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Abstract

Background: Single Nucleotide Polymorphism (SNP) genotyping analysis is very susceptible to SNPs chromosomal
position errors. As it is known, SNPs mapping data are provided along the SNP arrays without any necessary
information to assess in advance their accuracy. Moreover, these mapping data are related to a given build of a
genome and need to be updated when a new build is available. As a consequence, researchers often plan to
remap SNPs with the aim to obtain more up-to-date SNPs chromosomal positions. In this work, we present
G-SNPM a GPU (Graphics Processing Unit) based tool to map SNPs on a genome.

Methods: G-SNPM is a tool that maps a short sequence representative of a SNP against a reference DNA sequence
in order to find the physical position of the SNP in that sequence. In G-SNPM each SNP is mapped on its related
chromosome by means of an automatic three-stage pipeline. In the first stage, G-SNPM uses the GPU-based short-
read mapping tool SOAP3-dp to parallel align on a reference chromosome its related sequences representative of
a SNP. In the second stage G-SNPM uses another short-read mapping tool to remap the sequences unaligned or
ambiguously aligned by SOAP3-dp (in this stage SHRiMP2 is used, which exploits specialized vector computing
hardware to speed-up the dynamic programming algorithm of Smith-Waterman). In the last stage, G-SNPM
analyzes the alignments obtained by SOAP3-dp and SHRiMP2 to identify the absolute position of each SNP.

Results and conclusions: To assess G-SNPM, we used it to remap the SNPs of some commercial chips.
Experimental results shown that G-SNPM has been able to remap without ambiguity almost all SNPs. Based on
modern GPUs, G-SNPM provides fast mappings without worsening the accuracy of the results. G-SNPM can be
used to deal with specialized Genome Wide Association Studies (GWAS), as well as in annotation tasks that require
to update the SNP mapping probes.

Background
GWAS have shown that genetic variants are often respon-
sible of traits expressed in phenotypes. Genetic variants
may be associated with the cause (e.g., [1]) or with the
predisposition (e.g., [2]) of a disease, and may determine
individual drug responses (e.g., [3]). SNPs are the most
common type of genetic variant in human genome. More
than 10 million SNPs are estimated to be in the human
genome [4]. The scientific community has placed a great

interest in the analysis of SNPs, widely exploiting their
knowledge in GWAS [5-7]. Hence, different public
resources have been devised to share their knowledge (e.g.,
dbSNP [8], the International HapMap Project [9], the
1000 Genomes Project [10]), as well as specialized tools
for SNP calling (e.g. MAQ [11], SOAPsnp [12], SNVMix
[13]) and SNP analysis (e.g., FAST-SNP [14], SNPLims
[15], SNPInfo [16], SNPranker 2.0 [17]). In this context,
SNP genotyping arrays represent an important tool for
genetic analysis. It should be pointed out that the reliabil-
ity of the genotype-phenotype associations that may be
discovered analyzing SNPs is strongly related to the accu-
racy of the data that describe them. In particular, SNP
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genotyping analysis is very susceptible to SNPs chromoso-
mal position annotation errors. In fact, wrongly mapped
SNPs may in some cases affect data analysis and lead to
erroneous conclusions. An interesting study about wrongly
mapped SNPs in commercial SNP chips, and on their pos-
sible functional consequences, has been presented in [18].
In this work, SNPs of various chips have been remapped
using highly sensitive alignment parameters against their
reference genomes, with the goal to highlight discrepan-
cies between the found genomic positions and those pro-
vided by the chip vendors. These discrepancies highlighted
that more sensitive aligner parameters should be used to
achieve an accurate alignment instead of retrieving a par-
tial best alignment with extra SNPs, indels or less SNP
flanking sequence aligned. This suggests that researchers
should closely examine how mapping data have been
obtained, with the goal of analyzing their accuracy and if
necessary taking into account the opportunity to update
them. However, mapping data are provided to the users
along the SNP chips, omitting any information about the
algorithm and the parameter settings used to obtain them.
Then, meticulous researchers often plan to remap the
SNPs to obtain more accurate chromosomal positions
before performing association studies. In general, when a
new build of a genome is available it might be productive
to re-analyze the data of old genotyping experiments while
exploiting the new reference sequences. In this case, as the
mapping data of SNP chips are related to a given build of
the genome under consideration (irrespective of their
original accuracy), chromosomal positions need to be
updated according to the newest build. Moreover, in geno-
typing analysis often researchers need to merge genetic
datasets coming from different genotyping platforms,
which in turn use different sets of SNPs to represent
genetic polymorphisms. To this end, it is necessary to
know the exact position of a SNP in a chromosome and
update this information when new builds of the reference
genome are available.
Specialized tools as LiftOver [19], AssemblyConverter

