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Abstract

Background: Recent advances in rapid, low-cost sequencing have opened up the opportunity to study complete
genome sequences. The computational approach of multiple genome alignment allows investigation of
evolutionarily related genomes in an integrated fashion, providing a basis for downstream analyses such as
rearrangement studies and phylogenetic inference.
Graphs have proven to be a powerful tool for coping with the complexity of genome-scale sequence alignments. The
potential of graphs to intuitively represent all aspects of genome alignments led to the development of graph-based
approaches for genome alignment. These approaches construct a graph from a set of local alignments, and derive a
genome alignment through identification and removal of graph substructures that indicate errors in the alignment.

Results: We compare the structures of commonly used graphs in terms of their abilities to represent alignment
information. We describe how the graphs can be transformed into each other, and identify and classify graph
substructures common to one or more graphs. Based on previous approaches, we compile a list of modifications that
remove these substructures.

Conclusion: We show that crucial pieces of alignment information, associated with inversions and duplications, are
not visible in the structure of all graphs. If we neglect vertex or edge labels, the graphs differ in their information
content. Still, many ideas are shared among all graph-based approaches. Based on these findings, we outline a
conceptual framework for graph-based genome alignment that can assist in the development of future genome
alignment tools.

Background
Sequence comparison through multiple alignment is an
indispensable tool for understanding genomes and their
shared histories [1]. Even though the foundation for
genomic sequence alignment was already laid in the 1980s
[2], the interest is still ongoing [1,3,4], one reason being
that it has critical relevance [5] for many bioinformatics
analyses. The aim of sequence alignment is to uncover
homologies by assigning sequence positions to each other,
which implies that these positions derived from a com-
mon ancestor.
Evolutionary events that change genomic sequences are

often classified into small changes and large structural
changes [6]. Small changes affect only one or few sequence
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positions and include substitutions, insertions, and dele-
tions. They do not influence the order of sequence posi-
tions, and thus can be captured by colinear alignment.
Structural changes involve longer genomic segments,
thereby affecting the structure and order of genomic
sequences. They include non-colinear changes like inver-
sions, translocations and duplications in addition to inser-
tions and deletions of longer segments.
While colinear multiple sequence alignment has been

studied extensively for a long time [7-16], the problem
of non-colinear alignment has been brought into focus
only within the last decade [17-22], after more and more
whole genomes started to become available. Non-colinear
alignments, as opposed to colinear alignments, model all
kinds of evolutionary changes and thereby enable cor-
rect homology prediction for whole genomes with non-
colinear changes. This is comparable to the way global
alignments integrate more information than local align-
ments by assigning all parts of sequences to each other,
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and the way multiple alignments take information from
more than two sequences into account for homology pre-
diction. Over and above, non-colinear multiple global
alignments of whole genomes, genome alignments for
short, integrate as much sequence similarity information
as is available.
Together with the prediction of homology, genome

alignments provide a segmentation of the genomes orig-
inating from large structural changes. Depending on the
similarity of genomes, segments can be shorter or span
several genes and reveal local colinearity. Rearrangement
studies [23] explore the order of such segments and infer
genomic distances based on the number of breakpoints
[24,25] or predict scenarios of evolutionary changes
[26-28]. These studies often employ graphs, e. g., break-
point graphs [29-31], that resemble graph data structures
used for genome alignment. Despite this similarity in the
approach, genome alignments pursue a slightly different
goal than rearrangement studies. The goal is homol-
ogy prediction instead of reconstruction of evolutionary
histories. Genome alignments, which are the focus of
this article, integrate more information than rearrange-
ment studies by combining segmentation and sequence
similarity.
Considering the large search space, genome alignment

is an ambitious task and is usually accomplished using
heuristic approaches. The first step in genome alignment
is commonly the computation of a set of local align-
ments. It is essential for most methods that the set of local
alignments covers all main genomic similarities, whereas
additional spurious similarities have a smaller impact. In
colinear alignment, such a set usually constitutes a super-
position of several alignment possibilities with some local
alignments in conflict regarding the colinearity constraint
(see Figure 1). The task is then to select the best conflict-
free subset according to a given optimization function. In
genome alignment, as opposed to colinear alignment, any
set of local alignments can be viewed as a valid solution,
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Figure 1 Alternative alignments of the sequences CATCGA and
CCGATA. The alignment on the left is colinear if the dinucleotides AT
(red) are interpreted as insertion or deletion. Alternatively, the AT
dinucleotides can be aligned and the CG dinucleotides interpreted as
insertion or deletion. Non-colinear aligners that allow for
translocations may align the AT dinucleotides in addition to the CG
dinucleotides. The alignment on the right shows a non-colinear
alternative that interprets the four nucleotides ATCG as inversion
(reverse complement). In this example, we expect non-colinear
aligners to prefer the inversion (right) over the translocation (left)
since it creates fewer segments.

one that induces a segmentation. However, the induced
segmentation can be improved by selecting a subset of
local alignments. The subset should contain those local
alignments that are most likely to represent homologies
when viewed in the context of the whole set of local
alignments. The final step is then to find the best segmen-
tation according to the set of local alignments and possibly
a subsequent realignment of segments with a colinear
alignment method.
For the step of selecting subsets of local alignments

and for inducing a segmentation, graphs serve as a con-
venient tool. The idea is that graphs show substructures
indicating errors in the alignment, e. g., specific cycles.
Once identified in a graph, we can eliminate these sub-
structures, e. g., by removing local alignments, which is
a modification of the genome alignment. Thus, graphs
can assist in improving genome alignments. In addition,
graphs provide an intuitive representation of similarities
and changes between genomes, and so visualize alignment
structures. In comparison to tabular alignments, genome
alignment graphs are more versatile insofar that it is pos-
sible to model colinear and non-colinear changes without
the need of choosing a reference genome.
Several graphs have been proposed, each in the con-

text of a specific application such as synteny detection,
segmentation, or simply colinear alignment. The earliest
graph has been the alignment graph, formally defined for
colinear multiple alignment by Kececioglu in 1993 [32].
In his definition, the graph contains a vertex for each
sequence character and edges for aligned characters. The
alignment graph has since been used in various versions,
e. g., with additional sequence edges [33] and with genes
[34] or segments [15] instead of single characters. In all
versions, a colinear alignment can be obtained from the
alignment graph by solving the maximum weight trace
problem [32], but its structure also allows non-colinear
changes to be modeled (see below).
Pevzner et al. introduced A-Bruijn graphs [35] as a gen-

eralization of de Bruijn graphs [36,37]. The structure of
A-Bruijn graphs revisits an idea briefly mentioned by
Kececioglu [32], the idea of merging aligned vertices. Con-
sequently, A-Bruijn graphs have one vertex for sets of
aligned positions, and edges represent sequence adjacen-
cies. For the purpose of genome alignment with A-Bruijn
graphs, the maximum subgraph with large girth (MSLG)
problem [19] and the sequence modification problem
(SMP) [38] were proposed, both targeting types of short
cycles in A-Bruijn graphs in order to eliminate local align-
ments that hide local colinearity.
In the context of a pipeline for genome alignment that

consists of the programs Enredo and Pecan [39], another
graph has been published, the Enredo graph. The pro-
gram Enredo applies Enredo graphs to partition genomes
into segments. Subsequently, the program Pecan provides
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nucleotide-level colinear alignments of segments. Enredo
graphs have two vertices per set of aligned segments,
a head and a tail vertex, resembling breakpoint graphs
from rearrangement studies. The Enredo method itera-
tively eliminates various substructures from the Enredo
graph before deriving a final genome segmentation.
A recent and slightly dissimilar graph is the cactus graph

[22,40]. Cactus graphs have vertices for adjacencies and
edges for genome segments. Their structure has two valu-
able properties. The cactus property subdivides the graph
(and genomes) into independent units by ensuring that
any edge is part of at most one simple cycle [41]. These
units assist in computing genome alignments with the
cactus alignment filter (CAF) algorithm [22]. The sec-
ond property is the existence of an Eulerian circuit. This
circuit traverses all genome segments exactly once, even
duplicated segments, conveniently providing a consensus
genome.
In this paper, we compare the mentioned graph-based

genome alignment approaches with an emphasis on the
structures of the underlying graphs. Our aim is to clarify
similarities of the approaches and the underlying graphs
but also to work out differences and highlight limitations.
We realize our comparison using the same terminology
for all graphs and by describing transformations among
the graphs (see Figure 2). We assess the graphs in terms of
their capabilities to display alignment information in their
structure alone. For all graphs, substructures and modi-
fications constitute key aspects of corresponding genome
alignment approaches. We carefully examine substruc-
tures as well as modifications independently from the
particular graphs they were first described for. Founded
on our comparison, we derive a generic framework for
graph-based genome alignment. The framework gives an
overview of the general graph-based approach to genome
alignment and, hence, may assist in the development of
future genome alignment tools.

