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Abstract

Background: The identification of functionally or structurally important non-conserved residue sites in protein MSAs
is an important challenge for understanding the structural basis and molecular mechanism of protein functions.
Despite the rich literature on compensatory mutations as well as sequence conservation analysis for the detection of
those important residues, previous methods often rely on classical information-theoretic measures. However, these
measures usually do not take into account dis/similarities of amino acids which are likely to be crucial for those
residues. In this study, we present a new method, the Quantum Coupled Mutation Finder (QCMF) that incorporates
significant dis/similar amino acid pair signals in the prediction of functionally or structurally important sites.

Results: The result of this study is twofold. First, using the essential sites of two human proteins, namely epidermal
growth factor receptor (EGFR) and glucokinase (GCK), we tested the QCMF-method. The QCMF includes two metrics
based on quantum Jensen-Shannon divergence to measure both sequence conservation and compensatory
mutations. We found that the QCMF reaches an improved performance in identifying essential sites from MSAs of
both proteins with a significantly higher Matthews correlation coefficient (MCC) value in comparison to previous
methods. Second, using a data set of 153 proteins, we made a pairwise comparison between QCMF and three
conventional methods. This comparison study strongly suggests that QCMF complements the conventional methods
for the identification of correlated mutations in MSAs.

Conclusions: QCMF utilizes the notion of entanglement, which is a major resource of quantum information, to
model significant dissimilar and similar amino acid pair signals in the detection of functionally or structurally
important sites. Our results suggest that on the one hand QCMF significantly outperforms the previous method,
which mainly focuses on dissimilar amino acid signals, to detect essential sites in proteins. On the other hand, it is
complementary to the existing methods for the identification of correlated mutations. The method of QCMF is
computationally intensive. To ensure a feasible computation time of the QCMF’s algorithm, we leveraged Compute
Unified Device Architecture (CUDA).
The QCMF server is freely accessible at http://qcmf.informatik.uni-goettingen.de/.
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Background
Multiple sequence alignments (MSAs) of homologous
protein sequences give us information about two major
features of the proteins of interest. The first one consists
of easily detectable highly conserved residue sites that are
obviously important for the structure and/or the func-
tion of the protein; while the second one corresponds to
compensatory (coupled) mutations between two or more
residue sites that also contain crucial information on the
structural and functional basis of proteins [1]. These com-
pensatory mutations occur according to the functional
coupling of mutation positions which might be explained
as one mutation in a certain site affecting a compensat-
ing mutation at another site, even if both related residue
sites are distantly positioned in the protein structure
[2-5]. In particular, such mutations at essential residue
sites are likely to destroy protein structure which often
results in loss of the protein function [6,7]. Thus, recog-
nition of these residue sites is as important as the strictly
conserved positions for the understanding of the struc-
tural basis of protein functions and for the identification
of functionally important residue positions [5,8,9].
Although the strictly conserved residue sites are easily

detectable and interpretable in MSAs, the detection of
important non-conserved compensatory mutation sites
needs more complex approaches. Today, due to the
simplicity and efficiency, the mutual-information-based
metrics (MI-metrics) are often used to measure the co-
evolutionary relationship between residue sites in MSAs
[4-6,10-13]. However, the MI-metrics strongly depend
on the amino acid distributions observed in the MSA
columns rather than on physical or biochemical con-
straints of amino acids that are likely to be crucial for
the detection of functionally or structurally important
compensatory mutations in a protein sequence. Further,
according to the phylogenetic relationship of protein
sequences and background noise, there is always a MI-
value between each column pair in an MSA. Therefore,
the challenging problems in bioinformatics for the detec-
tion of significant compensatory mutation signals are: i)
the minimization of the influence of phylogenetic rela-
tionships of protein sequences by incorporating physical
or biochemical properties of amino acids in the calcu-
lation; ii) the separation of significant signals from the
background noise or unrelated pair signals.
In order to eliminate the influence of phylogeny and

noise effects of MI, Dunn et al. [6] have introduced the
average product correction (APC). Subtracting APC from
MI, they obtained their MIp metric. However, in their
model the reduction of background noise is not quanti-
fied. On the other hand, Gao et al. [13] have integrated
amino acid background distribution (MIB) in the calcu-
lation of their MI-metric and focused on only 25 column
pairs of each MSA with the highest normalized MI values

as significant to reduce noisy effect which seems to be
over-conservative, yet specific.

Large efforts have been made in the last few years to
improve local-correlation-measure-based approaches to
residue co-evolution when it comes to modeling effects
that rely on spatial proximity (see [14] for an overview). In
this case, it is necessary to disentangle direct and indirect
correlations. Classical mutual information, for example,
is high not only if the two sites under study are close in
3D space. Quite the contrary, any local measure of cor-
relation, not just mutual information, is limited by the
transitivity effect.
To overcome this problem, global statistical models of

protein families are employed. The direct-coupling anal-
ysis (DCA) works as follows. Maximizing the entropy
subject to preserving the single and pair residue fre-
quencies observed, a joint probability distribution on all
possible members of the protein family is derived. Utiliz-
ing this distribution, considerable progress in predicting
residue-residue contacts in 3-dimensional protein struc-
tures was made [15-17]. Protein Sparse Inverse Covari-
ance (PSICOV) [18] achieves disentanglement of direct
and indirect correlations by inverting a residue-residue
covariance matrix. In [19] further progress was made by
integrating structural context and sequence co-evolution
information.
There is merely a small number of methods that incor-

porate amino acid similarity in the prediction of func-
tionally or structurally important sites. In this context,
it is natural to partition the amino acids into chemically
similar groups before applying an information-theoretic
measure like the Shannon entropy [20,21]. It was reported
that many other methods fail to outperform this simple
partition approach [22]. However, quantum information
theory supplies a well-studied and powerful framework
to integrate such similarity, where the classical Shannon
entropy is swapped for the von Neumann entropy (VNE).
Caffrey et al. [23] and Johansson et al. [24] have firstly
introduced VNE to multiple sequence alignment analysis
although they did not treat amino acid pair similarity.
Recently, a newmethod called CoupledMutation Finder

