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Multi-TGDR, a multi-class regularization method,
identifies the metabolic profiles of hepatocellular
carcinoma and cirrhosis infected with hepatitis B
or hepatitis C virus
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Abstract

Background: Over the last decade, metabolomics has evolved into a mainstream enterprise utilized by many
laboratories globally. Like other “omics” data, metabolomics data has the characteristics of a smaller sample size
compared to the number of features evaluated. Thus the selection of an optimal subset of features with a
supervised classifier is imperative. We extended an existing feature selection algorithm, threshold gradient descent
regularization (TGDR), to handle multi-class classification of “omics” data, and proposed two such extensions referred
to as multi-TGDR. Both multi-TGDR frameworks were used to analyze a metabolomics dataset that compares the
metabolic profiles of hepatocellular carcinoma (HCC) infected with hepatitis B (HBV) or C virus (HCV) with that of
cirrhosis induced by HBV/HCV infection; the goal was to improve early-stage diagnosis of HCC.

Results: We applied two multi-TGDR frameworks to the HCC metabolomics data that determined TGDR thresholds
either globally across classes, or locally for each class. Multi-TGDR global model selected 45 metabolites with a 0%
misclassification rate (the error rate on the training data) and had a 3.82% 5-fold cross-validation (CV-5) predictive
error rate. Multi-TGDR local selected 48 metabolites with a 0% misclassification rate and a 5.34% CV-5 error rate.

Conclusions: One important advantage of multi-TGDR local is that it allows inference for determining which feature
is related specifically to the class/classes. Thus, we recommend multi-TGDR local be used because it has similar
predictive performance and requires the same computing time as multi-TGDR global, but may provide class-specific
inference.

Keywords: Threshold gradient descent regularization (TGDR), Multi-class classification, Metabolic profile,
Hepatocellular carcinoma (HCC), Feature selection, Metabolomics, Omics data
Background
Feature selection algorithms, which select a subset of
the most relevant features for the underlying data min-
ing tasks, are commonly used in combination with clas-
sifier construction to analyze “omics” data or data with
high-dimensional input variables. The benefits of feature
selection include minimizing model over-fitting, improved
predictive performance, and computational efficiency. It
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may also provide insights on potential targets that relate
to the fundamental differences among different classes or
subtypes of a biological process [1]. Threshold Gradient
Descent Regularization (TGDR) [2], one such algorithms,
has been explored and implemented by us [3-5] exten-
sively because it possesses several key advantages, as de-
scribed in our previous paper [4].
Currently, multi-class classification, where an observa-

tion needs to be categorized into more than two classes,
has attracted increasing attention in the statistics and
bioinformatics literatures [6-10]. Its popularity may be
attributed to the fact that multi-class classification is
commonly encountered in real-world applications. For
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example, multiple classes can represent different tumor
types or different responses to a therapy. According to
Li et al. [6], multi-class classification can be roughly di-
vided into two types. One type includes classification
algorithms that can be directly extended to handle multi-
class cases, and the other type includes algorithms that
arise from the decomposition of multi-class problems into
a series of binary ones.
While a series of binary TGDRs can be easily con-

structed to accomplish multi-class classification, it is more
desirable to extend TGDR directly to the multi-class cases
since this approach results in a substantial decrease of the
number of classifiers being trained. The major technical
difficulty associated with such extension of TGDR in-
volves defining an overall threshold for a feature across
different classes, which is not addressed in the original
TGDR framework [2,11]. In our previous work [4], we in-
troduced one approach, referred to as multi-TGDR, for
determining the threshold function. We applied the pro-
posed multi-TGDR framework to two real-world data
conducted on the Affymetrix HG-U133 Plus 2 platform
and demonstrated that multi-TGDR was superior in terms
of predictive accuracy and parsimony compared to its bin-
ary counterparts (i.e., one-versus-another schema). In this
paper, we propose a more general method to determine
the threshold function, which allows the threshold func-
tion to be class-specific.
Metabolomics is the “…systematic study of the unique