Results
Terminology
The biological term homologous denotes two or more
genomic positions that derived from a single position

in an ancestral genome, or two or more segments that
derived from a single segment in an ancestral genome.
An alignment of genomes is an assignment of positions
from the aligned genomes. Usually, the goal is to align
only homologous positions to each other, but since the
ancestral genome is unknown, an alignment can only be a
prediction of homology.
In the following, we formally define a genomic position

and give a very general definition of an alignment. Next,
we define a genomic segment and constrain the align-
ment definition to colinearity. Since colinearity is often
too strict for predicting homology in whole genomes,
genome aligners use so-called blocks, which are colinear
alignments of genomic segments. Blocks can be arbitrar-
ily combined to non-colinear genome alignments. We give
a general definition of blocks as the basic entities that
underlie graph-based genome aligners. Finally, we define
the terms adjacency and breakpoint.
Let G be a set of genomes. Each genome g ∈ G is

a sequence of characters from the DNA alphabet � =
{A,C,G,T}. We define the position of the (i + 1)st char-
acter in genome g as p = (g, i) with 0 ≤ i < |g|,
where |g| denotes the length of g. To compare two posi-
tions with the operators < and >, we assume an arbitrary
strict total ordering of the genomes (such that for any
pair of genomes g1, g2 ∈ G either g1 < g2 or g2 < g1).
Then, p1 < p2 where p1 = (g1, i1) and p2 = (g2, i2), if
g1 < g2 or if g1 = g2 and i1 < i2. Let PG = {p | p =
(g, i), g ∈ G, 0 ≤ i < |g|} be the set of all positions of the
genomes G. An alignment component (column) A is a sub-
set of PG . For example, all pairs of positions connected by
a line in Figure 1 form alignment components. Without
any demand for optimality, an alignment A is simply a set
of alignment components.
An ordered pair of two positions p = (g, i) and q = (g, j)

from the same genome g defines a segment s = (p, q)
of length |i − j|, where min{p, q} is the smallest position
and max{p, q} the position directly following the largest
position in the segment. If p < q, the segment is in
the forward orientation, and if p > q, the segment is
in the reverse complemented orientation (see Figure 3).
As an alternative to an ordered pair (p, q), a segment
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Figure 2 Overview of transformations among four graph representations for genome alignments. Some transformations require
information from labels (red boxes), which is not present in the graph structures (see text for details). The Cactus method keeps an Enredo-like
graph in addition to the cactus graph.
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Figure 3 Three segments of a genome g. Segments s1 = (p1, q1) and s3 = (p3, q3) are in the forward orientation and their sequences read TTGC
and TCACG, respectively. Segment s2 = (p2, q2) is in the reverse complemented orientation and reads CCTGC. s1 and s3 are non-overlapping but
not adjacent, s2 and s3 are non-overlapping and adjacent at position a = (g, 140).

could equivalently be represented by a start position, a
length, and an additional orientation bit. Two segments
s1 = (p1, q1) and s2 = (p2, q2), where without loss of gen-
erality min{p1, q1} ≤ min{p2, q2}, are non-overlapping if
max{p1, q1} ≤ min{p2, q2}. If max{p1, q1} = min{p2, q2},
s1 and s2 are adjacent and define the adjacency at position
a = max{p1, q1} (see Figure 3). Two segments fully over-
lap if both min{p1, q1} = min{p2, q2} and max{p1, q1} =
max{p2, q2}.
An alignmentA of a set of segments S is colinear if each

alignment component contains at most one position from
each segment s ∈ S and if it is possible to impose a strict
total ordering ≺ on the alignment components A ∈ A
(such that for any pair of distinct alignment components
A1,A2 ∈ A either A1 ≺ A2 or A2 ≺ A1) as follows: The
relation A1 ≺ A2 holds if for any two positions p1 ∈ A1
and p2 ∈ A2 from the same segment s ∈ S, p1 < p2 if s is
in the forward orientation and p2 < p1 if s is in the reverse
complemented orientation. If an alignment violates the
conditions for colinearity, it is non-colinear (see Figure 1).
To put it simply, inversions, duplications, and transloca-
tions of parts of the aligned sequences are non-colinear
operations that violate colinearity.
Non-colinear operations divide an alignment into units

that are colinear in themselves but not with respect to
each other. We call these units blocks and define a block
as a colinear alignment of a set of segments. Note that a
block may contain multiple segments of the same genome
if duplications are present. We refer to the number of
segments in a block as the size of a block (not to be con-
fused with the length of segments). In Figure 1, areas
shaded in blue and red indicate blocks. For example
in the left alignment, the two dinucleotides CG form a
block and the two dinucleotides AT form another block.
In the right alignment of Figure 1, the segment ATCG
and its reverse complement in the second sequence form
a block.
A block always has two equivalent representations. In

the first block representation, some segments are in the
forward orientation and some may be in the reverse com-
plemented orientation. In the second block representation
all segments are in the reverse complemented orientation
that are in the forward orientation in the first block repre-
sentation and all segments are in the forward orientation

that are in the reverse complemented orientation in the
first block representation. The essential information about
possible inversions is the orientation of segments with
respect to each other and not the orientation of the block
representation. Once we choose one of the two represen-
tations, we implicitly assign a tail and a head to a block b.
The head is the set of positions {p} of all segments s ∈ b
with s = (p, q), and the tail is the set of positions {q}. We
refer to the two sets as the ends of b in cases where the
orientation of a block is not given.
A set of blocks constitutes a genome alignment and is

input for building a genome alignment graph. To simplify
the exposition of the graphs below, we define BG as a set of
blocks that is a tiling of the genomes G: All pairs of blocks
b1, b2 ∈ BG have to be non-overlapping; for unaligned seg-
ments between blocks and unaligned segments at the ends
of the genomes, BG includes blocks of size 1.
Two blocks b1, b2 ∈ BG are adjacent if there are two

segments s1 ∈ b1 and s2 ∈ b2 that are adjacent. Since
all blocks have two ends, there may be up to four differ-
ent adjacencies between two blocks: the head of b1 can be
adjacent to the head of b2 or to the tail of b2, or the tail
of b1 can be adjacent to the head of b2 or to the tail of
b2. Each of the four adjacencies is defined by a set of adja-
cency positions between segments from the two blocks,
e. g., if the tail of b1 is adjacent to the head of b2, the adja-
cency is defined by the set of positions {q1} of segments
s1 ∈ b1 with s1 = (p1, q1) for which there is a segment
s2 ∈ b2 with s2 = (p2, q2)where p1 = q2. Since a block can
contain more than one segment from the same genome, a
block can be adjacent to itself. In the literature, adjacen-
cies of blocks are sometimes defined as segments between
two blocks [39]. Given that the set of blocks BG is a tiling
of the genomes, we can refer to an adjacency as a set of
single positions.
An adjacency of two blocks b1, b2 ∈ BG is called a break-

point if b1 and b2 are adjacent in only a subset of the
segments. Then, the set of positions that define the adja-
cency is smaller than the size of the block. More formally,
let s1 ∈ b1 and s2 ∈ b2 be two adjacent segments with
s1 = (p1, q1) and s2 = (p2, q2). Without loss of generality,
let q1 = p2. Then, b1 and b2 define a breakpoint if there is
a segment s′1 ∈ b1 with s′1 = (p′

1, q
′
1) for which no segment

s′2 ∈ b2 with s′2 = (p′
2, q

′
2) exists where q

′
1 = p′

2.
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Most commonly, genome alignment programs use pair-
wise local alignment methods to generate blocks. Pairwise
local alignments are blocks of size two. These blocks can
be combined with each other to form blocks of a larger
size (multiple local alignments) if a segment from one
block fully overlaps with a segment from another block.
We briefly address this preprocessing of blocks in the Dis-
cussion section, and assume that a set BG is given for
constructing the graphs.
In the literature, blocks are often referred to as synteny

blocks or locally colinear blocks. The definitions of blocks
differ, usually depending on the specific type of local align-
ment method being used for generating blocks. For exam-
ple, blocks can be defined as gapped or ungapped colinear
alignments with or without mismatches, or simply as sin-
gle alignment components. The graph representations are
independent from the precise assignment of positions to
alignment components within blocks. Only the set of seg-
ments including their relative orientation within the block
is relevant. For this reason, the different block definitions
can be used interchangeably except for preprocessing the
set of blocks to obtain BG (see Discussion section).
Within the graphs described in the following sections,

blocks and adjacencies are represented by vertices or
edges or a combination of both. For each graph, every
genome is a (not necessarily simple) path through the
graph. We use the term to thread for following the path of
a genome through the graph [17,35].

Graphs for genome alignment
We limit our comparison to alignment graphs, A-Bruijn
graphs, Enredo graphs, and cactus graphs. The origi-
nal publications of these graphs use varying terminology.
We describe all four graphs using the same terminology,
namely the above defined terms segment, block and adja-
cency. Figure 4 displays an example alignment with eleven
blocks as alignment graph, A-Bruijn graph, Enredo graph,
and cactus graph.
The input for building a graph is a set of non-

overlapping blocks BG defined on a given set of genomes
G. We assume the blocks to be a tiling of G. For all four
graphs, we define the graph structures G = (V , E) as
ordered pairs of vertices V and edges E. In addition, we
define graph models MG = (G, �), which are ordered pairs
of the respective graph structure G and a labeling function
�. Most original publications remain vague about labels
on vertices and edges of the graph structures. We define �

such that the set of blocks BG can be recovered fromMG.
Along with the definitions of G and MG for each of

the four graphs, we describe how it is possible to trans-
form the different graph structures into each other (e. g.,
an alignment graph structure into an A-Bruijn graph
structure). A transformation is an operation that has as
input one graph structure G and outputs another graph

structure G′, where both G and G′ represent the same
genome alignment. If it is possible to obtain a graph struc-
ture G′ from another graph structure G without the help
of BG and without a labeling function, then G provides at
least as much alignment information as G′. Moreover, if
a graph structure G provides less information about the
alignment than another graph structure G′, a transforma-
tion from G to G′ is ambiguous, thus, impossible.
We examine the transformations that are depicted as

arrows in Figure 2. Straight arrows indicate a possible
transformation; the other arrows indicate that a trans-
formation among the structures is impossible, which we
prove below by providing examples for ambiguity. Never-
theless, we describe all transformations depicted as arrows
in Figure 2, using additional information from graph labels
if necessary to resolve ambiguity. We define the sparse
labeling functions �dup, �inv, or �adj for this purpose. The
sparse labeling functions provide sufficient information
for the transformation but less information than � in the
graph models. Note that a transformation among graph
models is trivial given that BG can be recovered from the
modelMG of any of the four graphs. The need for labels to
resolve ambiguity proves that the graph structuresG differ
in their information content.