(CMF) has been introduced by Gültas et al. [5] to deal
with phylogenetic noise as well as background signals and
to quantify the error made in terms of the false discovery
rate. The CMF method only focuses on BLOSUM62-
dissimilar amino acid pairs as a model of compensatory
mutations and integrated them in the calculation of nor-
malized MI-metrics using a doubly stochastic matrix to
transform the empirical pair distribution of the column
pair. However, the CMF disregards amino acid pair sim-
ilarity which can be also crucial for the detection of
functionally or structurally important sites in MSAs.
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In this study, we present a new method called Quan-
tumCoupledMutation Finder (QCMF) which extends the
CMF algorithm [5] by additionally incorporating amino
acid pair similarity. To this end, the QCMF invokes prin-
ciples from quantum information theory, in particular for
the first time in the context of MSA analysis quantum
entanglement as a major resource of quantum informa-
tion. Amino acid pair distributions are replaced by entan-
gled density matrices from quantum mechanics which
encompass in our case both empirical pair distributions,
possibly transformed by the doubly stochastic matrix used
in [5], and pair similarity. Following Capra and Singh [22]
who pointed out that it is hard to improve upon metrics
based on Jensen-Shannon divergences, we quantify the
effect of both amino acid pair similarity and amino acid
pair dissimilarity by the quantum Jensen-Shannon diver-
gence between an entangled density matrix and the one
that simply represents the amino acid pair frequencies.
The QCMF algorithm is strongly based on the matrix

operations that are computationally intensive. When ana-
lyzing a single MSA, the computational time of these
matrix operations rise very quickly due to the huge num-
ber of column pairs. In order to speed up the running
time of the QCMF, we implemented its algorithm using
Compute Unified Device Architecture (CUDA). CUDA is
an efficient parallel computing architecture developed by
NVIDIA that utilizes graphic processing units (GPUs) for
general-purpose scientific and engineering applications
[25]. Nowadays, GPUs are often used for computation-
ally challenging problems in bioinformatics [26-29] and
several other scientific fields [30-32].

Results
Our main focus in this study was to investigate whether
quantum information theory based measures could con-
tribute beyond conventional measures to the identifi-
cation of important residue sites. The Results section
of this work twofold. First, to test the functionality of
QCMF-significant individual residue sites we analysed the
essential sites of two human proteins: epidermal growth
factor receptor (EGFR) (pdb entry 2J6M) and glucokinase
(GCK) (pdb entry 1V4S). The functionally and struc-
turally important sites of both proteins have been experi-
mentally investigated in several studies previously [33-44]
and their positions were summarized in [5] as essential
sites. The essential sites of these proteins consist of sev-
eral non-conserved residue sites which are directly located
at or near disease associated amino acid mutation (non-
synonymous single nucleotide polymorphisms (nsSNPs))
sites, catalytic sites, protein binding sites and so on, each
of which are likely to affect protein stability or function-
ality (see [5] and references therein). In addition, residue
sites are defined to be in contact according to the “nearby”
definition of Nussinov et al. [45] if their carbon major

atoms have a distance of less than or equal to 6 Å. Con-
sequently, we defined an individual QCMF-significant
residue site as “functionally or structurally important” if it
corresponds to one of these essential sites.
Second, to further investigate the performance of

QCMF and tomake a comparisonwith the previousmeth-
ods (CMF [5], MIp [6], and PSICOV [18]), we selected
a non-redundant set of proteins prepared by Janda
et al. [46]. Although the dataset contains 216 proteins, we
eliminated a few proteins due to inconsistency between
corresponding MSAs and PDB files, so that we finally
ended up with a dataset of 153 proteins (see Additional
file 1).
The MSAs for each protein, which contain after fil-

tering at least 125 independent sequences, were derived
from the HSSP-database [47] that merges primary struc-
ture information and tertiary structure information of
proteins.
Finally, we define QCMF-significant sites as follows. Let

M be an MSA, with the protein of interest being the first
row of M. A site pair as well as an individual site of the
protein are said to be QCMF-significant with respect to
the MSAM, if they are (Qent,M)-significant or (Qsep,M)-
significant. The latter two notions and the underlying two
co-evolutionary column pair metrics Qent and Qsep are
defined in the Methods section. If the MSAM is fixed, we
speak of Qent-significance and Qsep-significance, rather
than of (Qent,M)-significance and (Qsep,M)-significance,
respectively.

QCMF-significant residue sites in the Human Epidermal
Growth Factor Receptor (EGFR) protein
Using the MSA-specific statistical model with a false dis-
covery rate (FDR) of 1% for both QCMF-metrics, we first
determined altogether 2688 out of 26079 non-conserved
column pairs as significant in corresponding MSA of
human EGFR protein. 631 of these significant pairs were
detected by Qent-metric, and 2149 pairs were detected
by Qsep-metric. Only 92 significant column pairs were
detected by both metrics. After that, utilizing the connec-
tivity degree technique, we predicted in total 33 residue
sites in corresponding sequence of human EGFR protein
as QCMF-significant (see Additional file 2). 12 of them
are only Qent-significant and 18 residue sites are Qsep-
significant, the remaining 3 residue sites (A839, A882 and
V902) are both Qent-significant and Qsep-significant.
10 of the QCMF-significant residue sites are in con-

tact with either catalytic residues or critical active site
regions for gefitinib binding site in wild type EGFR kinase
[34,37,48] (see Figure 1 and Figure 2). Among these sites,
the A839 and R841 have been verified as catalytic residue
sites through the Catalytic Site Atlas [48]. The T854 is a
gefitinib binding site by itself and the residue sites V845
and A859 are also in contact with nsSNP positions K846,
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Figure 1 QCMF-significant residue positions are in contact with catalytic residues in human EGFR protein (PDB-Entry 2J6M). Red spheres
denote positions of the catalytic residues. Yellow spheres show the localization of significant adjacent residue positions found by QCMF which are in
contact with these catalytic residues. Moreover, the QCMF-significant sites A839 and R841 are also catalytic residues by themselves. Green spheres
show the structural localization of nsSNP positions found by QCMF as significant in the EGFR protein. The circles indicate clusters of catalytic residue
sites and their significant adjacent sites.

T847 and K860 in human EGFR protein. Moreover, two
out of all 33 significant sites are related to disease associ-
ated nsSNP positions and their structural localization are
illustrated in Figure 1.
Additionally, 13 out of all QCMF-significant sites are

referred to as essential sites, each of them are either
nearby strictly conserved residues or nsSNPs (see Table 1).
According to the essential sites of human EGFR protein,

published in [5], we have shown altogether the structural
or functional importance of 25 QCMF-significant sites.
The remaining 8 significant residue sites (G729, T851,
G779, Q820, M825, L927, G930, Y944) do not fall into
essential sites and the reason for their significance and
their importance in the EGFR protein is currently unclear.