chemical fingerprints that specific cellular processes leave
behind” [12]. Over the last decade, metabolomics has
evolved into a mainstream scientific approach practiced
by many laboratories globally. The information conveyed
in metabolomics data can provide insight for a variety of
applications such as biomarker identification, clinical toxi-
cology, and drug discovery and development [13]. Like
other “omics” data, metabolomics data typically has the
characteristics of a smaller sample size compared to the
number of features (usually hundreds of metabolites after
peak alignment). Therefore, it is crucial to implement
feature selection. However, metabolomics data analysis is
less standardized compared to other “omics” data analysis
(e.g., microarray and Next-Generation Sequencing [NGS])
due to its complexity. Consequently, many of the existing
feature selection algorithms have not been explored and
implemented in metabolomics data analyses. Only a few
algorithms have been proposed to specifically analyze
mass spectrometry (MS) data [14]. Reviews on feature se-
lection algorithms that may be used in metabolomics data
analyses have been reported [1,15].
Partial Least Square-Discrimination Analysis (PLS-DA)

is a very popular multivariate analysis tool, which is com-
monly used in metabolomics data analyses to identify in-
formative metabolites for many distinct purposes, such as
the diagnosis or prognosis of a disease [16-19]. Notably,
the success of the stand-alone software SIMCAP (www.
umetrics.com) boosts the prevalence applications of PLS-
DA in metabolomics data analyses. As a supervised
method, PLS-DA rotates the Principal Component Ana-
lysis (PCA) components by using the class membership
information to achieve a better separation between the
classes of samples. Similar to PCA, the results from
PLS-DA are based on some linear combinations of all
metabolites or at least the linear combinations of the se-
lected metabolites by naively leaving out the metabolites
with small variable influence on the projection (VIP, which
is a weighted sum of PLS loadings). This approach not only
lacks readily biological interpretation, but also does not
provide valid statistics that can be used to evaluate its pre-
dictive performance. To obtain such statistics, an extra clas-
sifier is desirable in PLS-DA. For example, the study by
Student and Fujarewicz [10] obtained the accuracy of PLS-
DA by implementing an additional support vector machine
(SVM) classifier. Furthermore, absence of predictive rules
in PLS-DA makes the results of PLS-DA less practical. This
is because in clinical practice, physicians would prefer to a
score (e.g., posterior probabilities) to quantify a patient’s
status. Therefore, an explicit predictive rule is essential for
metabolomics to become a diagnostic tool.
In this paper, we investigate the use of two multi-TGDR

approaches to analyze mass spectrometry metabolomics
data. Hepatocellular carcinoma (HCC) is the most common
type of liver cancer. Most cases of HCC are secondary to ei-
ther a viral hepatitis (hepatitis B or C) or cirrhosis [20].
Currently, the gold standards for diagnosis (e.g., ultrasonog-
raphy and alpha-fetoprotein [AFP]) have been reported to
lack satisfactory sensitivity and specificity for identifying
HCC at early stages [21,22]. Since metabolomics can moni-
tor the changes in small molecular comprehensively and
provide insight on metabolic deregulations systematically
[23,24], researchers are employing metabolomics tech-
niques to elucidate the difference between HCC and cirrho-
sis [19]. The identification of metabolic profiles for HCC/
cirrhosis infected with HBV or HVC may help discriminate
between HCC/cirrhosis/normal classes and achieve accur-
ate diagnosis of HCC at early stages. Moreover, the ana-
lyses presented in this paper also provide motivation for
developing feature selection algorithms specifically for
metabolomics data, and for the applications of existing
algorithms to metabolomics data.

Methods
The experimental data
The study included 30 patients with cirrhotic liver disease
(22 infected with HBV and 8 with HCV, respectively), 70
patient with HCC (39 with HBV infection and 31 with
HCV infection), and 31 healthy volunteers recruited in the
metabolic profiling study. All of them provided the written
informed consent, and the ethics committee of the Jilin
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University approved upon this study. Detailed descriptions
on the study design, experimental procedures, and LC-MS
metabolomics data collections were reported in [19].