Alignment graphs. In the following section, let G =
(V , E) be an alignment graph structure and MG = (G, �)
be an alignment graph model. We define � as a labeling
function of the vertices V of G. The set of edges E =
EA ∪EB decomposes into a set of directed adjacency edges
EA and a set of undirected block edges EB. With both
directed and undirected edges,G is amixed graph.
The vertices V ofG represent segments of the genomes.

There is a vertex in V for every segment in the set of all
segments (SB = ⋃

b∈BG b) from all blocks BG . The func-
tion � : V → SB labels each vertex v ∈ V with the
corresponding segment s ∈ SB such that �(v) = s.
Directed adjacency edges EA (colored edges in Figure 4)

represent adjacencies of segments. Given any pair of ver-
tices v1, v2 ∈ V and their labels �(v1) = (p1, q1) and
�(v2) = (p2, q2), there is a directed edge e ∈ EA from v1
to v2 if max{p1, q1} = min{p2, q2}, i. e., the segment �(v2)
is adjacent to the segment �(v1) in G. Adjacency edges
thread the genomes through the alignment graph.
Finally, undirected block edges EB (gray edges in

Figure 4) connect vertices labeled with segments from the
same block b ∈ BG . For each vertex v1 ∈ V with �(v1) ∈ b,
there are undirected edges EB between v1 and any other
vertex v2 ∈ V with �(v2) ∈ b. As a consequence, each
block b ∈ BG forms a block edge connected component
C ⊆ V in the alignment graph.
The formation of connected components is important

for recovering BG fromMG. Let C be the set of block edge
connected components of G. It holds V = ⋃

C∈C C, and
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Figure 4 An alignment of three genomes with eleven blocks in all four graph representations. The example covers multiple non-colinear
events: Blocks A, E, I, K are conserved in all three genomes without large structural changes. Blocks B, C, and D, as well as G, and H appear in different
orders and orientations. Block F is missing in the red genome and J occurs twice. Colors denote the three genomes. In the alignment graph, dashed
edges indicate the alignment of a segment with its reverse complement. We consider the information provided by line styles not to be part of the
graph structures. In the Enredo graph, components connected by adjacency edges are shaded in gray. For the cactus graph, the figure additionally
shows a precursor. Furthermore, enlarged vertices for the precursor and the final cactus graph show adjacencies in vertices.

C1 ∩ C2 = ∅ for any C1,C2 ∈ C. Thus, we may recover
BG by forming a block b = {�(v) | v ∈ C} for every
component C ∈ C.
Our definition of the alignment graph structure Gmod-

els non-colinear changes among the input genomes, in
particular translocations and duplications. Translocations

appear in G as mixed cycles. A mixed cycle is a cycle in
a mixed graph formed by both directed and undirected
edges. Duplications appear as block edges within the set of
vertices of one genome. Because of these edges our align-
ment graph is not n-partite as in its original definition
[32].
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Inversions are not visible in the alignment graph struc-
ture G; the orientation of segments remains unclear (see
also Figure 5). We define the sparse labeling function �inv :
V → {+,−} as

�inv(v) =
{ + if p < q

− if p > q,

where �(v) = (p, q). The function �inv assigns bits to the
vertices that indicate the orientation of the represented
segments. As an alternative to vertex labels, it is possi-
ble to label block edges with bits that indicate equal or
opposite orientation of the segments in the endpoints
(visualized as dashed and solid lines in Figure 4 or red and
black edges in [42]).

A-Bruijn graphs. Let now G = (V , E) be an A-Bruijn
graph structure and MG = (G, �) be an A-Bruijn graph
model. A-Bruijn graphs have only one type of edge E. We
define � as a labeling function of the vertices V. In con-
trast, the functions �inv and �dup described below provide
labels for the edges E.
The vertices V of G represent blocks. For every block

in BG , there is a vertex in V. There is only one vertex per
block regardless of the block’s size and of duplications.
The function � : V → BG labels each vertex v ∈ V with
the corresponding block b ∈ BG such that �(v) = b. With
this labeling, recovering BG fromMG is straightforward.
The edges E of G represent adjacencies just like adja-

cency edges in alignment graphs. Given any pair of ver-
tices v1, v2 ∈ V and their labels b1 = �(v1) and b2 = �(v2),
there is a directed edge e ∈ E from v1 to v2 for every
two adjacent segments s1 = (p1, q1) and s2 = (p2, q2)
with max{p1, q1} = min{p2, q2} where s1 ∈ b1 and

Alignment graph

A B C

A B C

A-Bruijn graph

A B C

A B C

Two alternative
Enredo graphs

A
B

C

Figure 5 The structure of alignment graphs and A-Bruijn graphs
does not display inversions. Let B denote the reverse
complemented block representation of a block B. The alignment
graph structure and A-Bruijn graph structure for the two sequences
ABC and ABC is the same as for the two sequences ABC and ABC. The
orientation of blocks remains unclear in the graph structures.
However, there are two Enredo graph structures for the alternative
orientations of block B in one sequence. Thus, the transformation
from the alignment graph structure or A-Bruijn graph structure to an
Enredo graph structure is ambiguous with two alternatives.

s2 ∈ b2. If multiple adjacent pairs of segments exist in
b1 and b2, E contains multiple edges from v1 to v2. Thus,
G is a multi-graph. In the present paper, we prefer the
multi-graph representation with multiple separate edges
between two vertices over the multi-graph representation
with multiplicity labels on edges.
Adjacency edges are essential for threading genomes

throughG. However, the path from threading one genome
is not necessarily simple. It traverses vertices multiple
times if duplications are present (see block J in Figure 4)
making the path ambiguous. Thus, threading requires
label information that allows incoming and outgoing
edges of a vertex to be paired. Such information is not
required in the alignment graph structure, where each
vertex has at most one incoming and one outgoing edge.
Without duplications it is sufficient to color edges ofG by
genome (red, blue, and green in Figure 4) instead of pro-
viding the full labels �. In the presence of duplications, G
can be ambiguous even with color labels (see Figure 6 and
block J in Figure 4).
To resolve ambiguity of G for threading, we define the

sparse labeling function �dup : E → N as a total ordering
on the edges. This function assigns numbers to the edges
that describe the order of the adjacencies in the genomes.
In Figure 6, for example, the edges could be numbered 1
through 8: for genome ABDABCEBC, one edge from A to
B would be labeled with 1, the edge from B to D would
be labeled with 2, the edge from D to A would be labeled
with 3, and so on; for genome ABCEBDABC, also one
edge from A to B would be labeled with 1, but then the
edge from B to C would be labeled with 2, and so on. To
describe �dup formally, we use adjacency positions of the
edges E that we determine with the help of �. Given a pair
of vertices v1, v2 ∈ V , each edge e ∈ E from v1 to v2
corresponds to one pair of adjacent segments s1 ∈ �(v1)
and s2 ∈ �(v2) with s1 = (p1, q1) and s2 = (p2, q2). The
adjacency position of e is a = max{p1, q1} = min{p2, q2}.
Then, �dup assigns numbers to edges in E such that

�dup(e1) < �dup(e2) if a1 < a2,

A B C

D

E

A-Bruijn graph

A B C

D

E

Enredo graph

Figure 6 Duplications may create ambiguity in the structure of
A-Bruijn graphs and Enredo graphs. In this example, the structure
of the A-Bruijn graph and the Enredo graph represents both the
genomes ABDABCEBC and ABCEBDABC. Thus, the order of blocks is
ambiguous.
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where a1 is the adjacency position of e1, and a2 is the
adjacency position of e2.
Furthermore, inversions create ambiguity in G (see

Figure 5). Just like the alignment graph structure, G pro-
vides no information about the orientation of segments
represented in a vertex. We define the sparse labeling
function �inv : E → {+,−} × {+,−} for A-Bruijn graph
edges E. For each pair of adjacent segments s1 = (p1, q1)
and s2 = (p2, q2) from the labels of two vertices s1 ∈ �(v1)
and s2 ∈ �(v2), we label an edge e = (v1, v2) with

�inv(e) =

⎧⎪⎪⎨
⎪⎪⎩

(+,+) if p1 < q1 ∧ p2 < q2,
(+,−) if p1 < q1 ∧ p2 > q2,
(−,+) if p1 > q1 ∧ p2 < q2,
(−,−) if p1 > q1 ∧ p2 > q2.

The first bit in the label �inv(e) indicates the orientation
of the segment in the source vertex of e, and the second
bit the orientation of the segment in the target vertex. It is
not sufficient to solely label vertices of G with one orien-
tation bit per segment of the represented block. Figure 7
provides an example where this leads to ambiguity.
Below, we describe transformations between A-Bruijn

graphs and alignment graphs. As stated above, the trans-
formation of the graphmodels is trivial, but the example in
Figure 6 proves that in some cases it is impossible to trans-
form an A-Bruijn graph structure into an alignment graph
structure.We describe the transformation with the help of
the sparse labeling function �dup to resolve ambiguity.