QCMF-significant residue sites in the HumanGlucokinase
(GCK) protein
Like human EGFR protein, applying theMSA-specific sta-
tistical model with a FDR of 1% for both QCMF-metrics
we identified a total of 9853 out of 69645 non-conserved

column pairs as significant in the human GCK protein
(pdb entry 1V4S). 6070 of themwere (Qent,M)-significant
and 4232 were detected as (Qsep,M)-significant. Only 449
column pairs were detected as significant with respect to
both metrics. Thereupon using the connectivity degree
technique, we determined altogether 64 residue sites
in the human GCK protein as QCMF-significant (see
Additional file 3). 30 of them are determined as Qent-
significant and further 30 significant residue sites are
determined as Qsep-significant. Only four residue sites
(T82, G223, V253, andG407) are significant based on both
metrics.
13 of QCMF-significant sites are in contact with

allosteric sites V62, R63, M210, I211, Y214, Y215,
M235, V452, V455 and A456 in the human GCK pro-
tein. Among these significant sites, the V62, M210,
Y215 are allosteric sites by themselves [41] and the
T209M, G223S and S453del are related to disease asso-
ciated nsSNP positions. In addition, there are further
five QCMF-significant sites (F123L, G162D, G175R,
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Figure 2 QCMF-significant residue positions are in contact with gefitinib binding sites in human EGFR protein (PDB-Entry 2J6M). Red
spheres show the structural localization of the gefitinib binding sites in the wild type kinase. Yellow spheres show QCMF-significant adjacent residue
positions which are in contact with these binding sites. Moreover, the QCMF-significant site T854 is also a binding site by itself and interacts with
gefitinib binding site D855. The circles indicate clusters of gefitinib binding sites and their significant adjacent sites.

Table 1 QCMF-significant essential sites in the human
EGFR protein, which are nearby either nsSNPs or strictly
conserved sites

QCMF-significant Nearby nsSNPs, or strictly Reference
essential sites conserved sites

N771 773s [44]

G824 773s [44]

Y827 829s [44]

L828 829s [44]

V834 835c , 836s , 860s [44,49]

Y891 892s , 895c [44]

A822 861s [43,49,50]

V844 796c , 798c , 852c -

A882 884c , 895c , 898c -

Y900 898c , 901c -

V902 880c , 901c -

T909 906c , 936c -

G911 906c -

s : non-synonymous snp site, c : strictly conserved site.

T228M, and E300K,Q) that have been verified as
nsSNP positions through annotation databases and pre-
vious experimental studies [38-40,42,43,51]. The struc-
tural localization of these 18 QCMF-significant sites
(contact sites and nsSNPs positions) are illustrated in
Figure 3.
Additionally, eight significant sites T149, G170, F171,

T206, V207, A208, Q287 and G294 in contact with glu-
cose binding sites (active sites) T168, K169, D204, D205
and E290 in human GCK protein [41] (see Figure 4) where
V207 and A208 are also in contact with the allosteric sites
M210 and I211.
Moreover, we have also observed that 38 QCMF-

significant sites are further included in essential sites since
they are nearby nsSNPs or strictly conserved residues in
human GCK protein (see Table 2).
In total, we have demonstrated here that according to

the essential sites of GCK, 62 out of 64 QCMF- significant
sites are functionally or structurally important for human
GCK protein. The remaining two significant residue sites
V89 and N283 do not overlap with essential sites and the
reason for their significance and their role in the GCK
protein is still unclear.
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Figure 3 QCMF-significant positions that are either in contact with allosteric sites or related to nsSNPs in human GCK protein (PDB-Entry
1V4S). Yellow spheres correspond to structural localization of ten significant residue sites which are in contact with allosteric sites where V62, M210,
and Y215 are denoted as allosteric sites by themselves and they are also in contact with an other allosteric sites. Green spheres indicate eight
significant nsSNP positions in the GCK protein. Three of them (T209M, G223S and S453del) are further in contact with allosteric sites M210, I211,
V452, V455 and A456.

Individual residue site comparison between
QCMF-significant sites and previous CMF-significant sites
We compared QCMF-significant residue sites for both
human EGFR and GCK proteins with the significant
residue sites given in [5] of the previous CMF-method.
The CMF-method detected for both human proteins, 43
sites in EGFR and 72 sites in GCK as significant.
For the EGFR protein we found that the QCMF-

significant residue sites Q791, Q820, G824, K860, Y891,
T892, Y900, T909 overlap with results of the CMF-
method. Interestingly, one of the unconfirmed residue
sites, the Q820, has been predicted by both QCMF-
method and CMF-method as significant.
For GCK protein, we observed that in total 24 QCMF-

significant sites (T60, T82, N83, F123, F148, T149, F152,
H156, F171, N180, T206, T209, T228, E236, G260, L271,
S281, N283, Q287, G294, E300, T332, F419 and E443)
were also determined by the CMF-method as signifi-
cant. Although both methods detected residue site N283

as significant, it corresponds to one of the unconfirmed
residue sites for GCK, currently.
The CMF has been developed using normalized mutual

information (MI) measures in order to detect important
residue positions inMSAs. Themethodmainly focuses on
significant BLOSUM62-dissimilar amino acid signals as
a model of compensatory mutations and integrates them
in the calculation of normalized MI-metrics. As a con-
sequence of mainly taking into account dissimilar amino
acid signals, an important part of CMF-significant sites
were verified as disease associated nsSNP positions and
just a small part of them were located at or near the
catalytic sites, allosteric sites and binding sites in both
proteins.
Moreover, when statistically evaluating both meth-

ods, we have observed that the QCMF significantly
outperforms the QCMF-method. The QCMF reaches
an improved performance in identifying essential sites
from MSAs of both proteins with a significantly higher
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Figure 4 QCMF-significant residue positions are in contact with glucose binding site in human GCK protein (PDB-Entry 1V4S). (A) Red
spheres show the structural positions of the glucose binding sites (active sites) and yellow spheres show the localization of significant adjacent
residue positions found by QCMF which are in contact with these active sites. The circles indicate clusters of glucose binding sites and their
significant adjacent sites.

Matthews correlation coefficient (MCC) value of 0.215
whereas the CMF reaches only a MCC value of 0.133.