Pre-processing procedures
Raw data were imported into Databridge (Waters, U.K.) for
data format transformation. The resulting NeTCDF files
were imported into XCMS software for the peak extraction
and alignment. Then the peaks including 384 metabolites
(indexed by the combination of m/z and retention time,
and their corresponding peak intensities) and 131 samples
were exported to an Excel file. The peak intensity values
were log transformed so that the distribution of the trans-
formed intensity values for each metabolite was approxi-
mately normal. Zeros (corresponding to no peaks) in peak
intensity, were replaced by a nominal value (i.e., 0.01) be-
fore log transformation, to avoid the creation of missing
values. Several other values for replacing zero values (i.e.,
0.001, 0.005, 0.02, 0.05) were examined to evaluate if differ-
ent nominal values would affect the results, and no differ-
ence was found. Finally, peak intensity values were further
centralized and normalized to have a mean of 0 and a vari-
ance of 1. The resulting matrix was used in the two multi-
TGDR frameworks for the classification analysis.
Compounds identification was achieved by comparing

the accurate mass of compounds from the Human Me-
tabolome Database: HMDB version 3 (www.hmdb.ca).

Methods
Here, we omit the description of binary TGDR. Inter-
ested readers may refer to the original papers [2,11] for
the detailed descriptions on binary TGDR. We present
two multi-class TGDR frameworks with emphasis on the
specific modifications made on the overall threshold
functions to handle the multi-class problem.

Extension to multi-class classification
In the multi-class cases, we have a set of C-1 binary vari-
ables Yci , which are the indicators for class c on subject i
(i = 1,…,n, here n is the total number of subjects) i.e., Yci is
equal 1 if the ith subject belongs to class c and zero other-
wise. C is the number of classes (C ≥ 3) and X1,…,Xn repre-
sents the feature values of one specific subject. Notably, Xi

is a vector of length G and thus X is an n×G matrix with
Xij for the corresponding intensity values of feature j (j =
1,…,G) on subject i. The log-likelihood function is defined as,

R βð Þ ¼
Xn
i¼1

 XC−1
c¼1

Y ci βc0 þ βcXi
T

� �
− log

1þ
XC−1
c¼1

exp βc0 þ βcXi
T

� � !!
ð1Þ
βc0s (c = 1,…,C-1) are unknown intercepts which are
not subject to regularization. βc = (βc1,…, βcG) are the
corresponding coefficients for the expression values of
metabolites under consideration. In an ‘omics’ experi-
ment, most of those betas are assumed to be zeros, im-
plying the corresponding features are non-informative in
explaining the difference across different classes. In the
multi-class cases, the threshold functions of every fea-
ture (i.e., metabolites in our application) in TGDR need
to be redefined across classes. In previous work [4], we
proposed an extension of TGDR as described below.

Method 1
Denote Δv as the small positive increment (e.g., 0.01) in
ordinary gradient descent search and vk = k×Δv as the
index for the point along the parameter path after k
steps. Let β(vk) denote the parameter estimate of β cor-
responding to vk. For a fixed threshold 0 ≤τ≤ 1, our pro-
posed TGDR algorithm for multi-class cases is given as
follows:

1. Initialize β(0)=0 and v0=0.
2. With current estimate β, compute the negative

gradient matrix g(v) = − ∂R(β)/∂β with its (c,j)th

component as gcj(v).
3. a) Let fc(v) represent the threshold vector of size G

for class c (c=1,..,C-1), with its jth component
calculated as

f cj vð Þ ¼ I jgcj vð Þj≥τ �max gcl vð Þ�� ��� �
l∈βc

 !
∀j∈βc

b) Then, the jth-feature specific threshold function

was defined as
f j vð Þ ¼ max
c

f cj

� �
4. Update β(v+Δv) = β(v) - Δv×g(v)×f(v) and update v

by v+Δv , where the (c, j)th component of the prod-
uct of f and g is gcj(v) × fj(v).