A-Bruijn graphs from alignment graphs. To transform
an alignment graph structure G′ = (V ′, E′

B ∪ E′
A) into

an A-Bruijn graph structure G = (V , E), we follow
the description of A-Bruijn graphs in [35] and exploit a
many-to-one mapping from alignment graph vertices to
A-Bruijn graph vertices. The transformation is possible
without additional information from a labeling function.
As a first step, compute all block edge connected com-

ponents C of G′. As described above, each component

A-Bruijn graph

++- ++-

Two alternative Enredo graphs

Figure 7 The labeling of A-Bruijn graph vertices with one
orientation bit per segment does not resolve ambiguity. In this
example, both blocks occur three times, twice in the forward
orientation and once in the reverse complemented orientation.
Combining the orientations of the segments in the two blocks is
ambiguous as the two alternative Enredo graph structures prove. In
the left Enredo graph structure, the segment in the reverse
complemented orientation of one block is combined with a segment
in the forward orientation of the other block. In the right Enredo
graph structure, the two segments in the reverse complemented
orientation occur consecutively.

represents exactly one block, and each vertex v′ ∈ V ′ is
part of exactly one component. Now, add for every com-
ponentC ∈ C a vertex to the set of A-Bruijn graph vertices
V. We obtain a many-to-one mapping of alignment graph
vertices to A-Bruijn graph vertices. We keep the map-
ping as a label m[v′]= v on each alignment graph vertex
v′ ∈ V ′. The label indicates the A-Bruijn graph vertex v
that represents the connected component containing v′.
The remaining task is to transfer adjacency edges from

the alignment graph to the A-Bruijn graph. Using the
mapping, add an edge e = (u, v) to the set of A-Bruijn
graph edges E for each edge e′ = (u′, v′) from the set of
alignment graph adjacency edges E′

A, where u = m[u′] and
v = m[v′].

A-Bruijn graphs to alignment graphs. We describe the
transformation of an A-Bruijn graph structure G = (V , E)

into an alignment graph structureG′ = (V ′, E′
A∪E′

B) given
the labeling function �dup for the edges of G in addition
to G. In accordance with the transformation from G′ to
G, we successively create a one-to-many mapping fromA-
Bruijn graph vertices to alignment graph vertices during
the transformation. The mapping m labels each A-Bruijn
graph vertex v ∈ V with a set of alignment graph vertices
from V ′. At the beginning m[v]= {} for all v ∈ V . At the
end, a label m[ v]= {v′

1, . . . , v
′
|b|} indicates the set of align-

ment graph vertices {v′
1, . . . , v

′
|b|} that form the connected

component for a block b represented by v in the A-Bruijn
graph.
We transform the A-Bruijn graph by following each

genome separately and assume that the edges are given in
increasing order of labels: �dup(e1) < �dup(e2) < · · · <

�dup(e|E|). Initially, add for each genome a new vertex u′ to
the set of alignment graph vertices V ′. If the source vertex
u of the A-Bruijn graph edge e1 = (u, v) is labeled with a
non-empty set of vertices m[u]= {u′

1, . . . , u
′
k}, add undi-

rected edges between u′ and all vertices u′
1, . . . , u

′
k to the

set of alignment graph block edges E′
B. Next, add u′ to the

set of vertices mapped to u. Repeat these three steps for
the target vertex v of e1: add a vertex v′, add block edges,
and add v′ to themapping. In addition, add a directed edge
from u′ to v′ to the set of alignment graph adjacency edges
E′
A.
Iterate over theA-Bruijn graph edges in increasing order

of labels and repeatedly add for the target vertex a new
vertex, add block edges, add the new vertex to the map-
ping, and add an adjacency edge from the previous to the
new vertex. This way, the genomes are threaded through
the A-Bruijn graph and the alignment graph structure G
is successively built up.

Enredo graphs. In this section, let G = (V , E) be an
Enredo graph structure and MG = (G, �) be an Enredo
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graph model. In an Enredo graph, the set of edges E =
EA ∪EB decomposes again into a set of directed adjacency
edges EA and a set of undirected block edges EB.We define
� as a labeling function of the block edges EB.
The block edges EB ofG represent blocks, and verticesV

ofG represent the ends of blocks. In contrast to alignment
graphs, a single block edge represents an entire block. For
every block b ∈ BG , there are two vertices in V con-
nected by an undirected block edge eb ∈ EB (black edges
in Figure 4). The function � : EB → BG labels each block
edge eb ∈ EB with the corresponding block b ∈ BG such
that �(eb) = b. By choosing one of the two possible block
representations as label, the two vertices that are con-
nected by eb are implicitly labeled as head and tail of the
block. Note that they are not labeled as head or tail in G.
Given the block labels, recovering BG from MG is again
straightforward.
Directed adjacency edges EA of G (colored edges in

Figure 4) represent adjacencies. Given any pair of block
edges e1 = {ut , uh} and e2 = {vt , vh} and their labels
�(e1) = b1 and �(e2) = b2, there is a directed edge e ∈ EA
from an endpoint of e1 to an endpoint of e2 for every two
adjacent segments s1 = (p1, q1) and s2 = (p2, q2) with
s1 ∈ b1 and s2 ∈ b2. In contrast to alignment graphs and
A-Bruijn graphs, the endpoints of adjacency edges in G
indicate in relation to other adjacency edges the orienta-
tion of segments in a block. Given labels, one endpoint of
each block edge is a head vertex and the other a tail ver-
tex. If p1 < q1, then the adjacency edge e starts at the head
vertex uh, and if p1 > q1, e starts at the tail vertex ut . If
p2 < q2, then e points to the tail vertex vt , and if p2 > q2,
e points to the head vertex vh. In other words, e = (uh, vt)
if q1 = p2, e = (uh, vh) if q1 = q2, e = (ut , vt) if p1 = p2,
and e = (ut , vh) if p1 = q2. Again, there may be several
adjacency edges connecting the same two vertices. Thus,
the Enredo graph is also a multi-graph.
Due to its two-vertex concept, the structure of an

Enredo graph G reflects the relative orientation of blocks
as opposed to the alignment graph structure and the
A-Bruijn graph structure (see Figure 5). G is capable
of displaying inversions. But just like A-Bruijn graphs,
threading a genome with duplications through G can be
ambiguous (see Figure 6). The path from threading a
genome through G alternates between block and adja-
cency edges. Therefore, only multiple occurrences of a
block in the same orientation create ambiguity in G.
To resolve ambiguity of G, we define the sparse label-

ing function �dup : EA → N as a total ordering on the
adjacency edges. As for A-Bruijn graphs, we can use the
labeling function � to determine the adjacency position of
an edge e ∈ EA. The function �dup assigns again numbers
to the edges EA such that

�dup(e1) < �dup(e2) if a1 < a2,

where a1 is the adjacency position of e1, and a2 is the adja-
cency positions of e2. As an example, we use again Figure 6
with labels 1 through 8: One of the edges from the head
of A to the tail of B would be labeled with 1; for genome
ABDABCEBC, the edge from the head of B to the tail of D
would be labeled with 2, and for genome ABCEBDABC,
the edge from the head of B to the tail of C would be
labeled with 2; and so on.
We generalize the Enredo graph compared to its original

definition [39] in some aspects. Enredo graphs originally
consider blocks of size 1 as adjacencies: Instead of a block
edge with two end vertices that are connected to the rest
of the graph by two adjacency edges, the Enredo method
only adds a single adjacency edge labeled with a segment.
This requires another function �A : EA → S that labels
adjacency edges EA with segments S. In addition, in the
initial phase of the Enredomethod segments on adjacency
edges between the same two blocks are assumed to be
homologous. Because of this assumption and to distin-
guish non-homologous multi-edges later on, the Enredo
method prefers the multi-graph representation with mul-
tiplicity labels on one adjacency edge over multiple sepa-
rate edges. We argue that all segments that are assumed
to be homologous should be defined as blocks. Conse-
quently, our description with blocks of size 1 is valid and
even simplifies the exposition of the method.
Furthermore, the Enredo method only adds edges for

adjacencies that are shorter than a predefined thresh-
old. This results already in a partial segmentation of the
genomes bearing several segments per genome in the
graph. Parts of the genomes may not be represented. We
add all adjacencies to the graph and leave it to later stages
to modify the graph.
In the transformations below, we include the replace-

ment of labeled adjacencies by blocks of size 1. The trans-
formation from an Enredo graph structure to an A-Bruijn
graph structure is possible without additional labels. The
other direction, from A-Bruijn graphs to Enredo graphs,
requires additional information about inversions as shown
by the example in Figure 5.

Enredo graphs from A-Bruijn graphs. First, we describe
the transformation of an A-Bruijn graph structure G′ =
(V ′, E′) into an Enredo graph structure G = (V , EB ∪ EA)

using the labeling function �inv : E′ → {+,−} × {+,−}.
Then, we describe the transformation of blocks of size 1
to labeled adjacency edges in the Enredo graph given full
block information by the function � for transferring labels.
To transformG′ intoG, add for each A-Bruijn graph ver-

tex v′ ∈ V ′ a tail vertex vt and a head vertex vh to the set of
Enredo graph vertices V. Additionally, add an undirected
edge eb between vt and vh to the set of Enredo graph block
edges EB. We obtain a one-to-one mapping of A-Bruijn
graph vertices and Enredo graph block edges, which we
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keep as separate labels m : V ′ → EB on A-Bruijn graph
vertices such thatm[v′]= eb.
Using the labeling function �inv and the mapping m,

we can unambiguously transfer adjacency edges to the
Enredo graph. For each edge e′ = (u′, v′) in the set of A-
Bruijn graph edges E′ where m[u′]= eu and m[v′]= ev,
add an edge e = (ux, vy) to the set of Enredo graph adja-
cency edges EA where ux is an endpoint of eu and vy is an
endpoint of ev. The vertex ux is the head vertex of eu if the
first bit in �(e′) is+, and otherwise the tail vertex. The ver-
tex vy is the tail vertex of eu if the second bit in �(e′) is +,
and otherwise the head vertex.
In another step, we can transform all block edges eb =

{vt , vh} representing blocks of size 1 into adjacency edges.
Since the size of �(eb) is 1, the corresponding vertices vt
and vh are incident to exactly one adjacency edge each,
e1 = (ux, vt) and e2 = (vh,wy). Replace such sets of two
vertices vt , vh and three edges e1, e2, eb by a new adjacency
edge e = (ux,wy). Finally, transfer the label of the block
edge �(eb) = {s} to the adjacency edge such that �A(e) = s.