Significant residue pair comparison
To analyze whether the quantum-information-theory-
based measures proposed in this study complements the
coventional methods for the detection of correlated (co-
evolutionary) mutations, we made pairwise comparisons
between our new QCMF, MIp [6], PSICOV [18], and
CMF [5].
All four methods take as input an MSA satisfying cer-

tain admissibility criteria. The problem is that QCMF
and CMF output the set of QCMF-significant sites and
CMF-significant sites of M’s reference protein, respec-
tively, whereas PSICOV and MIp result in sets of impor-
tant residue pairs. To make these outputs comparable, we
extend them in all cases.
Let VQCMF denote the output of QCMF on any admissi-

bleMSAM. We extend this set to what we call the QCMF-
significant residue network NQCMF := (

VQCMF, EQCMF
)

of M as follows. Any two elements of VQCMF are

connected by an undirected edge belonging to EQCMF
if and only if the corresponding column pair is QCMF-
significant.
The CMF-significant residue network NCMF is analo-

gously defined.
In order to get a sufficiently large number MIp-

significant and PSICOV-significant residue pairs, for
every input MSA we simply took the top-ranking
10% as MIp-significant and PSICOV-significant,
respectively.
We then utilized the connectivity degree technique in

the same way as we did for CMF and QCMF to calcu-
late the set of MIp-significant sites VMIp and the set of
PSICOV-significant sites VPSICOV.
For all four methods we used the 90th, the 95th and the

99th percentile as cut-off values.
Finally, the edge sets EMIp and EPSICOV were deter-

mined by full analogy with the calculation of EQCMF and
ECMF. Thus we obtained the MIp-significant residue net-
work NMIp and the PSICOV-significant residue network
NPSICOV.
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Table 2 QCMF-significant essential sites in the human GCK
protein, which are nearby either nsSNPs or strictly
conserved sites

QCMF-significant Nearby nsSNPs or strictly Reference
essential sites conserved sites

M37 36s , 39s , 40s [38,39,43,51]

S76 147c

L79 78c , 80c , 150c -

T82 81c -

N83 81c , 108s , 110s [43,51]

V86 85c , 106s [38]

S127 130s [40]

F148 147c , 150c,s [38,39,43,51]

F152 150c,s , 151c [39,43,51]

P153 154s [39]

H156 154s [39]

A176 119s , 175s [43]

G178 164c

N180 162s , 182s [38,39,43],

L185 182s , 188s [39,43,51]

A201 147c , 453c

M202 147c , 203s [43]

A232 223s , 231c [39,40,51]

C233 223s , 234c , 235c [39,40,51]

V253 234c , 254c

F260 257s , 258c , 259s , 261s [39,43]

L271 274c

V277 274c , 278c , 279s [43]

S281 278c , 279s [43]

Y297 291c , 295c , 299c , 300s [43]

M298 295c , 299c , 300s [43]

T332 295c , 299c

V374 377c

A378 377c , 382s [43]

A379 377c , 382s [43]

S383 382s , 385s [43]

A384 382s , 385s [43]

A387 385s [43]

S388 385s , 392s [38,43]

V412 226s , 227c , 410c , 414s , 416s [40,43]

F419 416s [40]

E443 444c , 445c , 447s [39]

G446 444c , 445c , 447s , 448c , 449c [39]

s : non-synonymous snp site, c : strictly conserved site.

We performed the method comparison edge-
oriented, with the number of overlapping edges as
measure. We applied all four methods to the 153
MSAs (see Additional files 1) described at the very
beginning of this section and calculated the numbers∣∣∣E (i)

QCMF

∣∣∣, ∣∣∣E (i)
CMF

∣∣∣, ∣∣∣E (i)
PSICOV

∣∣∣, ∣∣∣E (i)
MIp

∣∣∣, ∣∣∣E (i)
QCMF ∩ E (i)

MIp

∣∣∣,∣∣∣E (i)
QCMF ∩ E (i)

PSICOV

∣∣∣, ∣∣∣E (i)
QCMF ∩ E (i)

CMF

∣∣∣, ∣∣∣E (i)
MIp ∩ E (i)

PSICOV

∣∣∣,∣∣∣E (i)
MIp ∩ E (i)

CMF

∣∣∣ and
∣∣∣E (i)

PSICOV ∩ E (i)
CMF

∣∣∣ on each of them,
where the connectivity cut-off ranges over the 90th,
the 95th and the 99th percentile, and i = 1, 2, . . . , 153.
Summing up the 153 numbers in each of these groups
results in the numbers

∑153
i=1

∣∣∣E (i)
QCMF

∣∣∣, ∑153
i=1

∣∣∣E (i)
CMF

∣∣∣,∑153
i=1

∣∣∣E (i)
PSICOV

∣∣∣, ∑153
i=1

∣∣∣E (i)
MIp

∣∣∣, ∑153
i=1

∣∣∣E (i)
QCMF ∩ E (i)

MIp

∣∣∣,∑153
i=1

∣∣∣E (i)
QCMF ∩ E (i)

PSICOV

∣∣∣, ∑153
i=1

∣∣∣E (i)
QCMF ∩ E (i)

CMF

∣∣∣,∑153
i=1

∣∣∣E (i)
MIp ∩ E (i)

PSICOV

∣∣∣, ∑153
i=1

∣∣∣E (i)
MIp ∩ E (i)

CMF

∣∣∣ and∑153
i=1

∣∣∣E (i)
PSICOV ∩ E (i)

CMF

∣∣∣, which are displayed in Tables 3
and 4.
Table 3 shows that all methods detect with the same

connectivity degree cut-off a comparable number of edges
in the corresponding significant residue network.
Table 4 highly suggests that all four methods carry

distinct information. The overlap between any two of
them is less than or equal to 10%. This indicates that,
under the assumption that each of themmodels important
aspects of co-evolution, they complement each other per-
fectly. In particular, this is true for QCMF as a quantum-
information-science-based service compared with the
other three established tools that are based on conven-
tional methods.

Implementation of QCMF: Parallel computing using CUDA
The computation of both QCMF metrics (Equations 7
and 8) is strongly based on matrix operations. Therefore,
we implement QCMF algorithm using CUDA [25] which
is very suitable to perform large number of vector and
matrix operations in real time. This results in a dramatic
reduction of computational time of QCMF.
In this study, we use the CUDA 4.0 architecture

(Toolkit) with several linear algebra libraries such as
MAGMA [52], LAPACK [53], BLAS [54], GotoBLAS [55],
CUBLAS [25] together (see Figure 5) to speed up the run-
ning time of the QCMF algorithm. Since our program
requires a cooperative multi threading to not fall in any
asynchronicity or locks we extended the magma library
with dynamic scheduling features according to [56]. Fur-
ther, in order to be able to compare the performance, we
also implemented the QCMF algorithm onto CPU archi-
tecture alone. Both implementations were performed on
an Intel Core™ i7-3770K Processor operating at 3.9GHz,
with 16 GB of DDR3 RAM and a GeForce GTX 680
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Table 3 Total number of edges in method-dependent significant residue networks with respect to various connectivity
degree cut-offs

Total number of edges in significant residue networks

Connectivy degree cut-off 90%th percentile 95%th percentile 99%th percentile∑153
i=1