5. Steps 2-4 are iterated K times. The number of iter-
ation K is determined by cross validation.

As in binary TGDR, all metabolites are assumed to be
non-informative at the initial stage. Parameters τ and k
are the tuning parameters, and thus jointly determine
the property of the estimated coefficients, including the
selection of features and their corresponding magni-
tudes. τ can be regarded as a threshold because it deter-
mines how βs would be updated in each iteration. Two
extreme cases include: if τ=0, all coefficients are nonzero
for all values of k; and if τ=1, the multi-TGDR increases
in the direction of one (if the gradient of the intercept
term has the largest absolute value) or two covariates in
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each iteration. Consequently, the non-zero coefficients
are few at the early iterations. With increasing k, in-
creasing number of βs would deviate from zeros until all
of them would eventually enter the model. Both τ and K
are determined by using cross-validations [25].
In this framework, when one feature is selected in one

comparison, it will appear in the rest comparisons even
though it may not be informative in those comparisons.
This is analogous to the multivariate regression model
setting, where the same set of covariates is used for each
response even though some of them may not be statisti-
cally significant. Alternatively, we may choose to force
small estimated coefficients into zeros in the last step.
Then, the set of selected features for each comparison
becomes different. This framework is referred to as
multi-TGDR global herein.
On the other hand, one may argue why not set fj as

the minimum of fcjs instead of their maximum. So if,
there is no update until one feature has large enough
gradients for all C-1 comparison. Therefore, only fea-
tures which are informative in all comparisons will be
chosen, resulting in an optimal feature set that is used
to classify all classes simultaneously. This is in conflict
with the hypothesis that a good feature set consists of
those highly correlated with a class but uncorrelated
with other classes, which had been confirmed by Hall
[26]. Moreover, the performance of such determination
has been proved to be generally less favorable than that
of one-versus-another or one-versus-the rest binary
ensembles [10].
Figure 1 The flowchart of multi-TGDR. Global: multi-TGDR global; local:
Method 2
Instead of having an overall threshold function for jth

feature, a cth-class specific threshold function for the fea-
ture is used to select features. This modification corre-
sponds to the step 3a in the multi-TGDR global
framework. Thus, a feature is not necessarily selected in
other comparisons when it is updated in one compari-
son. As a result, different sets of selected features are as-
sociated with different classes. This framework is herein
referred to as multi-TGDR local. Figure 1 shows the
flowcharts of multi-TGDR global and multi-TGDR local,
and pinpoints the difference between two frameworks.
In the above two frameworks, we treat τ as a uniform

tuning parameter across classes, which can certainly be
relaxed so that τ may take different values for each class,
allowing different degrees of regularization for different
comparisons. However, for the “omics” data where the
number of features is much larger than the number of
samples, in our experience τ=1 tends to give the most
reasonable results. Firstly, it has the harshest threshold,
resulting in the smallest set of selected features. Sec-
ondly, the predictive performance may be improved by
discarding those non-informative or redundant features.

Bagging and brier score
Bagging [27] procedure was used to discard the pos-
sible noise from a single run of multi-TGDR, so that a
better model parsimony can be warranted. The benefits
of bagging include but are not limited to: avoidance of
over-fitting, improvement on prediction, and manageable
multi-TGDR local.
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experimental verification. In many applications, e.g., [10],
bootstrap resampling/bagging is mainly used to evaluate
the stability of a classifier.
Besides the traditionally used confusion matrix and

misclassification rate, the generalized brier score (GBS)
[7] was also calculated to evaluate the predictive per-
formance of two multi-TGDR frameworks by absorbing
the extra information provided by the estimated poster-
ior probabilities. Additional details on trimming per-
formed on both bagging and brier score for multi-class
classifications were discussed in a previous study [4].

Statistical language and packages
The statistical analysis was carried out in the R language
version 2.15 (www.r-project.org), R codes for multi-
TGDR are available upon request.

Results and discussion
Synthesized data
In order to study the empirical performance of both
multi-TGDR frameworks, we used the real values for
metabolites of the HCC/cirrhosis data (384 metabolites
and 131 samples) but assigned the class membership ac-
cording to pre-determined logit functions f. Specifically,
the logit functions for class 2 and 3, having class 1 as
reference, were given by following relationship for two
synthesized datasets,

Simulation 1

f 2vs1 ¼ −0:1X1−0:8X2−0:9X3 þ 2X4 þ 1:2X5;
f 3vs1 ¼ 0:4X1−0:5X2−0:8X3 þ 1:7X4−1:5X5

where the logits for class 2 and 3 depend only on fea-
tures X1 ~ X5, but differ in the direction and magnitudes
of the association.

