 21

Quasi-sequence-order AA distance matrix, λ 20 + λ

*AA: amino acid, SS: secondary structure, SA: solvent accessibility, CTD: composition, transition, distribution.

http://helix.ewi.tudelft.nl/spice/doc
http://helix.ewi.tudelft.nl/spice/doc
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i.e. amino acid pair counts divided by sequence length−1,
and the amino acid counts for a given length of the N-
or C-terminal end of the protein sequence. For the codon
sequence, the codon usage can be calculated.

Property profile-based features
Amino acid scales map each amino acid to a value
that captures a physicochemical or biochemical prop-
erty, such as hydropathicity or size. These scales are used
to obtain a property profile for a protein sequence by
mapping all of its residues to the corresponding values.
The profiles are in turn used for calculating property
profile-based features. The AAIndex data base [21] con-
tains a large collection of scales that can be selected
for feature calculation. Because the data base contains
many correlated scales, a set of 19 uncorrelated scales
derived from the entire AAIndex database [22] can also
be selected. Amino acid scales are normalized (zero mean,
unit standard deviation) before using them for feature
calculation.

• Signal average features capture, based on the selected
amino acid scale used for generating a property
profile, the average property over the entire protein
sequence by calculating the average profile value.

• Signal peaks area features use the property profiles to
capture occurrences of property peaks by calculating
the sum of all areas under a protein profile above and
below a given threshold. A window and edge
parameter define the width and edge weights of a
triangular filter with which the profile is convoluted
to smooth it before calculating the features [23].

• Autocorrelation features employ the property
profiles to calculate property correlations between
two residues at a given distance over the entire
protein sequence. As in PROFEAT, three different
types are implemented: normalized Moreau-Broto
[24], Moran [25], and Geary [26].

• Pseudo-amino acid composition features calculate
the amino composition with additional features that
include sequence-order information up to a given
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Figure 2 Overview of the four main functionalities. A) Sequence-based feature extraction, mapping each protein in a FASTA file to a list of
feature values (a row in the feature matrix). The uploaded protein labels will be used for classifier construction. B) Visual inspection of the calculated
feature data, in this example showing (part of) the feature matrix in the form of a clustered heat map with in each row the feature values of one
protein and the corresponding protein labels in the rightmost column. C) Classifier construction using the calculated feature matrix and the
provided labels (train data). A k-fold cross-validation protocol is used to assess classification performance.D) The trained classifier can be used to
predict class labels for a set of new proteins (test data).
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distance λ. Sequence-order information is
incorporated by calculating residue correlation
factors between two residues at a given distance over
the entire protein sequence, for distances 1, 2, . . . , λ.
The correlation factors are based on one or multiple
user-defined amino acid scales as offered by the
PseAAC web server [10]. Both the parallel-correlation
type (type 1), as introduced in [27] for predicting
protein cellular attributes, and the series-correlation
type (type 2), as introduced in [28] for predicting
enzyme subfamilies, are offered by SPiCE.

Amino acid distance-based features
These feature categories use amino acid distances for fea-
ture calculation, either by using a amino acid distance
matrix or by using predefined amino acid clusters.

• Property composition, transition, distribution (CTD)
features were previously used to predict protein
folding classes [29]. Our implementation is based on
PROFEAT [12]. The twenty amino acids are
subdivided into three groups; A, B, and C, based on a
given property. Protein sequences are then mapped
to the reduced three-letter alphabet (ABC), which are
used to calculate i ) the property composition, letter

counts divided by sequence length, ii ) property
transitions, the number of AB and BA transitions
divided by the sequence length - 1 (likewise for AC
and BC), and iii ) the property distribution, relative
protein sequence positions of the first occurrence,
the 1st, 2nd, and 3rd quantile, and the last occurrence
of each property letter. The used properties –
hydrophobicity, normalized Van der Waals volume,
polarity, polarizibility, charge, secondary structures
and solvent accessibility – and corresponding amino
acid subdivisions are the same as in PROFEAT.

• Quasi-sequence-order descriptors have been used to
predict protein subcellular localization [30]. They are
comparable to the pseudo amino acid composition,
but the Schneider-Wrede amino acid distance matrix
[31] is used for calculating correlation factors instead
of amino acid scales.