∣∣∣E(i)
QCMF

∣∣∣ 82561 20411 435∑153
i=1

∣∣∣E(i)
MIp

∣∣∣ 90636 24094 1454∑153
i=1

∣∣∣E(i)
PSICOV

∣∣∣ 80489 21596 1088∑153
i=1

∣∣∣E(i)
CMF

∣∣∣ 87208 23893 936

graphics card using the Ubuntu 13.04 operating system
(64-bit version).
Applying the QCMF algorithm for human EGFR pro-

tein with CPU alone and with CUDA acceleration, the
average computational time of a column pair was 0.7117
seconds and 0.0301 seconds, respectively. Similarly, for
human GCK protein, the average computational time of
a column pair was 0.6977 seconds with CPU alone and
0.0299 seconds with CUDA acceleration. Consequently,
the algorithm took ∼ 310 minutes for human EGFR pro-
tein and ∼ 811 minutes for GCK protein with CPU alone.
On the other hand, applying the CUDA acceleration it
took only ∼ 13 minutes for EGFR and ∼ 39 minutes for
GCK protein. The comparison between the average times
indicates that the required computational time of QCM-
Falgorithm with the CUDA acceleration was significantly
faster than with CPU alone (approximately more than 23
times faster).

Methods
We predict important sites of a protein by detect-
ing co-evolving residues. Our measures of co-evolution
are quantum-Jensen-Shannon-divergence-based metrics
of column pairs of amultiple sequence alignment, with the
protein under study being the reference row. The quantum
Jensen-Shannon divergence in turn has the von Neumann
entropy as main building block.
The von Neumann entropy was originally defined in the

framework of quantum mechanics. We elucidate it in the
subsequent section as far as it is necessary to understand

our methods. Researchers interested in learning more are
referred to the excellent textbook due to Vedral [57]. A
comprehensive reference book was published by Nielsen
and Chuang [58].
This section is organized as follows. In the first four

subsections we recapitulate techniques developed in [5]
which we leverage in this study. This concerns the defini-
tion of significant site pairs and of significant individual
sites, the preparation of the training data set used, and the
computation of a doubly stochastic matrixD as our model
of compensatory mutations on grounds of two counting
matrices Calt and Cnull. These two matrices also form the
basis of the two amino acid pair similarity matrices Aent
and Asep, which in turn give rise to our new quantum-
information-science-based metrics Qent and Qsep. The
last four subsection are dedicated to their definitions.

Significant column pairs and significant position with
respect to a certain metric
Let M be an MSA, where the protein of interest is rep-
resented by M’s first row, and let E be a metric which
assigns to every MSA column pair (γ1, γ2) a real num-
ber E (γ1, γ2) ∈[ 0, 1]. We call E a co-evolutionary col-
umn pair metric if it models a biologically meaningful
co-evolutionary signal: The larger the metric value on
(γ1, γ2), the more likely co-evolution between position γ1
and position γ2 has occurred.
Let p̂(i,j) be the empirical relative amino acid pair fre-

quency of the i-th and the j-th amino acid in column pair
(γ1, γ2), where i, j = 1, 2, . . . , 20. (When choosing a row of

Table 4 Total number of edges in two networks of different type with respect to various connectivity degree cut-offs

Total number of common edges in two networks of different type

Connectivy degree cut-off 90%th percentile 95%th percentile 99%th percentile∑153
i=1

∣∣∣E(i)
QCMF ∩ E(i)

MIp

∣∣∣ 898 77 0∑153
i=1

∣∣∣E(i)
QCMF ∩ E(i)

PSICOV

∣∣∣ 735 64 0∑153
i=1

∣∣∣E(i)
QCMF ∩ E(i)

CMF

∣∣∣ 4036 474 1∑153
i=1

∣∣∣E(i)
MIp ∩ E(i)

PSICOV

∣∣∣ 9094 1488 11∑153
i=1

∣∣∣E(i)
MIp ∩ E(i)

CMF

∣∣∣ 3343 474 6∑153
i=1

∣∣∣E(i)
PSICOV ∩ E(i)

CMF

∣∣∣ 2618 368 2
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Figure 5 Linking of the CUDA environment using C++.

this column pair by pure chance, acid pair (i, j) is drawn
with probability p̂(i,j).) In the subsequent subsection we
recapitulate the way developed in [5] to identify significant
columns and significant column pairs with respect to E.
A well-studied example (see [5,12]) of a co-evolutionary

column pair metric is the normalized mutual information

U(γ1, γ2) := 2 · H(γ1) + H(γ2) − H(γ1, γ2)
H(γ2 + Hγ2)

, (1)

where H(γ1, γ2), H(γ1), and H(γ2) denote the Shannon
entropy of the empirical pair distribution

(̂
p(i,j)

)
i,j=1,2,...,20

of the column pair (γ1, γ2) and its two marginals.
In order to identify significant column pairs of the MSA

under study with respect to the metric E, in [5] we have
pointed out, that the distribution of E can be regarded as
a mixture of a background β-distribution F0, an unrelated
pair distribution G1, and a distribution G2 of presumably
co-evolving pairs.
The p-values 1 − F0 (E) are then uniformly dis-

tributed over [0, 1] given the underlying E-values are
F0-distributed. In contrast, p-values tend to zero or one,
if E-values are G2-distributed or G1-distributed, respec-
tively.
If, moreover, there is a sub-interval of [0, 1] which con-

tains only data from the background distribution, on
grounds of a result due to Storey and Tibshirani [59,60]
we determined in [5] an MSA-dependent threshold for E-
values. A column pair is said to be (E,M)-significant, if its
E-value is above the threshold, where the false discovery
rate is bounded by a predefined constant.

Figure 6 is a typical pictorial representation of met-
ric distributions which can be treated that way to detect
significant pairs.
We applied that model in this study.
We utilized the connectivity degree technique, intro-

duced in [12] and developed further in [5], in order
to define the (E,M)-significance of individual residue
sites. The connectivity degree of a position γ1 is the
number of positions γ2 so that the site pair (γ1, γ2) is
(E,M)-significant. A site of the protein of interest is then
called (E,M)-significant, if its connectivity degree cut-off
exceeds the 90-th percentile.

Training data set and pre-processing
Following [5], a redundancy free set of more than 35000
protein structures is our starting point. This collection
was compiled in Rainer Merkl’s Lab at the University of
Regensburg. The protein structures were taken from the
protein data base (http://www.pdb.org/). The PISCES ser-
vices [61] was applied to assess proteins on sequence
similarity and equality of 3D-data. The relatedMSAs were
gathered from the HSSP data base (http://swift.cmbi.ru.
nl/gv/hssp/).
Taking pattern from [12], we filtered every MSA

obtained as follows. First, highly similar and dissimi-
lar sequences were deleted to ensure that the sequence
identity between any two sequences is at least 20%
and no more than 90%. Second, we removed strictly
conserved residue columns, where the percentage of
identical residues is greater than 95%. Third, we elimi-
nated the residue columns which contain more than 25%
gaps. Finally, we discarded all MSAs with less than 125
sequences. More than 17000 MSAs survived the last fil-
tering step. We used approximately 1700 MSAs published
in [5] as our training data set which we randomly chose
from this set.