Simulation 2

f 2vs1 ¼ −0:1X1 þ 2X4 þ 1:2X5;
f 3vs1 ¼ 1:5X2−0:8X3

where the logits for class 2 and 3 are two function with
different parameters in the second simulation.
By this means, the true relevant features (i.e., X1 X2 X3

X4 X5) are known and performance comparison can be
made between multi-TGDRs and PLS-DA. Here, PLS-
DA analysis was carried out in the software of SIMCA-
P + version 12.0 (www.umetrics.com). A feature was
eliminated unless it had VIP values larger than 1 in ei-
ther of the first two PLS components. The results were
given in Table 1.
In summary, the true relevant features were success-

fully identified by all methods. The predictive perform-
ance of both multi-TGDR frameworks was superior to
that of PLS-DA. Even after bagging, the final models for
both multi-TGDRs include substantially more features
than the true ones, which might indicate more improve-
ment in the multi-TGDR frameworks and other relevant
algorithms may exist.

Real data
A metabolomics study was conducted with the objectives
of identifying potentially important differential metabolites
related to HCC pathogenesis and early diagnosis, and thus
providing an explicit predictive rule that can aid a physi-
cian’s diagnosis on HCC and cirrhosis. There were 131
subjects (70 with HCC, 30 with cirrhosis, and 31 normal
controls, respectively) and 384 metabolites in this study.
Additional details on this motivating study have been pre-
sented in [19]. Figure 2 outlines the schema of this study.

Performance of multi-TGDR
In Figure 3, cross-validation scores showed minimal
change, especially after k > 500 for both frameworks. So
the final iteration number K in both Multi-TGDR global
and Multi-TGDR local was chosen as 500. Table 2 pre-
sents the results of the two multi-TGDR approaches.
Multi-TGDR global selected 45 metabolites with a 0%
misclassification rate and a 3.82% 5-fold cross-validation
predictive error rate. With the cutoff of bagging frequency
fixed at 40%, 30 metabolites were retained in the final
model (Model 1_w), which had a 0% misclassification rate
and a slight improvement on GBS. On the other hand,
Multi-TGDR local selected 48 metabolites with a 0% mis-
classification rate and a 5.34% CV-5 error rate. After ap-
plying Bagging, 29 were identified in the final model
(Model 2_w) with a slight decrement in GBS. Interest-
ingly, the metabolites in model 1_w and model 2_w are al-
most the same (25 overlapped). Model 1_w identified 5
extra metabolites and model 2 _w identified 4 such metab-
olites. Table 3 presented those overlaps and those extra
metabolites identified by specific multi-TGDR framework.

Comparison with PLS-DA analysis
The data had also been analyzed using PLS-DA [19].
There, the potential markers were chosen based on the
loading plot of PLS-DA, then evaluated by VIP of the
first two components in PLS-DA and further confirmed
by t-tests. We compared the selected metabolites by the
original analysis with the resulting metabolites from
Multi-TGDR frameworks (using the whole data on which
the original PLS-DA was conducted), there are only 4
overlaps between multi-TGDR global and PLS-DA, and 5
overlaps between multi-TGDR local and PLS-DA, respec-
tively (indicated as * in Table 3).
In order to compare results obtained from PLS-DA and

those from Multi-TGDR, we used the 42 metabolites se-
lected by PLS-DA (as shown on Table 2 in [19]) and

http://www.r-project.org
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Table 1 The comparison between Multi-TGDR frameworks and PLS-DA using simulated data

