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Abstract

Background: In this study we consider DNA sequences as mathematical strings. Total and reduced alignments
between two DNA sequences have been considered in the literature to measure their similarity. Results for explicit
representations of some alignments have been already obtained.

Results: We present exact, explicit and computable formulas for the number of different possible alignments
between two DNA sequences and a new formula for a class of reduced alignments.

Conclusions: A unified approach for a wide class of alignments between two DNA sequences has been provided.
The formula is computable and, if complemented by software development, will provide a deeper insight into the
theory of sequence alignment and give rise to new comparison methods.
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Background
Let us consider a DNA sequence as a mathematical string

X = (xlery‘ . -yx}’l)y

where x; € {A, G, C, T} is one of the four nucleotides, i =
1,2,...,n, i.e. A denotes adenine, C cytosine, G guanine
and T thymine. In these conditions, the sequence x is of
length 7.

Our main goal is to compare the sequence x with
another DNA sequence

Yy=00Y2% - Vm),

to measure the similarity between both strings and also to

determine their residue-residue correspondences.
Sequence comparison and alignment is a central and

crucial tool in molecular biology. For example, Pairwise
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Sequence Alignment is used to identify regions of simi-
larity that may indicate functional, structural and/or evo-
lutionary relationships between two biological sequences
(protein or nucleic acid) [1].

For some recent developments and directions we refer
the reader to [2-7] and [8] for a general review of different
alignments methods.

To align the sequences CGT and ACTT, one can use
EMBOSS Needle for nucleotide sequence [9] that creates
an optimal global alignment of the two sequences using
the Needleman-Wunsch algorithm to get

EMBOSS-001 1 - G 3

C T

I
EMBOSS-001 1 A C T T 4

Following Lesk [10], in order to compare the amino
acids appearing at their corresponding positions in two
sequences, theirs correspondences must be assigned and
a sequence alignment is the identification of residue-
residue correspondence. For some references on sequence
alignment we refer the reader to [10-16].

To compare two sequences, there exist mainly three dif-
ferent possibilities leading to three different numbers of

total alignments [10,11,13]:
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1. The total number of alignments denoted by f(#, m1)
that was solved in [13].

2. A gap in a sequence is followed by another gap in the
other sequence as in Alignments 1 and 2 for the
sequences x = CGT and y = ACTT (see Tables 1
and 2 below)

Considering the two alignments as equivalents to the
Alignment 3 (see Table 3) without gap in those
positions, we have the number of reduced alignments
denoted by /(n, m), and obviously h(n, m) < f(n, m).
This case has been solved in [11], and we give here
another representation in terms of hypergeometric
series.

3. In the interesting case that the alignments 1 and 2 are
equivalent, but different from alignment 3 we have a
number or reduced alignments g(n, m) where
h(n,m) < g(n,m) < f(n,m). This last case is new
and we present an explicit formula for g.

Results and discussion

Number of f(x, y) alignments

The total number of alignments f (x, y) satisfies the follow-
ing recurrence relation [13]

fmm=fn—1,m+fm,m—1)+f(n—1,m—1),

with initial conditions f(n,0) = f(0,m) = 1 for n,m =
1,2,3,.... The solution of the above partial difference
equation is given by

min{n,m}
m n
fonm =2, 2k(k)(k>’

k=0
(see formula (10) in [13]) and the generating function
[17,18] is
F _ 1
(o) = Caytaty—1

Therefore the coefficients f(n, m) in the expansion

F(x,y) = Z Zf(n, m)x"y"

n=0 m=0

are given in terms of a hypergeometric series by
S(n,m) = 2F1(—m, —n;1;2).

This relation seems to be new in this form. Here, the
generalized hypergeometric series is defined as (see e.g.
[19, Chapter 16])

2 (ani (@) (ap), 4
5 KDk (b2)g -+ (bq)k

L

qu(al,...,ap;bl,...,bq;d) =

’

Table 1 Alignment 1
C G
A - C T T

T -
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Table 2 Alignment 2
C - G T -
A C - T T

and (A)y = A(A+1) --- (A+n—1), with (A)¢p = 1, denotes
the Pochhammer’s symbol. It is assumed that b; # —k
in order to avoid singularities in the denominators. If one
of the parameters a; equals to a negative integer, then the
sum becomes a terminating series.

Number of i (x, y) alignments
In this case, the recurrence relation for the /(n, m) coeffi-
cients is [11]

h(nym) =h(n —1,m)+h(n,m —1) —h(n — 2,m — 2),

nm> 2,

with initial conditions /%(n,0) = 4(0,m) = 1. Therefore,
the generating function [17,18] is
1—xy
H b = ’
() ¥y —x—y+1

and the coefficients in the expansion

Hx,y) = Z Z h(n, m)x"y™

n=0 m=0
are given by

B 4
o (CDH(=3Bi A m+ )
Hm) =3 m— 201 (1 — 20y

B

i=0

(=) (=3i+m+n—2)!
M (=2i4+m—1D(=2i+n—-1"

i=0

el
om0

The above coefficients can be written in terms of (ter-
minating) hypergeometric series as
16
27