Setting up the counting matrices Calt and Cnull
The entries of the two matrices are frequencies of
pair substitutions calculated from our training data set
described in the foregoing subsection. Informally spoken,
matrix Calt models the signal, whereas Cnull reflects the
background.
In line with [5], we calculated a signal and a null set

of column pairs. The signal set consists of all (U ,M)-
significant column pairs, whereM ranges over all training
MSA. The null set consists of sufficiently many column
pairs randomly chosen from every trainingMSA. For both
the signal set and the null set we computed a symmet-
ric 400 × 400 integer-valued matrix of frequencies of pair
substitutions Calt and Cnull. To this end, the method used
to compute BLOSUM62 matrices [62] is applied to count
residue pair substitutions in MSA column pairs rather
than residue substitution in columns.

http://www.pdb.org/
http://swift.cmbi.ru.nl/gv/hssp/
http://swift.cmbi.ru.nl/gv/hssp/
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Figure 6 p-value distributions ofQent andQsep-values for human EGFR protein (PDB-Entry 2J6M). The blue bars illustrate the p-value
distribution of theQent-values and red bars display the p-value distribution of theQsep-values.

Computing a doubly stochastic matrix D
According to [5], a pair

(
(ai, aj), (ak , al)

)
of amino acid

pairs is said to be a formal dissimilar compensatory muta-
tion, if the BLOSUM62 score both of (ai, ak) and (aj, al) is
negative.
Using Calt and Cnull, we define the matrix CCompMut by

CCompMut
(
(ai, aj), (ak , al)

)
:=

{
Calt

(
(ai, aj), (ak , al)

)
if ϕCompMut

(
(ai, aj), (ak , al)

) = 1;
0 otherwise;

where ϕCompMut
(
(ai, aj), (ak , al)

) = 1 if and only if either
(ai, aj) = (ak , al) or

(
(ai, aj), (ak , al)

)
is a formal dissimilar

compensatory mutation and

Calt
(
(ai, aj), (ak , al)

)∑
i′,j′,k′,l′ Calt

(
(ai′ , aj′), (ak′ , al′)

)
>

Cnull
(
(ai, aj), (ak , al)

)∑
i′,j′,k′,l′ Cnull

(
(ai′ , aj′), (ak′ , al′)

) .
By normalizing CCompMut, we obtain a symmetric

matrix PCompMut. For ai, aj, ak , al ranging over all amino
acids, PCompMut

(
(ai, aj), (ak , al)

)
represents an empirical

probability distribution on pairs of amino acid pairs.

We then calculated the symmetric 400 × 400-matrix

SCompMut :=
(
log

PCompMut
(
(ai, aj), (ak , al)

)
PbCompMut

(
ai, aj

)
PbCompMut (ak , al)

)
(ai ,aj),(ak ,al)

,

where PbCompMut
(
ai, aj

)
is the marginal distribution of

PCompMut.
Having set all negative entries of SCompMut to zero, the

doubly stochastic matrix D is computed by means of the
canonical iterated row-column normalization procedure
[63].
The doubly stochastic D is used to linearly transform

empirical amino acid pair distributions of column pairs.
If the pair distribution is regarded as a 400-dimensional
row vector, matrix D is multiplied from the right. If then,
for example, the resulting distribution is plugged into
Equation 1, column pairs containing formal dissimilar
compensatory mutations the D-transition probability of
which is relatively large tend to be up-scaled.

The idea of the subsequent subsections is to design a
model of MSA column pairs that takes formal dissimilar
compensatory mutations regarded as pair dissimilarities
as well as pair similarities into account. The challenge is
to implement this in a way such that these two effects
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interfere but do not interact. This is necessary since a sim-
ilarity relation is transitive, whereas a dissimilarity relation
is not.

Setting up the two countingmatrices Cent and Csep
We set up two significant pair substitution matrices Cent
and Csep from Calt and Cnull which form the basis of our
new metrics Qent and Qsep. The intuition behind Cent is
that the component-wise BLOSUM62-based pair similar-
ity is rescaled, whereas Csep leads to a new amino acid pair
similarity.

Cent
(
(ai, aj), (ak , al)

)
:=

{
Calt

(
(ai, aj), (ak , al)

)
if ϕent

(
(ai, aj), (ak , al)

)=1;
0 otherwise;

where ϕent
(
(ai, aj), (ak , al)

) = 1 if and only if either
(ai, aj) = (ak , al) or the following two conditions are sat-
isfied. First, the amino acids ai and ak as well as the amino
acids aj and al are BLOSUM62-similar. Second,

Calt
(
(ai, aj), (ak , al)

)∑
i′,j′,k′,l′ Calt

(
(ai′ , aj′), (ak′ , al′)

)
>

Cnull
(
(ai, aj), (ak , al)

)∑
i′,j′,k′,l′ Cnull

(
(ai′ , aj′), (ak′ , al′)

) . (2)

Csep
(
(ai, aj), (ak , al)

)
:=

{
Calt

(
(ai, aj), (ak , al)

)
if ϕsep

(
(ai, aj), (ak , al)

)=1;
0 otherwise;

where ϕsep
(
(ai, aj), (ak , al)

) = 1 if and only if either
(ai, aj) = (ak , al) or Equation 2 is satisfied.

Calculating the two amino acid pair similarity matrices
Aent andAsep

Recall that a matrix A is positive definite (positive semi-
definite), if there is an orthogonal matrix U (defining
property U−1 = UT ) such that U AUT is a diagonal
matrix, where the coefficients in the main diagonal are
strictly positive (non-negative).
Let us call a 400× 400-matrixA a amino acid pair simi-

larity matrix, ifA is positive definite and the entries in the
main diagonal are equal to 1, whereas the off-diagonal ele-
mentsA(g,h),(i,j) ((g, h) �= (i, j)) are greater than or equal to
0, but less than 1.
The entries of an amino acid pair similarity matrixA are

interpreted as follows. The closer A(g,h),(i,j) to 1, the more
similar are the amino acid pairs (g, h) and (i, j).
Let C be either Cent or Csep. We define

B(g,h),(i,j) :=
Cα

(g,h),(i,j)√∑20
ι,κ=1 C2α

(ι,κ),(i,j)

,

where
(
(g, h), (i, j)

)
ranges over all possible 160000 indices

of pairs of amino acid pairs including the main diagonal,
and α ∈ (0, 1) was set to 0.1 in order to enhance the effect
of similarity.
Because of the fact, that matrix B is not in any case

positive definite, we finally set

A := BTB, (3)

which is justified by the transitivity of similarity. That
way the amino acid similarity matrices Aent and Asep
are obtained from the counting matrices Cent and Csep,
respectively.
Amino acid pair similarity matrices generalize amino

acid similarity matrices used by Johansson et al. [24] for
evaluating amino acid conservation.