# metabolites Error on the data (%) GBS 5-fold CV Error (%)

A. Simulation 1

Multi-TGDR: global No Bagging 105 0.76 0.0100 12.21

Global + Bagging (freq > 30%) 35 10.69 0.0773 12.21

local No Bagging 54 (14, 46)1 2.29 0.0301 14.50

Local + Bagging (freq > 40%) 24 (14, 15) 8.40 0.0539 12.98

PLS-DA + Naïve Bayes as a classifier 89 14.50 0.1313 19.84

B. Simulation 2

Multi-TGDR: global No Bagging 110 0 0.0165 11.45

Global + Bagging (freq > 50%) 21 3.82 0.0237 7.63

local No Bagging 106(12, 95) 0 0.0067 9.16

Local + Bagging (freq > 40%) 25(9, 18) 3.82 0.0254 8.40

PLS-DA + Naïve Bayes as a classifier 97 6.87 0.1556 16.03

A. The performance of multi-TGDR frameworks and PLS-DA on the first simulated data. B. The performance of multi-TGDR and PLS-DA on the second
simulated data.
1(No.1, No.2): No.1 represents the number of metabolites selected in the first comparison (class 2 versus class 1) by multi-TGDR local. No.2 represents the number
of metabolites selected in the second comparison (class 3 versus class 1).
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considered a naïve Bayes model as a classifier to calculate
the posterior probabilities in PLS-DA. The performance
of PLS-DA was shown in Table 2. In summary, the metab-
olites selected by Multi-TGDR have a better predictive
performance than those by PLS-DA.

Evaluation on the effect of pre-processing filtering
Moderated t-tests using limma [28] were conducted to
identify the differential metabolites between HCC/cir-
rhosis versus normal to examine the effects of pre-
Figure 2 The schema of the study.
filtering. The cutoff for the false discovery rate (FDR)
was chosen as 0.05. There were 94 down-regulated and
104 up-regulated metabolites in the comparison of cir-
rhosis to normal, and 63 down-regulated and 186 up-
regulated metabolites for HCC to normal. In total, 302
unique differentially expressed metabolites were identi-
fied by those t-tests. Only 4 metabolites were missing
from the final classifier models (i.e., model 1_w and
2_w). We then reran both multi-TGDRs with those 302
differentially expressed metabolites. The corresponding



Figure 3 The comparison between cross validation (CV)-determined tuning parameter k (the iteration number) in both multi-TGDR
frameworks. Global: multi-TGDR global; local: multi-TGDR local.
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results were shown in Table 2B and Figure 4. From them,
we can see the performance of both multi-TGDR on the
filtered data decreased but was not substantial. To con-
clude, pre-filtering may save considerable computational
time with marginal impact on predictive performance.

Conclusions
Metabolites selected by multi-TGDR may provide biological
insight in HCC/cirrhosis. According to the description of
Table 2 The predictive performance of Multi-TGDR framework

# metabolites Erro

A. (without filtering)

Multi-TGDR global No Bagging 45

Bagging (freq > 40%) 30

Multi-TGDR local No Bagging 48

Bagging (freq > 40%) 29

B. (after moderated t-test filtering)

Multi-TGDR global No Bagging 42

Bagging (freq > 25%) 37

Bagging (freq > 40%) 26

Multi-TGDR local No Bagging 42

Bagging (freq > 25%) 38

Bagging (freq > 40%) 25

C. the performance of PLS-DA on the whole data

Naïve Bayes as the extra classifier 42

A. The performance of multi-TGDR frameworks on the whole data: without modera
reduced data: with t-test filtering and 72 metabolites were filtered out. C. The perfo
by original analysis in Zhou’s study ref. [19] were used.
Note: For the reduced data, the optimal cutoff of bagging frequencies is 25%. How
we analyzed the reduced data with bagging frequencies as 40% as well.
those selected metabolites given by the HMDB, some in-
teresting observations were gained. First, furoic acid is a
metabolite produced by furfural via oxidation. Furfural is
a confirmed animal carcinogen with unknown relevance
to humans, and it has been suggested as a substance that
produces hepatic cirrhosis [29,30]. Here, both multi-
TGDR versions selected furoic acid, while the coefficients
of both comparisons (i.e., HCC versus normal, cirrhosis
versus normal) are in opposite directions. A significant
s and PLS-DA

r on the data (%) GBS 5-fold CV Error (%)