Enredo graphs to A-Bruijn graphs. We start by describ-
ing how to recover block edges for blocks of size 1 from
adjacency edges that are labeled with segments by �A in
an Enredo graph structure G = (V , EB ∪ EA). Afterwards,
we describe the transformation from G to an A-Bruijn
graph structure G′ = (V ′, E′), which is possible without
additional labels.
Replace each edge e = (ux, vy) from the set of Enredo

graph adjacency edges EA, where �A(e) = s, by two ver-
tices vt and vh and a block edge eb = (vt , vh), and set
�(eb) = {s}. Further, add e1 = (ux, vt) and e2 = (vh, vy) to
the set of Enredo graph adjacency edges EA.
For the transformation to an A-Bruijn graph, add for

each edge eb = (vh, vt) in the set of Enredo graph block
edges EB, a vertex v′ to the set of A-Bruijn graph vertices
V ′. Again, we obtain a one-to-one mapping of Enredo
graph block edges and A-Bruijn graph vertices, which we
keep this time as labels m : EB → V ′ on Enredo graph
block edges such thatm[eb]= v′. Finally, add for each edge
e = (ux, vy) in the set of Enredo graph adjacency edges EA
where ux is incident to the block edge eu and vy is incident
to the block edge ev, an edge e′ = (u′, v′) to the set of A-
Bruijn graph vertices, wherem[eu]= u′ andm[ev]= v′. In
this last step, we lose inversion information in the graph’s
structure.

Cactus graphs. In this section, letG = (V , E) be a cactus
graph structure andMG = (G, �) be a cactus graphmodel.
Cactus graphs have only one type of edges. We define �

as a labeling function of the edges E. The cactus graph
structure G stands out from the other graph structures
by fulfilling well-defined structural properties: Every edge
e ∈ E is part of at most one simple cycle, which makes G

a cactus graph [41], and G has an Eulerian circuit [43]. A
number of construction steps guarantee these properties.
Let A be the set of all adjacencies of segments. The ver-

tices V of G partition A into a set of pairwisely disjoint
subsets �: Each element ν ∈ � is a subset of A, μ ∩ ν = ∅
for any two sets μ, ν ∈ �, and

⋃
ν∈A ν = A. For each sub-

set ν ∈ �, there is a vertex in V. In addition, G has one
distinct vertex, the origin, that represents the start and end
of all genomes φ. In Figure 4, for example, the vertex φ

represents the start and end, the vertex α ∪ β represents
a subset of twelve adjacencies, the vertex γ represents a
subset of eleven adjacencies, and the vertex δ represents
a subset of seven adjacencies. In the vertex δ, for exam-
ple, three of the adjacencies are from the red genome, two
from the blue genome, and another two from the green
genome as shown in the enlarged vertices. The subsets
correspond to subgraphs of the Enredo graph (shaded in
gray in Figure 4). All adjacencies at one end of a block are
always part of the same subset. We describe the details on
how to determine the subsets below in the transformation
from Enredo graphs.
The edges E of G represent blocks just like block edges

in Enredo graphs. For each block b ∈ BG , there is an undi-
rected edge e = {u, v} in the set of cactus graph edges E
(black lines in Figure 4). The endpoint u ∈ V of e rep-
resents a subset of adjacencies μ ∈ � that contains all
adjacencies at one end of b, and the other endpoint v ∈ V
represents ν ∈ � that contains all adjacencies at the other
end of b. It is possible that u = v. The function � : E → BG
labels each block edge e ∈ E with the corresponding block
b ∈ BG such that �(e) = b. With this labeling, recovering
BG fromMG is again straightforward.
The cactus graph has no directed edges as found in

other graphs. Since vertices of G represent segment adja-
cencies in sets, the size of blocks and the number and
precise set of adjacencies remain unclear in the struc-
ture. Recovering this information from G is impossible as
the following examples from Figure 4 demonstrate: The
cactus graph structure does not tell how many genomes
traverse block F and whether block I and K are adjacent in
one of the genomes or not.
Still, each genome corresponds to a (not necessarily

simple) path through G. With the help of labels we can
recover this path. The colored lines in the enlarged ver-
tices in Figure 4 provide the equivalent information as col-
ored adjacency edges in Enredo graphs and would resolve
ambiguity for threading if no duplications were present.
More information is necessary to resolve all ambiguity.
We suggest �adj : E → 2{+,−}×N, where 2X denotes the
power set of a set X, to label the edges with lists of pairs
of an orientation bit and a positive number. The lists have
an entry for each segment of the blocks b = �(e). The
orientation bits are necessary to determine the relative
orientation of segments within blocks that are represented
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by edges e = (v, v) (see blocks B, C, D, F, G, H, and J in
Figure 4). The numbers impose a strict total ordering ≺
on all genome segments s1, s2 ∈ S where s1 ≺ s2 if s1 is left
of s2.
Cactus graphs are not as independently used as the

other genome alignment graphs. The cactus method oper-
ates on two graphs, the cactus graph and another graph
called the adjacency graph [40]. Interestingly, the lat-
ter has the same structure as an Enredo graph. We
view the cactus graph, which enables the characterization
and detection of new substructures, as a supergraph on
top of the Enredo graph. The transformation of Enredo
graph structures to cactus graph structures conforms
with the construction of a cactus graph [22,40] and does
not require additional labels. The transformation back
to Enredo graphs is ambiguous as the above mentioned
examples from Figure 4 show. For this reason, our descrip-
tion of this transformation uses the sparse labeling �adj in
addition to the graph structure.

Cactus graphs from Enredo graphs. To transform an
Enredo graph structure G′ = (V ′, E′

B ∪ E′
A) into a cac-

tus graph structure G = (V , E), we follow three steps
described in [22,40]. First, we transform the Enredo graph
into a precursor cactus graph. The second and third steps
modify the precursor to ensure the structural properties
of cactus graphs. The second step guarantees that every
edge is part of at most one simple cycle. After the third
step, the graph is Eulerian. Throughout all steps, we make
use of a many-to-one mapping m : V ′ → V from Enredo
graph vertices V ′ to cactus graph vertices V, which labels
each Enredo graph vertex v′ ∈ V ′ with a cactus graph
vertex v ∈ V such thatm[v′]= v.
First, compute all adjacency-edge connected components

CA in the Enredo graph structure G′. Each component
C ∈ CA is a subset of the vertices V ′. For each C ∈ CA,
add a vertex to the set of cactus graph vertices V. Assum-
ing that the start and end of all genomes are connected,
add only one origin vertex for all of them to V. We obtain
the many-to-one mapping that indicates the cactus vertex
representing the adjacency edge connected component of
any Enredo graph vertex. Given this mapping, transfer the
Enredo graph block edges EB to the cactus graph: For each
edge e′ = {u′, v′} in the set of Enredo graph block edges
EB, wherem[u′]= u and m[v′]= v, add an edge e = {u, v}
to the set of cactus graph edges E. It is possible that u = v
even if u′ �= v′. This yields the precursor cactus graph in
Figure 4.
In the second step, remove sets of vertices from V that

are 3-edge-connected and add instead a single vertex v to
V (vertices α and β in Figure 4). Correct the mapping m
and redirect block edges that were incident to any ver-
tex in the 3-edge connected component, to be incident
to v.

Finally, replace connected components formed only by
edges whose removal disconnect the graph (not present
in Figure 4). Each such component is a tree with leaf and
branching vertices v1, . . . , vc. Remove v1, . . . , vc and add
instead a new vertex v to V. Just as before, correct the
mappingm and redirect incident block edges to v.

Cactus graphs to Enredo graphs. In the transformation
from a cactus graph structure G = (V , E) to an Enredo
graph structure G′ = (V ′, E′

B ∪ E′
A), we use the labels �adj

to separate the sets of adjacencies represented by cactus
graph vertices V and to add edges E′

A that represent sin-
gle adjacencies to the Enredo graph structure. In addition,
we create a one-to-one edge mapping m : E → E′

B that
labels each cactus graph edge e ∈ E with an Enredo graph
block edge e′b ∈ E′

B where e′b = {u′, v′}. In this mapping,
we store a direction of each Enredo graph block edge and
distinguish the tail vertex u′ from the head vertex v′ such
that m[e]= (u′, v′). The direction is not present in the
Enredo graph structure G′. The transformation proceeds
by threading the genomes G through G.
Initially, identify among all cactus graph edges incident

to the origin vertex u ∈ V the edge e0 = {u, v} whose
label contains the smallest number n0 ∈ �adj(e0) where
n0 < n and n ∈ �adj(e) with e = {u, x}. Add two vertices
u′ and v′ to the set of Enredo graph vertices V ′ and an
edge e′b = {u′, v′} to the set of Enredo graph block edges
E′
B. Update the mapping such thatm[e0]= (u′, v′). Keep a

reference to v′ for the next step.
Among all edges incident to v, identify the next edge

e1 = (v,w) whose label contains the next larger number
n1 ∈ �adj(e1) such that n1 > n0 but n1 < n where n �= n0
and n ∈ �adj(e) with e = {v, x}. If the mapping for e1 is
undefined, add two vertices v′′ and w′ to the set of Enredo
graph vertices V ′ and an edge e′b = {v′′,w′} to the set of
Enredo graph block edges E′

B. Update the mapping such
that m[e1]= (v′′,w′). Further, add an edge e′a = (v′, v′′) to
the set of Enredo graph adjacency edges EA and keep w′
for the next step. If the mapping for e1 is already defined
with m[e1]= (v′′,w′), only add an adjacency edge: If the
orientation bit in �adj(e1) is +, add the edge e′a = (v′, v′′)
to the set of Enredo graph adjacency edges EA and keep w′
for the next step. If the orientation bit is −, add an edge
e′a = (v′,w′) and keep v′′ for the next step.
Next, repeat the same for incident edges of w. Proceed

like this until reaching the end of all genomes to obtain the
full Enredo graph structure G′.
All in all, the need for labels shows that the four

graphs markedly differ in the information represented in
their structures. Complete duplication information (dup)
is only present in alignment graph structures, and only
the structure of Enredo graphs reveals inversion informa-
tion (inv). A-Bruijn graphs are a compact and intuitive
representation but lack both inversion and duplication
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information. Finally, cactus graph structures do not rep-
resent parts of the adjacency information (adj). Despite
these structural differences, all graph models, which
include labels, can be transformed into each other.
Based on these observations, some advantages or dis-

advantages of the graph structures become apparent. For
example, for a genome aligner intended to reveal inver-
sions, an Enredo graph structure appears to be more
suitable, whereas a more general analysis of the genetic
content of genomes will work well with the more compact
A-Bruijn graph structure. Duplications are best visible in
an alignment graph structure. The advantage and infor-
mation provided by cactus graphs subdivides genomes
into independent regions revealing specific and unique
substructures as described in the following.