[20], and the NCBI Genome Remapping Service [21] have
been devised to project the coordinates of genomic regions
from a given build to another build of a genome. These
tools are very useful to update chromosomal coordinates
between different reference sequences; however they
might be unable to perform a given conversion between
different assemblies. In fact, these tools typically allow
only a limited set of assembly-assembly conversion com-
binations. Then, it might be impossible to use them to
update SNPs positions on a given build of a genome.
Moreover, new positions obtained using these tools are
strongly related to the initial positions provided by the
vendor. Unfortunately, if a SNP has been previously
wrongly mapped by the vendor, the error will be spread to
the updated position. Finally, these tools are specialized to

convert coordinates from a build to another and do not
permit to remap a SNP against the same reference build
to look for discrepancies with the vendor positions.
Researchers use tools as BLAST [22] or BLAT [23] to

analyze the SNP probes positions and/or to update
them to the genome or to the transcriptome. For
instance, some researchers highlighted that many of the
Illumina probes have unreliable original annotations and
defined a pipeline that exploits both BLAST and BLAT
to perform complete genomic and transcriptomic re-
annotation of the probe sequences [24]. AffyProbeMiner
[25] is a platform-independent tool that uses all RefSeq
mature RNA protein coding transcripts and validated
complete coding sequences in GenBank [26] to regroup
the individual probes into consistent probe sets to
remap them to the correct sets of mRNA transcripts
exploiting a local implementation of the BLAT server.
The Bioconductor [27] package named altcdfenvs has
been used to investigate how probes found on Affyme-
trix microarrays were matching on more recent curated
collections of human transcripts. Experiments showed
that not all the probes matching a reference sequence
were consistent with the grouping of probes by the
manufacturer of the chips [28]. However, using tools as
BLAST or BLAT to update thousands or millions of
SNPs is a very expensive task in terms of computing
time.
In this work, we present an improved version of

G-SNPM (standing for GPU-SNP Mapping) [29], an
accurate and very fast tool devised to cope with the pro-
blem of updating SNPs chromosomal positions. Written
in Python, G-SNPM is mainly based on the SOAP3-dp
[30] short-read mapping tool to exploit the computation
power of modern GPUs.
G-SNPM is available at the following address http://

www.interomics.eu/sp1-wp2.

Methods
G-SNPM is a tool that maps a sequence representative of
a SNP against a reference sequence in order to find the
absolute position of the SNP in that sequence. For geno-
typing analysis a SNP is represented by a oligonucleotide
probe for each possible allele. In turn, these probes can be
synthetically described by a regular expression obtained by
combining the flanking sequences of a SNP with a group-
ing construct that represents its possible alleles (e.g.,
GCACTCTCACATGGATTAGGGAATTA[CG]ATGCA-
GACCTCCTGCACAACTGCCC). Since public reposi-
tories as dbSNP provide short and fixed length flanking
sequences, we assume that typically the probes used to
design a SNP chip are represented by short sequences.
Starting from this consideration, a short-read mapping
tool could be successfully used to cope with the SNP map-
ping task.
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In the following of this section, we first introduce exist-
ing state-of-the-art short-read mapping tools. Then, we
propose our strategy, devised to deal with SNP mapping
problems. Successively, we discuss about the adopted
alignment constraints. Finally, we briefly resume the
minimal hardware and software equipment required to
use G-SNPM.

Short-read mapping tools
Several tools have been devised to perform short-read
mappings. Without aiming to be exhaustive, let us cite
some of the most popular solutions, as MAQ [31], RMAP
[32,33], Bowtie [34], BWA [35], CloudBurst [36], and
SHRiMP2 [37,38]. MAQ maps short sequence reads to a
reference genome by calculating the probability of a read
alignment to be correct, and consensus genotype calling
with a model that incorporates correlated errors and
diploid sampling. It supports gapped alignment and can
align reads up to 128 bp. RMAP uses quality scores to pro-
vide accurate ungapped alignments. In so doing, it exploits
two different mapping criteria. A first criterion is based on
a simple count of mismatches between a read and the
aligned genomic region, while a second criterion makes
use of the base-call quality scores. By manipulating the
quality-score cutoff, the second criterion provides another
means of adjusting sensitivity and specificity. In particular,
it allows positions to contribute when they are of high-
quality, but not be penalizing if they are low-quality. Bowtie
is a memory-efficient short-read aligner that exploits the
Burrows-Wheeler Transform (BWT) to index the genome
allowing only ungapped alignments. BWA is another tool
that exploits the BWT to index the reference sequences. It
can also provide gapped alignments, while Bowtie cannot.
It consists of three algorithms (i.e., BWA-backtrack, BWA-
SW and BWA-MEM), devised to perform both short and
long read alignments. CloudBurst is a parallel seed-and-
extend read-mapping tool able to align reads with a speci-
fied number of differences, including both mismatches and
indels (insertions/deletions). It exploits the open-source
Hadoop [39] implementation of MapReduce [40] to paral-
lelize the execution using multiple computing nodes.
SHRiMP2 exploits specialized vector computing hardware
to speed-up the Smith-Waterman [41] dynamic program-
ming algorithm. It is a multi-core short-read mapping tool
that enables the alignment of reads with extensive poly-
morphism and sequencing errors. A comparative study
aimed at assessing the accuracy and the runtime perfor-
mance of different state-of-the-art Next-Generation
Sequencing (NGS) read alignment tools highlighted that
among all SOAP2 [42] is the one that showed the higher
accuracy [43]. Exhaustive reviews of the tools cited above
can be found in the literature (e.g., [44]).
In general, the mentioned solutions exploit some