0 4.24e-05 3.82

0 3.68e-05 3.82

0 7.57e-05 5.34

0 5.97e-04 6.11

0 1.03e-04 4.58

0 1.13e-04 4.58

0 3.58e-04 4.58

0 6.18e-04 6.11

0 6.87e-04 5.34

0 2.24e-03 6.11

4.58 4.63e-02 7.63

ted t-test filtering. B. The performance of multi-TGDR frameworks on the
rmance of PLS-DA with naïve Bayes as the classifier. 42 metabolites selected

ever, in order to make a fair comparison with the results from the whole data,



Table 3 The selected metabolites by both multi-TGDR frameworks (the results of model 1_w and model 2_w)

type mz RT (min) β_Cirrhosis β_HCC β_Cirrhosis β_HCC Metabolites

Multi-TGDR global Multi-TGDR local

All 191.04 0.64 0.6521 −0.6011 0.7437 −0.4971 Beta-Lactose

240.08 14.79 −0.2734 0.2258 −0.2842 0.0267 1,1′-Ethylidenebistryptophan or 1-aminopyrene

582.24 22.42 −0.4816 0.2596 −0.4854 0.1428 Glutaminyl-Methionine

Common 91.36 8.47 0.1937 −0.9035 0 −0.4716 Unknown

100.32 1.16 0.1965 −0.6931 0 −0.7513 Unknown*

101.32 1.16 0.1209 −0.4617 0 −0.4617 Unknown

139.1 8.65 0.1969 −0.4631 0 −0.4631 Phosphorylcholine

218.08 0.89 0.2614 −0.7598 0 −0.9121 Pregnenolone sulfate

255.96 1.07 0.041 0.2284 0 0.3122 Lsoxanthopterin

256.25 19.08 −0.358 0.9489 0 0.9761 Palmitic amide*

279.08 9.4 0.034 −0.3269 0 −0.4019 Homocarnosine

361.18 19.64 −0.0196 0.0538 0 0.1811 Unknown

540.51 23.17 0.0211 0.2882 0 0.2898 Unknown

599.25 9.78 0.5919 3.8635 0 4.1545 Unknown

239.14 14.47 −0.2198 0.0995 −0.3349 0 Phosphatidic acid

289.21 7.24 −0.1335 −0.0097 −0.1347 0 Neurosporene

356.37 15.91 0.3772 −0.0728 0.2259 0 Unknown

374.38 15.45 0.5133 0.0856 0.2179 0 Unknown

375.39 15.46 1.4191 0.1173 1.3393 0 Cholestanetriol or Unknown

402.42 17.55 0.2209 0.0424 0.4634 0 16(S)-hydroxy-18-oxo-18-CoA-LTE4

585.27 9.09 1.435 −0.1864 1.7132 0 Conjugated bilirubin*

587.27 9.09 0.3402 0.1137 0.2372 0 Conjugated bilirubin*

592.37 6.42 0.3208 −0.0508 0.5229 0 Unknown

633.25 10.31 −0.7011 0.4138 −0.7187 0 Unknown

652.41 4.19 1.2071 0.4634 1.4441 0 Ganglioside GM3 (d18:1/24:0) or Unknown

Global 181.08 8.6 −0.1244 0.0115 0 0 Alpha-Ketooctanoic acid

277.17 10.69 −0.1585 0.1796 0 0 Phosphatidylinositol or Lithocholate 3-O-glucuronide

312.37 18.9 −9.00E-04 −0.0819 0 0 Unknown

315.19 8.7 −0.1527 0.0978 0 0 3-Oxohexadecanoic acid

608.38 3.97 0.1159 0.0187 0 0 Unknown

Local 159 0.62 0 0 −0.158 0.1842 Glycolaldehyde

330.35 15.37 0 0 0.1697 0 Unknown*

634.26 10.31 0 0 −0.0769 0 Indoleacetyl glutamine

810.62 29.87 0 0 0 −0.1817 SM(d18:1/18:0)

The normal controls serve as the reference. All: non-zeros in both comparisons and both versions; Common: selected by both versions, but being zero in one com-
parison by local; global: selected only by multi-TGDR global version; local: selected only by multi-TGDR local version. Model 1_w: the results of multi-TGDR global
after bagging (BF > 40%); Model2_w: the results of multi-TGDR local after bagging (BF > 40%).
Note: *the overlaps with the metabolites selected by PLS-DA.
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decrease of isoxanthopterin has been identified in cancer
patients [31], however, the multi-TGDR results show an
increase instead. It is well known that careful control of
the participants’ intake before a metabolomics experiment
is difficult. With that in mind, many of the HCC subjects
may have received therapeutic treatments that might in-
crease the level of isoxanthopterin, with residual levels
present despite strict diet and intake control during the
metabolomics study. In addition, over-dosage of interven-
tions for cancer patients, especially in a developing coun-
try like China is possible. Thus the accumulation of
isoxanthopterin in HCC patients is possible as a result of
long-term over-dosage of relevant drugs. Meanwhile, we
don’t exclude the possibility that HCC has its own unique