Graph substructures
We collected substructures from graph-based genome
alignment approaches and classify them here into four
types: colinear paths, visiting blocks, short cycles, and
cactus groups. Substructures are useful for deriving
a meaningful genome segmentation or they indicate
misalignment, i. e., the alignment of non-homologous
segments. Furthermore, they pinpoint parts of genome
alignments that can be improved through modification.
Some substructures have been described for several

graph-based approaches, while others are unique to only
one approach. We conjecture that it is possible to identify
all substructures in all graph models. If the time com-
plexity for detecting occurrences of the substructures was
the same in all graphs models, they could be used inter-
changeably. Here, our aim is to analyze abilities of the
graph structures to reveal potential misalignments with-
out additional information from labels.

Colinear paths. We refer to the first type of substruc-
tures as colinear paths. Colinear paths are sets of blocks
that appear in one or more genomes consecutively in the
same orientation and without breakpoints in between. A
sequence of blocks b1, . . . , bk forms a colinear path if there
is an adjacency but no breakpoint between bi and bi+1 for
all i = 1, . . . , k − 1. Consequently, all blocks along a colin-
ear path have the same size and there are segments s1 ∈ b1
and sk ∈ bk with s1 = (p1, q1) and sk = (pk , qk) such that
s = (p1, qk) is a consecutive genome segment that con-
catenates one segment from each block b1, . . . , bk . We also
consider a single block as a colinear path.
A colinear path is maximal if it cannot be further

extended by other adjacent blocks, but is bounded by
breakpoints. Note that alignment modifications often
remove bounding breakpoints such that a colinear path
can again be further extended. The set of maximal col-
inear paths of a genome alignment determines the final
genome segmentation. Independent from the underlying

graph structure, all graph-based genome alignment meth-
ods have the common aim to maximize colinear paths
both in terms of size (number of genome segments) and
length (total segment lengths).
In Enredo graphs, simple non-branching paths are col-

inear paths. Similarly, colinear paths appear as non-
branching paths in the A-Bruijn graph structure, but here
a non-branching path is not necessarily a colinear path.
Along a non-branching path in A-Bruijn graphs, one or
more blocks can be inverted in a subset of the genomes.
The structure of A-Bruijn graphs provides no information
about inversions (see Figure 5). Thus, to detect colin-
ear paths in A-Bruijn graphs, information from labels is
necessary. Only a single vertex is detectable as (not neces-
sarily maximal) colinear path in the structure of A-Bruijn
graphs. The same holds for the alignment graph structure:
The detection of consecutive blocks is straightforward,
but in order to avoid the inclusion of inverted blocks
that break colinearity, additional information about inver-
sions is necessary. And finally, colinear paths appear in the
cactus graph structure as non-branching paths although
non-branching paths are not necessarily colinear paths.

Visiting blocks. We name the second type of substruc-
ture visiting block, which conceptually is a special type
of a maximal colinear path. A maximal colinear path
{b1, . . . , bk} is a visiting block if there is a block b0 adjacent
to b1 and a block bk+1 adjacent to bk with the following
two symmetric conditions (without loss of generality, we
assume that the tail of b0 is adjacent to the head of b1 and
the tail of bk is adjacent to the head of bk+1): For all seg-
ments s = (p1, qk) of the colinear path that are adjacent
at position p1 to a segment s0 ∈ b0, there is a segment
sk+1 ∈ bk+1 adjacent to s at position qk ; and for all seg-
ments s = (p1, qk) that are adjacent at position qk to a
segment sk+1 ∈ bk+1, there is a segment s0 ∈ b0 adjacent
to s at position p1. The important property is that all seg-
ments from block b0 that are adjacent to segments of the
colinear path, continue in the same block bk+1 at the other
end of the colinear path and vice versa.
A visiting block arises from merging blocks from within

a colinear path with other blocks. If the merged blocks
are short, they often only have spurious similarity. Hence,
they break colinearity at two positions without provid-
ing much evidence for a large structural change. This is
a reason why genome aligners address visiting blocks and
separate the otherwise colinear paths.
In A-Bruijn and Enredo graphs, visiting blocks appear

as simple non-branching paths bounded by branching ver-
tices. In Enredo graphs, the path always starts and ends
with a block edge. In both graphs, at least one branch
which enters the visiting block at one end must be formed
by a set of segments that leaves the visiting block as its
own separate branch at the other end (see Figure 8). This
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A

A-Bruijn graph

B

visiting
block

no
visiting
block

A

Enredo graph

B

Figure 8 Visiting blocks are not distinguishable in the structure of A-Bruijn graphs and in the structure of Enredo graphs. In this example,
only the colors of adjacency edges reflect a difference between the substructure at the top (visiting block) and at the bottom (no visiting block). We
consider colors as edge labels, which are not present in the graph structures. Thus, visiting blocks do not form unique substructures in the structures
of A-Bruijn and Enredo graphs.

condition makes it impossible to identify visiting blocks
in the A-Bruijn and Enredo graph structures. Likewise,
the structure of cactus graphs alone does not reveal vis-
iting blocks. Only in the structure of alignment graphs, it
is possible to determine whether a given colinear path is a
visiting block or not.
Visiting blocks have been described for A-Bruijn graphs

as microblocks [38] and also for Enredo graphs both
implicitly in the “joining” operation and explicitly as a
first type of “aberrant homologies” [39]. Furthermore, we
view another type of “aberrant homologies” from Enredo
graphs as a special case of this substructure: retrotrans-
posed pseudogenes that cause a series of successive visit-
ing blocks.

Short cycles. Cycles in genome alignments are indi-
cators for rearrangement. A change in one of two
identical genomes often introduces a cycle in the corre-
sponding genome alignment. In the same way, spurious
similarity causes cycles and breaks colinearity. If there
are many cycles, they often hide significant colinearity.
For this reason, many genome aligners eliminate short
cycles.
Specific types of cycles also play a role for colinear

sequence alignment. For example, alignment graphs with-
out mixed cycles are colinear alignments [33]. Thus, we
can compute colinear alignments by eliminating mixed
cycles from alignment graphs. Similarly, the partial order
alignment (POA) program [44] uses directed acyclic
graphs (DAGs) for alignment representation, essentially
A-Bruijn graphs without directed cycles.
We define a genome alignment cycle as a sequence of

blocks b1, . . . , bk where block bi is adjacent to block bi+1
for all i = 1, . . . , k − 1 and bk is adjacent to b1. Fur-
ther, we require all sets of positions that define adjacencies
between two blocks bi and bi+1 along the cycle to be dis-
joint. Thereby we exclude pairs of adjacent blocks from

the set of genome alignment cycles. A cycle is short if the
total length of segments along the cycle is below a given
length threshold.
The definition of genome alignment cycles corresponds

to simple mixed cycles in the Enredo graph structure.
They mostly appear in the A-Bruijn graph structure and
alignment graph structure as (mixed) simple cycles, too,
but there is no one-to-one correspondence: The align-
ment graph structure can have more than one cycle for
a single genome alignment cycle (see Figure 9A); and
genome alignment cycles that are caused by inversions
are not visible in the alignment graph structure and
A-Bruijn graph structure. Figure 9B shows an example
for two genome alignment cycles that appear as a sin-
gle cycle in the A-Bruijn graph structure. Despite these
essential differences, cycles in the alignment graph struc-
ture, A-Bruijn graph structure, and Enredo graph struc-
ture always correspond to genome alignment cycles as
opposed to cycles in the cactus graph structure. Subgraphs
in the structures of alignment graphs, A-Bruijn graphs,
and Enredo graphs that correspond to cycles in the cac-
tus graph structure are not even necessarily connected
(see below).
In the following, we discuss two characteristics for dis-

criminating between different types of cycles, the orien-
tation of adjacencies and the number of maximal colinear
paths. Next, we briefly address the special case of palin-
dromes. In addition, we describe how simple cycles in
cactus graphs are used as characteristic substructures
although they differ from genome alignment cycles.