Functionality
SPiCE has four main functionalities, as illustrated in
Figure 2. First, users can upload a FASTA file with pro-
tein sequences for which a range of sequence based fea-
tures can be calculated (Figure 2A). The resulting feature
matrix (Figure 2B) can then be visually explored using

Figure 3 SPiCE screenshot.
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histograms, scatter plots, and heat maps. Classifiers can
be trained for a set of user-defined class labels (Figure 2C)
and the resulting classifier can finally be used to predict
class labels of new protein sequences (Figure 2D).
To access these functions, the SPiCE web-based user

interface offers four areas: home, projects, features, and
classification, accessible through the main tabs. The web
application can be freely explored without registration. A
user account bar – situated directly underneath the main
tabs (Figure 3) – enables users to login to their account
or to create a new account, providing them with a secure
personal work space in which their projects will be stored.
Home contains general information and news items.

Additional documentation and tutorials can be accessed
through the documentation link in the header menu at the
top of the page (Figure 3).
Projects are initiated by uploading a FASTA file

with either protein (amino acid) or ORF (nucleotide)
sequences. After initiation, one or more labeling files can
be uploaded in which each protein is assigned a label, for
example its subcellular localization. Users can also upload
(predicted) secondary structure and solvent accessibility
sequences, which enables the calculation of additional
features.
Features can be calculated for all proteins in the project.

A list of available sequence-based features is given in
Table 2. Additionally, users can upload their own cal-
culated features. The resulting feature matrix can be
explored using different visualizations. Feature-value dis-
tributions and class separation can be explored using
histograms (e.g. like in Figure 3) and scatter plots. Another
way of exploring predictive features is to visually inspect
the feature matrix using a hierarchically clustered heat
map (Figure 2B), in which the protein labels are added as
an extra column (not used for clustering).
Classification offers the ability to train classifiers using

the proteins in the current project. Users can select: i)
the type of classifier to use, ii) the classes to train for,
iii) the features to use for training, and iv) the num-
ber of cross-validation loops k. A (double) k-fold cross-
validation protocol is used to assess classifier performance
and to optimize classifier parameters if required. After
training, a table with performance measures is reported,
together with a receiver operating characteristic (ROC)
curve in case of two-class classification. The final classi-
fier is trained on the entire train set using the optimized
parameter settings. Trained classifiers can be applied to
predict class labels of new proteins by selecting any of the
user’s projects, in which case class labels will be predicted
for each protein in that project.

Software framework
The website is developed in Python 2.7.3 (www.
python.org), using the minimalist python web framework

CherryPy 3.2.0 (www.cherrypy.org). The back-end uses
the Python package spice for feature calculation and classi-
fication.Within this package, the featext module manages
feature extraction using a dataset module to manage pro-
tein sequence data and a featmat module to manage the
labeled feature matrix. The classification module offers a
set of classification tasks, which basically is a layer on top
of the machine learning software scikit-learn 0.14.1 [14].
Feature extraction and classification tasks are put in a job
queue which is handled by a separate compute server.

Results and discussion
To validate the system, we reproduced results of previ-
ous work in which a data set was employed to construct
classifiers predicting successful high-level production of
extracellular proteins in Aspergillus niger [32]. The used
data set consists of 345 secretory proteins that were over-
expressed in A. niger and tested for detectable extracel-
lular concentrations by putting the obtained extracellular
medium on a gel after growing the culture in shake flask.
A label ‘high’ was assigned to proteins for which a band
on the gel was observed and a label ‘low’ to the others,
resulting in 167 high-level and 178 low-level proteins. This
labeled protein set can be loaded as an example project in
SPiCE.