Modeling MSA column pairs and single columns by means
of density matrices
Let (γ1, γ2) be a column pair of a multiple sequence align-
ment, let

(̂
p(i,j)

)
i,j=1,2,...,20 be the empirical amino acid pair

distribution in these columns, let
(̂
q(i,j)

)
i,j=1,2,...,20 be the

linear transform of
(̂
p(i,j)

)
i,j=1,2,...,20 by the doubly stochas-

tic matrix D, and let A be an amino acid pair similarity
matrix.
Recall, that the trace of a matrix is the sum of its

coefficients in the main diagonal.
Taking pattern from quantum mechanics, we model

column pair (γ1, γ2) by a positive semi-definite 400×400-
matrix the trace of which is equal to 1, a so-called density
matrix. Regarding the two distributions

(̂
p(i,j)

)
i,j= 1,2,...,20

and
(̂
q(i,j)

)
i,j= 1,2,...,20 as 400 × 400-diagonal matrices the

main diagonal of which are formed by the probabili-
ties p̂(i,j) and q̂(i,j), respectively, we integrate the classical
model into the quantum-mechanics-based one.
Generalizing the approach for amino acid used in [24]

to amino acid pairs, our density matrices are of the shape

ρ (̂r,A) :=
(√̂

r(g,h)A(g,h),(i,j)
√̂
r(i,j)

)
g,h,i,j= 1,2,...,20

, (4)

where r̂(i,j) is either p̂(i,j) or q̂(i,j) (i, j = 1, 2, . . . , 20). Using
this denotation, the diagonal density matrices considered
in the preceding paragraph are equal to some ρ (̂r,1),
where 1 is the 400 × 400-identity matrix.
In this study, we regard individual MSA columns

only as components of column pairs. In the classical
case, where MSA-column pair (γ1, γ2) is modeled by an
MSA-dependent amino acid pair distribution r̂ (either(̂
p(i,j)

)
i,j= 1,2,...,20 or some derivative), the columns γ1 and

γ2 are represented by the corresponding marginals r̂1 and
r̂2 of r̂.
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In quantum information science, the counter part of the
marginals r̂1 and r̂2 of r̂ are the partial traces tr2(ρ) and
tr1(ρ) of ρ. They are 20 × 20 density matrices defined by

(tr1(ρ))ij :=
20∑
k=1

ρkkij (tr2(ρ))ij :=
20∑
k=1

ρijkk ,

where i, j = 1, 2 . . . , 20. As opposed to the indices of
the marginals, matrix tr1(ρ) models column γ2, whereas
matrix tr2(ρ) represents column γ1.

Defining our two newmetricsQent andQsep

To begin with, we define the von Neumann entropy
VNE(ρ) of a diagonal density matrix ρ as the Shannon
entropy of its main diagonal coefficients regarded as a
probability distribution.
The crucial property of a density matrix ρ is that

there exists an orthogonal matrix U such that UρUT is
a diagonal density matrix, where the diagonal elements
are uniquely determined up to their order. Thus we are
justified to finally define

VNE (ρ) := VNE
(
UρUT

)
, (5)

where U is an orthogonal matrix diagonalizing ρ in a way
just mentioned.
In principle, the following holds true. The larger

the off-diagonal coefficients of the similarity matrix A,
the smaller the von Neumann entropy of the density
matrix according to Equation 4 compared with the Shan-
non entropy of the probability distribution r̂(i,j) (i, j =
1, 2, . . . , 20).
In order to compare two density matrices ρ and σ of

the same dimension, we make use of the quantum Jensen-
Shannon divergence:

QJSD(ρ‖σ) :=VNE ((ρ + σ)/2)−(VNE(ρ)+VNE(σ )) /2.
(6)

It can be shown that 0 ≤ QJSD(ρ‖σ) ≤ 1, where 0 is
attained if and only if the two density matrices ρ and σ are
equal. As oppose to the case of Equation 1, we have thus
avoided a normalization.
We are now in a position to define our new two metrics

for a certain column pair of a given MSA. As before, the
amino acid pair distribution q̂ is given by p̂ ·D, where D is
the 400 × 400 doubly stochastic matrix described above,
p̂ is the empirical pair distribution of these two columns,
and 1 is the 400 × 400-identity matrix.
Then our first metric Qent is defined by

Qent := QJSD (ρ (̂q,Aent) ‖ρ (̂p,1)) (7)

(see Equation 4). This metric measures the difference
between a density matrix combining rescaled amino acid
pair similarity with dissimilar compensatory mutations
and the empirical amino acid pair distribution. The index

“ent” indicates that here we make use of quantum entan-
glement, which in turn is a major resource of quantum
information science. (Entangled 400 × 400-density matri-
ces are those that cannot be represented as a convex
combination of Kronecker products of 20 × 20-density
matrices. Note, that the Kronecker product of density
matrices is the analog of the classical product of probabil-
ity distributions).
Our second new metric Qsep is given by

Qsep := QJSD
(
tr1

(
ρ

(̂
p,Asep

)) ‖tr2
(
ρ

(̂
p,Asep

)))
.
(8)

The density operator ρ
(̂
p,Asep

)
is entangled. How-

ever, before finally calculating the metric, we separate
the columns of the pair by applying the two partial trace
operators.
Using the example of the human EGFR protein (PDB-

Entry 2J6M), Figure 6 illustrates that the method we
developed in [5] to determine significant column pairs is
well-applicable for both Qent and Qsep. The results pre-
sented in this work prove that Qent as well as Qsep are
powerful co-evolutionary column pair metrics.