Orientation of adjacencies. A-Bruijn graphs represent
adjacencies as directed edges. This allows classifying
cycles into those that follow the direction of edges and
those that ignore the direction of edges. Pevzner and
colleagues refer to the two types of cycles as whirls and
bulges [19,35]. Whirls are directed, and bulges ignore the
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B C
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B C A

(B)

Enredo graph
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C

A-Bruijn graph

C

A B

Figure 9 Genome alignment cycles have a one-to-one correspondence only in the structure of Enredo graphs. (A) A cycle in the Enredo
graph structure may correspond to several overlapping cycles in the alignment graph structure. In this example, two cycles in the alignment graph
structure are shaded in red and blue. (B) Cycles caused by inversions appear only in the Enredo graph structure. In this example, the upper cycle in
the Enredo graph structure is due to an inversion in block A, hence, does not appear in the A-Bruijn graph structure.

direction of edges. The graph-based genome aligner ABA
addresses whirls and bulges in A-Bruijn graphs [19].
The classification of cycles in whirls and bulges becomes

ambiguous when the graph represents multiple genomes.
It depends on the initially chosen relative orientations of
the genomes. If we invert a subset of the genomes, some
whirls become bulges and some bulges become whirls
(see Figure 10). Note that whirls and bulges have been
first introduced for repeat resolution within one genome
[35], where the classification in whirls and bulges is
unambiguous.

Number of maximal colinear paths. A genome align-
ment cycle is formed by complete maximal colinear paths
and possibly single additional blocks. For example, the
cycle in Figure 10 is formed by the maximal colinear path
consisting of the single block B and two additional blocks
A and C. A and C may be part of longer maximal colinear

paths. In contrast to the orientation of adjacencies, the
number of maximal colinear paths classifies the cycles
unambiguously [38].
The A-Bruijn graph based approach DRIMM-Synteny

[38] uses a classification of cycles into one-way, two-way,
and composite cycles, which is similar but not equivalent
to a classification according to the number of maximal
colinear paths. DRIMM-Synteny focuses only on one-
way and two-way cycles even though there can be cycles
formed by more than two paths. The “annealing” oper-
ation in Enredo [39] places special emphasis on cycles
formed by two maximal colinear paths after each of these
paths has been joined to a single adjacency edge. In addi-
tion, Enredo addresses all other cycles as the third type of
“aberrant homologies”.

Palindromes. Palindromes in genomes are inverted tan-
dem duplications. Hence, they traverse a duplicated block

A

B

C

A-Bruijn graph

A

B

C

bulge

whirl

invert red
genome

A

B

C

Enredo graph

A

B

C

Figure 10 The classification of cycles into whirls and bulges depends on the orientation of genomes. In this example, inversion of the red
genome transforms the cycle from bulge to whirl or vice versa.
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twice and in both directions. Palindromes create a special
type of cycles in genome alignments formed by only one
adjacency at one end of a block. For the detection of palin-
dromes and distinction against tandem repeats, inversion
information is necessary. Thus, the structure of alignment
graphs and A-Bruijn graphs alone cannot reveal palin-
dromes. In Enredo graphs, we recognize palindromes by
an adjacency edge loop (see Figure 11). Palindromes are
separately addressed as “thorns” in A-Bruin graphs [38]
and mentioned as “aberrant homologies” in Enredo [39].

Cactus chains. In cactus graphs, simple cycles are
named chains [22]. The corresponding subgraphs of cac-
tus chains in Enredo graphs, A-Bruijn graphs, and align-
ment graphs are not necessarily connected (see blocks
A, E, I, K in Figure 4). But even though chains do not
correspond to continuous segments of genomes, they rep-
resent conserved orders of blocks (e. g., blocks A, E, I, K
in Figure 4 appear in this order in all genomes). Cactus
chains are addressed by the Cactus method.
It is possible to identify the subset of blocks forming

a cactus chain in the Enredo graph structure, for the
simple reason that an Enredo graph can be transformed
into a cactus graph. However, it appears impossible to
characterize chains in Enredo graphs without comput-
ing e. g., 3-edge connected components. In the structure
of alignment and A-Bruijn graphs, information about the
orientation of adjacent blocks is missing for identifying
cactus chains.

Cactus groups. Paten et al. refer to adjacency edge con-
nected components, which are computed for constructing
a cactus graph, as groups [22]. A cactus group is a set
of adjacencies that forms an adjacency-edge connected

Alignment graph

A A

palindrome or
tandem repeat

A-Buijn graph

A

Enredo graph

A

palindrome

tandem repeat

A

Figure 11 Palindromes and tandem repeats are not
distinguishable in the structure of alignment and A-Bruijn
graphs. Depending on the relative orientation of the segments in
block A, the displayed alignment graph structure and A-Bruijn graph
structure represents a palindrome or a tandem repeat. In Enredo
graphs, palindromes and tandem repeats form distinct substructures.

component in the Enredo graph. All adjacencies of one
group are represented by one vertex in the cactus graph
structure, but a cactus graph vertex can represent several
groups. Strictly speaking, cactus groups are visible in the
structure of Enredo graphs but not in the structure of cac-
tus graphs. Similarly, it is not possible to recognize groups
in the alignment graph and A-Bruijn graph structures
because this requires information about the orientation of
adjacent blocks.
In summary, inversion and duplication information is

necessary for the complete detection of all substructures.
Visiting blocks require duplication information, and all
other substructures require inversion information. Hence,
none of the four graphs reveals all substructures solely by
its structure.
This concludes our classification of substructures on the

basis of a not necessarily exhaustive list of substructures.
Identification of further substructures or an assessment
of their relevance for the accuracy of genome alignments
may possibly point towards another way of classifying them.

Modifications
Graph-based genome aligners modify the genome align-
ments by eliminating substructures from the graphs. The
aim is to reveal long conserved homologies, i. e., blocks
of large size and length. As mentioned in the introduc-
tion, genome alignment comprises selection of local align-
ments and segmentation. Here, we describe modifications
that eliminate substructures either by modifying the set of
local alignments represented in blocks (“splitting blocks”
and “merging parallel blocks”) or by determining break-
point positions that will be part of the final segmentation
(“merging consecutive blocks” and “cutting adjacencies”).
These four modifications derive from the mentioned

graph-based genome alignment approaches, but they
match the operations described for the approaches only in
part. Some genome alignment approaches clearly separate
block modification and segmentation, other approaches
do both tasks together. Similarly, some approaches apply
compound operations consisting of several of the modifi-
cations described here. Our intention is to provide small
modification entities from which it is possible to assemble
more complex operations.
We describe every modification on the set of blocks

(not on the level of alignment components but on the
level of segments). Furthermore, we mention effects of
the modifications in the graph structures although they
can be applied to a genome alignment independently
from a graph structure. We explain how these modi-
fications correspond to operations in the graph-based
genome alignment approaches, especially if the corre-
spondence is not obvious. For example, this is the case for
DRIMM-Synteny [38], which solves the sequence modifi-
cation problem (SMP) on A-Bruijn graphs. The method
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modifies the sequences and determines the segmenta-
tion on the modified sequences before transforming the
sequences back. We transfer the effects directly to the
original sequences and set of blocks, and refer to the
modifications accordingly. The four modifications cover
all operations described in the programs ABA, DRIMM-
Synteny, Enredo, and Cactus.

Splitting blocks. The most prevalent modification is
splitting a block by dividing its set of segments into sub-
sets that form new smaller blocks. Formally, the modifi-
cation replaces a block b = {s1, . . . , sn}, where n ≥ 2
is the size of b, by two blocks b1 = {s1, . . . , sk} and
b2 = {sk+1, . . . , sn}, 1 ≤ k < n. The new blocks may
have size 1, thus may consist of a single segment. Trans-
ferred to the original set of local alignments from which
the blocks were formed, this modification corresponds to
removing local alignments. In some cases, it is enough to
remove a single pairwise local alignment to split a block
into two blocks. In other cases, a particular subset of the
local alignments needs to be removed simultaneously.
Splitting blocks has different effects on the genome

alignment graphs (see also Figure 12). In the alignment
graph structure, the splitting corresponds to removing all
edges between two vertex subsets of a block edge con-
nected component. In A-Bruijn graph structures, where
vertices represent blocks, the modification replaces a ver-
tex by two new vertices; incoming and outgoing edges are
connected to the respective new vertex. The effect of split-
ting blocks in Enredo graph structures is very similar: The
modification duplicates a pair of head vertex and tail ver-
tex connected by a block edge, and reconnects incoming
and outgoing adjacency edges accordingly. In cactus graph
structures, the splitting of block edges can lead to com-
plex rearrangements with both splitting and merging of
vertices.
Graph-based genome aligners eliminate many substruc-

tures using this modification. By splitting blocks, we can
clearly modify a graph so as to eliminate visiting blocks
(see Figure 8), which is done in the programs DRIMM-
Synteny and Enredo. While Enredo splits a block into
two blocks of arbitrary size, DRIMM-Synteny splits sin-
gle segments from a block, thus creating blocks of size 1.
Additionally, this modification can eliminate small cycles,
e. g., whirls in A-Bruijn graphs [35] and mixed cycles in
alignment graphs. Further, the sequence modifications
in DRIMM-Synteny for one-path cycles and palindromes
result in the splitting of segments from blocks. Finally, the
“melting” operation in the Cactus method splits all blocks
along a cactus chain into blocks of size 1.