1- 1-
(m+n)!4F( R
16
27 ) -

2 2
141 —m—n —m—n+1l —m—n+2
m.n. 3 3 ) 3

(m+n—2)!
(m—1D!(n—1)!
1-m 1—m 1-n 1"
aF3 ( —mgn+2 _m2_n+23 —m—n2+4
3 ’ 3 ’ 3

Table 3 Alignment 3
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A C T T
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Number of g(x, y) alignments
As indicated before, the main aim of this paper is to give
an explicit representation in this case. The recurrence
relation for the g(n, m) coefficients is [11]
gmym) =gn—1,m—1)+gn—1,m)+gmnm—1)
—2¢0(n—2,m—2), n,m=>2,

with initial conditions g(n,0) = g(m,0) = 1. Thus, the
generating function [17,18] is

1—wxy
G(x,y) = . 1
() 2x2y2 —xy —x—y+1 @)
Theorem 1. The coefficients oy, y, in the expansion
TR 90 S 22
R Y I - mm
eyt —xy—x—y+1 o
2)
are explicitly given by
n+m  B(i,nm)
Anm = Z Z ,Bi,j,n,m
i=U(n,m) j=A(i,n,m)
4 3)
n+m—2 D(i,n,m)
- Z Z Yijnm | >
i=U(n,m)—1j=C(i,n,m)
where
(=12 il
Igi,j,n,m = . . .. . . . . ’
(=)' Qi—j—m)! 2i—j—n)! 3j—4i+m+n)!
(4)
o (=1)i72i7 it
Vigmm = (=) Qi—j—m+1)! Qi—j—n+1)! 3j—4i+m+n—2)!"
(5)
. 4i—m —n
A(i, n, m) =max{0,|: 3 “, (6)
, N , di—n—m
B(i,n,m) = min 1i,2i — m,2i — n, ) , (7
. 4i—m—n—2
C(i,n,m) = max 10, 3 , (8)
D(i, n, m) = min {i,2i— m+1,2i—n+1,
9
4i—n—m+2 ©)
2 )
—[n/2], < m,
Uy = )™~ /2] = (10)
(m+1)/2l+n—m, n>m,

and [x] denotes the integer part of x.
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Proof. If we expand,

i j

Glry) =0 —xy) Y _ (x+y+xy— 2x2y2)i =1 —xy)
i=0
o) k ; .
(XX (Zev2()(])
i=0 \j=0 \k=0 \s=0 k

l:)yZi—j—sti—j—k+s> ) ) ,

N

(11)
we have two summands to be computed, namely
00 i j k , ,
> (2 (zev 2 ()()
k
i=0 \j=0 \k=0 \s=0
i J 0 \ s (12)
K\ aijos 2i-j-
j—8 2i—j—k+s
(s
o0 i J k 7 .
~o Y (E (X e ()()
i=0 \j=0 \k=0 \s=0
k 2i—j—s , 2i—j—k+s
(s
(13)

In order to compute the first sum (12) let us introduce

m=2i—j—s, n=2—j—k+s. (14)
Therefore, the summation to be done reads as
o0 V B . .
SO (S () oyl )
n=0m=0 \i=U j=A t=2—m—n
(4i —‘2j - m— n) iy
2i—j—m

where U, V, A and B must be computed in terms of the
initial indices.
The product of binomials can be simplified to
i!
(=) Qi—j—m) (2i—j—n) (3 —4i+m+n)
Thus,

i>0, j>0, 4i—-2j—-m—n=>0, 4i—-2—m
-n>0, 2i—j—m=>0, i—j>0, 2i—j
-m>0, 2i—j—n>0, 3j—4i+m+n=>0,
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and then
. 4i—m —n .
A(L,n,m):A:max{O,[ 3 :“5/
N . 4di—n—m
<minii2i—m,2i—mn, 9

= B(i,n,m) = B.

Finally, the summation reads as

oo 00 n+m B
n=0m=0 \i=Un,m) j=A
(=D)i2i i1 Y
G- D! Qi—j—m)! (2i —j — n)! (3j—4i+m-+n)! &y
where
- 2 ’ < )
UG, m) = m— [n/2] n<m
[(m+1)2+n—m, n>m.

A similar work with the second summand (13) leads to
the final result. I

Some numerical values are g(10,10) = 2003204,
2(50,50) = 2.71972 x 1034, g(100, 100) = 7.55997 x 10,
and we note that g(n, n) > 108 for n > 115. This last
inequality is relevant since 10%° is an estimation of the
number of protons of our universe [13].

Conclusions

A unified approach for a wide class of alignments between
two DNA sequences has been provided. We conclude also
that our approach gives an explicit formula filling a gap
in the theory of sequence alignment. The formula is com-
putable and, if complemented by software development,
will provide a deeper insight into the theory of sequence
alignment and give rise to new comparison methods. It
may be used also, in the future, to get explicit formulas
and compute the number of total, reduced, and effective
alignments for multiple sequences.

Methods

We have performed a number of numerical computa-
tions to compare our formulae and Mathematica® [20]
command Coefficient for the series expansion of (1), on
a MacBook Pro featuring a 45 nm “Penryn” 2.66 GHz
Intel “Core 2 Duo” processor (P8800), with two indepen-
dent processor “cores” on a single silicon chip, 8 GB of
1066 MHz DDR3 SDRAM (PC3-8500). We would like
to mention that our approach is amazingly fast, since
e.g. g(100,100) is computed by using Mathematica® in
0.125165 seconds by using the new formulas presented
in this paper, while the use of Mathematica® command
Coefficient needs 99.167659 seconds.
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