Figure 4 Scatter plot showing class separation for the A. niger
secretion project using the amino acid composition features
with the lowest (negative) and highest t-value, arginine and
asparagine respectively.

http://www.python.org
http://www.python.org
www.cherrypy.org
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The amino acid composition was calculated and used
for the construction of a linear support vector machine
(10-fold double-loop cross-validation), providing results
that are in agreement with the results described ear-
lier [32]. Similar to the observations in that work, the
t-statistics reveal strong predictive capacity for the tyro-
sine, asparagine, arginine, and lysine features (Additional
file 1: Figure S1), which can also be observed in the his-
tograms (Additional file 1: Figure S2). The scatter plot
in Figure 4 shows the obtained class separation by using
the two features with the lowest (negative) and high-
est t-value respectively. For the hierarchically clustered
feature matrix in Figure 5, clustering of proteins (rows)
with the same label indicate that these features are use-
ful for classification. Classifier construction resulted in
a cross-validation performance of 0.837 area under the
ROC curve (Additional file 1: Figure S4), again similar to
results obtained in [32].

Additionally, we used a yeast protein expression data set
to illustrate the ease with which one can explore differ-
ences between user-defined protein classes. For this data
set, yeast proteins were split into low-level and high-level
expressed based on data found in [33], in which Saccha-
romyces cerevisiae open reading frames were tagged with
a high-affinity epitopes and expressed from their natu-
ral chromosomal location after which protein abundances
were measured during log-phase growth by immunode-
tection of the tag. As a pre-processing step, to avoid a
bias for sets with highly similar proteins, BLASTCLUST
[34] was used to reduce sequence redundancy. After that
the list of proteins was ordered by expression level. The
top and bottom 1000 proteins were labeled ‘high’ and
‘low’ respectively. This data is also available as an example
project.
Using the t-statistics table in Figure 6, quick explo-

ration of the amino acid composition reveals a preference

Figure 5 Hierarchically clustered feature matrix of the A. niger secretion project with the amino acid composition features as columns
and the proteins as rows. The corresponding class labels, gray for ‘low’ and white for ‘high’, are shown in the column on the right.
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Figure 6 Table with t-statistics of the yeast expression-level project. The table shows the t-statistics for the amino acid composition features
and is ordered by t-value. High absolute t-values indicate a difference in class means of the two (assumed normal distributed) class distributions.

for alanine, valine, and glycine in the high-expression
class, whereas low-expression proteins contain relatively
many asparagines and serines. The alanine and serine his-
tograms in Figure 7, the features with minimal and max-
imal t-value respectively, indeed show shifted means of

the class distributions. A classification performance, again
using a linear support vector machine and 10-fold cross-
validation, of 0.794 area under the ROC-curve (Additional
file 1: Figure S8) showed good predictive capability of
the amino acid composition. The predictive capability

Figure 7 Histograms of the yeast protein expression-level project. Histograms are shown for the two amino acid composition features with
largest positive and negative t-values (Figure 6), alanine and serine respectively, showing different means of the class distributions.
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Figure 8 Receiver operator characteristic (ROC) curve showing performance of a classifier trained for the yeast expression-level project.
The ROC curve shows the performance of a linear support vector machine classifier that was trained using the codon composition as features.
Results for the 10 cross-validations are shown in gray, the average performance is shown in blue.

using the codon composition proved even better, result-
ing in a performance of 0.856 area under the ROC-curve
(Figure 8).
For further exploration of the system, two additional

example projects can be initiated. One entails protein sub-
cellular localization in human, a data set of 2580 proteins
categorized into 14 different subcellular locations as taken
from [35]. The other is a solubility data set obtained from
[36], consisting of 17.408 yeast proteins that are split into
two equal sized classes: soluble and insoluble.

Conclusion
SPiCE provides easy access to visualization and classifica-
tion methods for a set of labeled protein sequences. After
uploading a FASTA file with protein sequences and a label
file with protein labels, the website can be used to cal-
culate sequence-based features, to visualize the resulting
feature matrix, and to train and test classifiers for pre-
dicting class labels, enabling quick exploration of sets of
labeled proteins. The back-end software is made available
for expert users to perform customized and computation-
ally demanding tasks on a local computer.

Availability and requirements
• Project name: SPiCE
• URL: http://helix.ewi.tudelft.nl/spice
• Source code spice python package: https://github.

com/basvandenberg/spice

• Source code spice web site: https://github.com/
basvandenberg/spiceweb

• Web browsers: Chrome, Firefox, Opera, Safari
• Operating system: Platform independent
• Programming language: Python 2.7
• License: GNU GPL v3

Additional file

Additional file 1: Supplementary Information. Showing the use of
SPiCE by means of two example projects.
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