Merging parallel blocks. The opposite to block split-
ting is a modification that merges blocks by adding local
alignments between segments of the blocks. To merge

A

A

A

A1

A1

A2

Alignment graph

A
A1

A2

A-Bruijn graph

A
A1

A2

Enredo graph

A
A 1

A
2

Cactus graph

Figure 12 The effect of splitting a block on the graphs. In
alignment graphs, removal of block edges splits a block if the removal
disconnects a block edge connected component. In A-Bruijn graphs
and Enredo graphs, vertices (and block edges) need to be multiplied.
In cactus graphs, the effect depends on the context. We show only
the simplest possibility, where an edge is multiplied.

two blocks b1 = {s1, . . . , sk} and b2 = {sk+1, . . . , sn} of
size k and size n − k, respectively, into a new block b =
{s1, . . . , sn} of size n, it is sufficient to add a local align-
ment of two segments si ∈ b1 and sj ∈ b2. Such local
alignments can be new or previously removed by split-
ting blocks. Note that merging of parallel blocks implicitly
aligns all segments of the two blocks.
The effect on the graph structures is the reverse of block

splitting. In the alignment graph structure, it corresponds
to adding block edges. In the A-Bruijn graph structure
two vertices are replaced by a single vertex. In the Enredo
graph structure, two block edges with head and tail ver-
tices are being replaced by a single block edge with one
head and one tail vertex. In the cactus graph structure,
merging of parallel blocks can lead to complex rearrange-
ments just as splitting of blocks. The result is typically a
longer chain or a new sub-cactus.
Graph-based genome alignment approaches usually

merge blocks based on the structure of surrounding



Kehr et al. BMC Bioinformatics 2014, 15:99 Page 17 of 20
http://www.biomedcentral.com/1471-2105/15/99

blocks. Two-way cycles and bulges in A-Bruijn graphs and
Enredo graphs are substructures that suggest to merge
parallel blocks [38,39]. Furthermore, the genome seg-
ments within cactus groups are more likely to be homolo-
gous than others, hence, subject to merging [22]. Both in
Enredo and in cactus graphs, the modification is termed
“annealing”.

Merging consecutive blocks. The preceding two mod-
ifications often generate new or longer colinear paths. It
is possible to replace the consecutive blocks of a colinear
path by a new longer block that rules out the possibility
of a breakpoint between the merged blocks. The mod-
ification replaces two adjacent blocks b1 = {s1, . . . , sn}
and b2 = {s′1, . . . , s′n} without breakpoint in between by a
longer block b that is formed by the concatenation of all
adjacent segments si and s′i where i = 1, . . . , n. Merging
consecutive blocks does not directly affect the alignment
of the genomes, but simplifies the graph structures and
also genome segmentation.
The effects on the graphs are straightforward. In the

alignment graph structure, a single vertex replaces each
pair of vertices in two adjacent block edge connected
components. In the A-Bruijn graph structure, one vertex
replaces two consecutive vertices. In the Enredo graph
structure, one block edge replaces a path consisting of a
block edge, adjacency edge, and another block edge. And
similarly in the cactus graph structure, one block edge
replaces a path of a block edge, a vertex, and another block
edge, thereby reducing the number of vertices in a chain.
Merging consecutive blocks is part of the “joining” oper-

ation in the Enredomethod [39]. The other approaches do
not apply this modification.

Cutting adjacencies. As opposed to merging consecu-
tive blocks, the last modification fixes a breakpoint in the
genome alignment by cutting genomes into several seg-
ments. For example, given a block b = {s1, . . . sn} with
si = (pi, qi) where i = 1, . . . , n and with a breakpoint
at the tail of b, the modification cuts the genomes at all
positions qi. The modification does not affect the set of
blocks but rather the set of genomes. Thus, it is part of the
genome segmentation process.
Cutting adjacencies corresponds to removing a single

edge from an A-Bruijn graph structure, a single adjacency
edge from an Enredo graph structure, or a set of adjacency
edges from an alignment graph structure. Again, there
are multiple possible effects in a cactus graph structure.
In the simplest case, the cactus graph structure remains
unchanged. In all graphs, the removal of edges can discon-
nect the graph structures, generating several components
that correspond to disjoint sets of genome segments.
Thus, it can become impossible to thread the genomes
through the graphs without additional effort [35,38].

Cutting adjacencies is used in various ways by genome
alignment approaches. The ABA method cuts adjacen-
cies for eliminating bulges from A-Bruijn graphs and
the Enredo method for eliminating small cycles in gen-
eral. In addition, the segmentation processes in A-Bruijn
and Enredo graphs implicitly use this modification: In
DRIMM-Synteny, segmentation is realized by coloring the
graph. In Enredo, it is realized by excluding adjacencies
shorter than a given length threshold. Genome segmenta-
tion in alignment graphs and cactus graphs has not been
described explicitly.

Discussion and conclusions
We compared four graph data structures and their usage
for genome alignment. Our comparison identified that
essential pieces of information about duplication and
inversion are only present in the structures of some
graphs. In addition, we examined substructures in the
graph structures that are subject to elimination in vari-
ous genome alignment approaches, and determined four
classes of substructures.We found that information about
duplications or information about inversions or even
both are necessary for distinguishing any type of sub-
structure in the graphs. Thus, it is indeed essential to
keep additional information in labels of the vertices or
edges, though the different graphs depend on the labels
to a lesser or greater extent. Finally, we reduced the set
of operations applied for eliminating substructures from
the graphs to four elementary modifications. Overall, it
became apparent that many ideas are shared by all graph-
based approaches.
These shared ideas allow us to derive a framework for

graph-based genome alignment (see also Figure 13), an
ABC to G-enome alignment. It begins with the com-
putation of local colinear alignments among the input
genomes (A). The choice of the local alignment method
is mostly independent from the following steps though
it influences the resulting genome alignments. Combin-
ing local alignments to blocks, we can build a graph
(B). Which graph to choose depends on the respective
importance of different substructures for an application.
Next, a graph-based genome alignment approach always
characterizes a set of graph substructures (C). Substruc-
tures sometimes have equivalences in other graphs, but
may as well be distinguishable in the structure of only
one graph. Detection of all substructure occurrences (D)
is a requirement for their subsequent elimination (E).
Elimination is accomplished by modifying the underly-
ing set of blocks and sometimes also by introducing
breakpoints in the genomes. The breakpoints determine
already parts of a genome segmentation, which is fin-
ished in a last step (F). The segmentation together
with the modified set of blocks defines the genome
alignment (G).
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Align genomes locally.

Build a graph.

Characterize substructures.

Detect substructures.

Eliminate substructures.

Find a segmentation.

Genome alignment
Figure 13 An ABC to graph-based genome alignment. These six
steps lead to the genome alignment in all of the compared
graph-based genome alignment approaches.

This framework describes the main procedure of graph-
based genome alignment. Still, it has limitations and there
are additional problems to be solved. One such problem
addresses blocks and occurs before building a graph. If
we do not break up the local colinear alignments into
alignment components, blocks may in general partially
overlap. It is possible to resolve overlapping blocks by
trimming [45] or avoid overlaps by requiring local align-
ments to be sparse [39]. A good alternative, which is for
example used by the genome aligner Mugsy [21], is to
obtain a set of mutually disjoint blocks by refining seg-
ment matches [46]. A segment match refinement resolves
overlaps through modest computation without losing any
alignment information.
In addition, the generation of blocks (multiple align-

ments) from pairwise alignments may pose a problem.
There are only few exceptions of genome aligners that
avoid the problem by directly computing local multiple
alignments [45,47]. If we assume transitivity of the align-
ment relation, it is straightforward to go from local pair-
wise alignments to alignment components or to multiple
ungapped alignments. In the case of gapped alignments
however, pairwise alignments can have conflicting gap
patterns. This complicates the task of combining them
to a single block. Heuristic methods such as progressive
alignment [7] or transitive alignment [9] carry out this
task, but are time consuming. Having said that, a colinear

realignment for each block carried out after finishing seg-
mentation has proven to significantly improve alignment
accuracy [45,48]. This suggests the alternative to ignore
gaps in blocks while improving the genome alignment on
the level of blocks.
Further, we have not covered all aspects of the frame-

work in this paper and left out details on the detection
of substructures. For example, ABA and DRIMM-Synteny
detect small cycles by efficiently computing a maximum
spanning tree before heuristically inspecting the remain-
ing edges that create cycles. Different detection methods
clearly have an influence on the time complexity of an
approach and, depending on their sensitivity, also on the
accuracy of a genome aligner. Thus, a thorough analysis of
detection methods is certainly interesting but beyond the
scope of this work.
Similarly, we have not addressed algorithms for elim-

inating substructures. These algorithms determine the
order in which modifications are applied. The elimination
of one type of substructures can create other substruc-
tures, which again can create the first type of substruc-
tures upon elimination. For this reason, iterative elim-
ination strategies are prevalent in graph-based genome
aligners. End criteria for iteration are typically given as
parameters of the method, e. g., a maximal length of cycles
or an explicit number of iterations.
The parameters usually require customized values for

every new input set of genomes. Usually, this inhibits
broad usage of tools if automatic parameter selection is
not offered. A genome aligner has to find a trade-off
between size and length of blocks. Very similar genomes
will have long blocks conserved across many genomes,
whereas more diverged genomes show fewer long blocks
and conservation across fewer genomes. Hence, a factor
to consider for parameter selection is genome divergence
in addition to genome lengths. Given the initial set of local
alignments, automatic parameter selection seems possi-
ble. It will be necessary to carefully study the influence of
all factors to be able to automate the selection, but conse-
quently it will enable a larger community to benefit from
graph-based genome aligners.
Finally, graph-based genome aligners, just as other

genome aligners, have to decide between positional
homology alignment [49] or alignment of all repeats.
More precisely, they have to decide, for segments with
multiple copies in several genomes, whether to align them
in one or in multiple blocks. Not only do repeats lead to
a quadratic explosion in the number of pairwise align-
ments, but they also hide larger regions of colinearity. For
this reason, several genome aligners aim at aligning less
and predict positional homology [17,21,45]. Graph-based
genome aligners compute positional homology to a cer-
tain degree. They do not forbid duplications, but separate
blocks into positional homologs when splitting blocks.
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In conclusion, our framework demonstrates shared
aspects of graph-based genome aligners. It contributes
to developing a common view on graph-based genome
alignment, an active field of research with currently at
least two graph-based tools for genome alignment being
actively developed [50,51]. In the future, we might iden-
tify the steps that have the greatest influence on alignment
accuracy. Already now, we believe that the framework pro-
vides assistance for the development of new and improved
genome aligners.
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