Discussion
Grosse et al. observed in [64] that the Jensen-Shannon
divergence (JSD) can be interpreted as mutual informa-
tion between two (or more) random sources in a special
setting particularly appropriate to discriminate between
these sources. This is what we need when it comes
to predicting important protein sites in an MSA-based
approach. It might explain the findings of Capra and Singh
[22] on the predictive power of JSD. These two arti-
cles encouraged us to utilize quantum Jensen-Shannon
divergence (QJSD) in this study. As a side effect, a normal-
ization is not necessary, since quantum Jensen-Shannon
divergence, like its classical counterpart, ranges over the
real interval [0, 1].
Several studies have confirmed the fact that detecting

coupled MSA-columns is extremely useful in the predic-
tion of important protein sites (see e.g. [4-6,10-13,65-70]).
When using information-theoretic metrics, there is no
doubt that it is reasonable to incorporate amino acid pair
dissimilarity as well as amino acid similarity in a consistent
way such that similarity decreases entropy, whereas dis-
similarity increases it. This kind of consistency is impor-
tant, since entropy is the fundamental building block for
most of those metrics. In particular, the Jensen-Shannon
divergence between two probabilitymass functions (pmfs)
p and q equals H(1/2(p + q)) − 1/2(H(p) + H(q)).
In [5] an amino acid pair dissimilarity model for com-

pensatory mutations is presented. A doubly stochastic
matrix transforms the empirical amino acid pair distribu-
tion of a column pair.
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Rescaled pair similarity of BLOSUM62-similar pairs
is to capture an aspect of coupled MSA column pairs
orthogonal to the phenomenon of dissimilar compen-
satory mutations. It models the amino acid pair transition
preferences within those column pairs on the average.
As suggested by Caffrey et al. [23] as well as Johansson
et al. [24], it is promising to incorporate them within the
framework of quantum information theory. Therein, den-
sity matrices replace pmfs. The counterpart of the entropy
of a pmf is the von Neumann entropy (VNE) of a density
matrix (see Equation 5). QJSD corresponds then exactly to
JSD (see Equation 6).
The challenge was to complement the model presented

in [5] by additionally incorporating amino acid pair sim-
ilarity in a way that the two effects interfere but do not
interact. We model an MSA column pair by means of a
400 × 400-density matrix, rather than amino acid pair
distributions. This provides us with the opportunity to
utilize the notion of entanglement, which in turn is a
major resource of quantum information. In our model,
partial traces play the role of the marginals in the classi-
cal case. Pair similarity is reflected by means of positive
definite pair similarity matrices (see Equation 3), where
positive definiteness, which is a key property of density
matrices, can only be ensured by using transitivity of simi-
larity. Since there is no transitivity of dissimilarity, we kept
dissimilarity apart from that similarity matrix. Instead, we
carried over the CMF dissimilarity model of [5]. Similarity
matrix and transformed amino acid pair distribution are
joined together by means of Equation 4 in the final step
of our density matrix design. That way we minimize the
interaction between the two effects of dissimilarity and
similarity.
In order to eliminate the noise and to define an MSA-

dependent threshold for significant column pairs, we fol-
lowed the line of [5]. The model presented there seems
to be of universal applicability. The same is true for the
connectivity degree model introduced in [12] and further
developed in [5]. Combining them results in a reliable and
robust method to determine significant residues.
The results we present in this study show that the vast

majority of QCMF-significant residue sites are closely
related to functionality and structural stability of both
human EGFR and GCK proteins. 10 significant residue
sites in EGFR and 19 significant sites in GCK are estab-
lished as functionally important since they are directly
located at or close to catalytic sites, allosteric sites and
binding sites which are crucial for maintaining protein
functions and for understanding the underlyingmolecular
mechanism (see Figures 1,2,3,4). Additionally, 2 signifi-
cant sites in EGFR and 8 significant sites in GCK (three
of them are also in contact with allosteric sites in GCK)
are related to disease associated nsSNP regions of both
proteins. As has been noted in [5], most disease-causing

mutations at these positions in corresponding sequences
destroy structural features of proteins, thus affecting pro-
tein stability and often results in loss of protein function.
Although the importance of almost all QCMF-

significant sites are verified through essential sites of
both human proteins, there are still eight and two uncon-
firmed significant sites in EGFR and GCK proteins,
respectively, which do not fall into essential sites. It is
interesting to note that some of these unconfirmed sites
are also referred as significant by CMF [5]. We therefore
believe that most of these unconfirmed sites identified
by our present method may have an importance for the
function and structural stability of both proteins notwith-
standing the absence of previous experimental data. A
further comparison reveals that the overlaps between
the results of the QCMF method and the CMF method
are quite low, indicating that both methods detect con-
siderably different sets of residue sites as functionally
and structurally important. The comparison results
clearly show that considering similar and dissimilar
amino acid signals simultaneously, our present method
is more sensible to catalytic, allosteric and binding sites,
while only focusing on dissimilar signals the previ-
ous method deals successfully with nsSNP positions in
proteins.
The final comparison between QCMF and CMF on

EGFR and GCK proteins is made by inspecting several
connectivity degree cut-offs. We initially set it to the 90-
th percentile at which CMF reaches its maximal MCC
value. Going through all possible n-th percentiles for n =
80, 81, . . . , 99, QCMF reaches its maximal MCC value of
0.231 if n = 88. What we got can be summarized as
follows. On the one hand QCMF shows a better perfor-
mance than CMF in identifying important residue sites.
On the other hand QCMF complements CMF. This is
because of the fact that the method of QCMF is more
information rich than that of CMF. QCMF simultane-
ously uses similar and dissimilar amino acid pair signals,
whereas CMF’s method focuses only on amino acid pair
dissimilarity.
To confirm the educated guess that QCMF comple-

ments conventional methods both from information the-
ory and statistics, we applied QCMF, CMF [5], MIp [6]
and PSICOV [18] to the 153MSAs described at the begin-
ning of the Results section. In sum, each of these methods
detects different residue pairs as important, where the
pairwise overlap is bounded from above by 10%. The rea-
son for that is that the four methods model different
aspects of amino acid pair co-evolution. Consequently,
they carry distinct information.
To further improve the specificity of QCMF it is promis-

ing to combine its quantum-information-theory-based
framework with the direct pair distribution derived in
DCA (see e.g. [15] or [16]).
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Conclusions
In this work, we report a new method, QCMF, apply-
ing principles of quantum information theory. In contrast
to the previous method CMF which focused on dissim-
ilar amino acid signals, QCMF simultaneously models
similar and dissimilar amino acid pair signals in the detec-
tion of functionally or structurally important sites. QCMF
includes two metrics based on quantum Jensen-Shannon
divergence. While the first metric measures compen-
satory mutations between pairs of columns, the second
metric considers the sequence conservation of columns.
Results show that QCMF reaches an improved perfor-
mance in identifying important sites from MSAs and it
predicts a quite different set of residue sites as functionally
and structurally important (in comparison to the previ-
ous method). Further, results indicate that the residue
sites found by QCMF are more sensible to catalytic sites,
allosteric sites and binding sites than those found by the
previous method. On the top of that, a pairwise compar-
ison with existing methods shows that QCMF is comple-
mentary to them when it comes to predicting co-evolving
residue site pairs.
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