Figure 4 The comparison of the selected metabolites by multi-TGDR frameworks on the whole data and on the reduced data
(BF > 40% for both data). A. Venn-diagram for multi-TGDR global. B. Venn-diagram for multi-TGDR local. The whole data: without moderated
t-test filtering. The reduced data: with t-test filtering and 72 metabolites were filtered out. The metabolites (indexed by m/z values) in red represent
those filtered out by moderated t-tests. The metabolites (indexed by m/z values) in purple represent those selected by multi-TGDR framework on the
whole data analysis, but excluded by bagging.
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characteristics in terms of isoxanthopterin and is conse-
quently different from other cancer types. Further investiga-
tion on the biological explanation of those selected
metabolites is definitely warranted. Here, our focus is to
present the multi-TGDR frameworks and to demonstrate
their applications in metabolomics.
With the aids of a feature selection algorithm like multi-

TGDR (an algorithm can provide an explicit predictive
rule and compute the posterior probabilities of the class
membership), it is possible to design a diagnostic kit to
examine the selected metabolites in a clinic setting with
higher sensitivity and specificity. This kit would allow dis-
crimination between HCC developed from HCV/HBV in-
fections apart from cirrhosis with HCV/HBV infections,
which is highly desirable and of scientific importance. One
limitation of our application is that since the proportion
of diseased persons in an observational study may not re-
flect disease prevalence in the population, care must be
taken in both model construction and evaluation. To
ensure a multi-TGDR model can correctly classify persons
in the general population, one approach is to obtain
weights based on the ratio between the proportion of dis-
eased persons in the population and that in the study. A
comprehensive investigation of these issues is the focus of
our future research.
Two extensions of TGDR are proposed here for multi-

class classification problems. By training only one classi-
fier, we specifically address sub-optimality associated with
dividing multi-class classification into individual binary
pairs. The performance of multi-TGDR global has been
shown to be excellent by us previously [4] using simulated
data and two microarray data sets. Compared to multi-
TGDR global, multi-TGDR local has an almost identical
predictive performance in the HCC metabolomics data
(in both the simulated data and the real data). Addition-
ally, we conducted extra simulations to verify the valid-
ity of multi-TGDR local and compared its performance
with multi-TGDR global. The results (included in the
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Additional file 1: Supplementary materials) show that
both multi-TGDR algorithms can identify the true relevant
features and discard the irrelevant features. Identical pre-
dictive performances are also observed even in cases where
some of features are highly correlated to the relevant fea-
tures. Intuitively, we hypothesized that multi-TGDR global
should perform better in cases where the classes share
more similarity. This entails that the same set of features is
shared across different classes, but the magnitudes of the
association differ. This may correspond to different stages
of a disease. In contrast, multi-TGDR local may be optimal
in cases where no similarity of the classes is present. This
entails that complete different sets are selected across dif-
ferent classes, which may represent different diseases.
Interestingly, the results from the simulations don’t sup-
port this hypothesis. Finally, we also examined whether
multi-TGDR local is associated with less computation time
since it does not need to compute the overall threshold
function fj(v). However, with our current experience on the
simulations and real-world applications, we found the com-
putational effort of these two approaches to be comparable.
This may be due to the fact that compared to the computa-
tion of many gradients at each iteration, the computation
of maximum on fcj(v) is negligible. One obvious advantage
of multi-TGDR local is that it may provide us with informa-
tion on which feature is related to which class/classes.
To conclude, we recommend the use of the multi-TGDR

frameworks for multi-class classifications on “omics” data
because they have excellent predictive capacity. The re-
searchers may choose to run both or either of the multi-
TGDR frameworks based on their research hypotheses and
data type.

Additional file

Additional file 1: Supplementary materials.
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