heuristics to find a good compromise between accuracy

and running time. Recently, GPU-based solutions have
been proposed to cope with different bioinformatics
problems [45-48]. GPUs have also been exploited to
cope with the exponentially increasing throughput of
NGS. In particular, the computational power of these
hardware accelerators is helping researchers to speed
the short-read mapping process without compromising
accuracy and sensitivity. Lately, the GPU-based short-
read mapping tools Barracuda [49], CUSHAW [50],
SOAP3 [51] and SOAP3-dp have been proposed to the
scientific community. Experimental results show that
SOAP3, which is the GPU evolution of SOAP2, outper-
forms the popular tools BWA and Bowtie. When tested
to align millions of 100-bp read pairs to the human gen-
ome, it resulted at least 7.5 times faster than BWA, and
20 times faster than Bowtie. Moreover, SOAP3 does not
exploit heuristics and it is able to align correctly slightly
more reads than BWA and Bowtie. SOAP3 is able to align
a read to a reference sequence with up to four mismatches
while it does not support gapped alignments. Lately, the
SOAP3 research team released SOAP3-dp, a new version
of the aligner that exploits dynamic programming to sup-
port gapped alignments. Compared with BWA, Bowtie2
[52], SeqAlto [53], GEM [54], and the previously men-
tioned GPU-based aligners, SOAP3-dp is two to tens of
times faster, while maintaining the highest sensitivity and
lowest false discovery rate on Illumina reads with different
lengths. Table 1 summarizes the described tools.

The implemented strategy
As previously seen, a SNP can be synthetically represented
by means of a regular expression R that uses a single
grouping construct to describe the possible alleles. How-
ever, short-read mapping tools are not designed to work
with sequences described by a regular expression with spe-
cialized constructs. Then, two trivial approaches could be
used to map a SNP with a short-read mapping tool. As for
the former approach (see Figure 1), the probe sequences
related to the alleles of a given SNP are dealt with sepa-
rately in the alignment process. In other words, each
probe sequence is aligned against a reference sequence
independently from the others using the same mapping
tool and identical setting parameters. After that sequences
have been aligned, results are merged and analyzed to
detect and eventually update the SNPs mapping positions.
As for the second approach (see Figure 2), the probe
sequences related to the alleles of a given SNP are dealt
with simultaneously in the alignment process. To this end,
a single sequence must be used to represent the probes
related to a SNP. This sequence can be obtained by substi-
tuting the grouping construct in R that describes the pos-
sible alleles with a aNy symbol that represents any possible
nucleotide. In so doing, the expressiveness of the new
sequence increases with respect to that of the starting one,
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Table 1 Short-read mapping tools

Name Mapping Strategy Indels Support Quality evalutation GPU-based

Barracuda BWT-based indexing of the reference Yes Yes Yes

BWA BWT-based indexing of the reference Yes Yes No

Bowtie BWT-based indexing of the reference No Yes No

CUHSHAW2 BWT-based indexing of the reference Yes Yes Yes

CloudBurst Hash the reads Yes No No

MAQ Hash the reads No Yes No

RMAP Hash the reads Yes Yes No

SHRiMP2 Hash the reads Yes Yes No

SOAP2 BWT-based indexing of the reference Yes Yes No

SOAP3 BWT-based indexing of the reference No No Yes

SOAP3-dp BWT-based indexing of the reference Yes No Yes

A summary of some of the most popular short-read mapping tools.

Figure 1 Using two sequences to represent a SNP. Two sequences are separately aligned for a SNP. After the alignment, results are analyzed
to calculate the absolute position of the SNP.
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while its information content decreases. In this case,
results obtained by aligning the new sequence against a
reference sequence must be analyzed to filter out false
positive alignments: i.e., those alignments for which the

aNy symbol that represents the SNP does not match with
one of the possible alleles for that SNP. Only after this
step alignments can be analyzed to update SNPs mapping
positions. This approach can significantly reduce the

Figure 2 Using a sequence to represent a SNP. Only a sequence is aligned for a SNP. After the alignment results are analyzed to remove
those false positives and to calculate the absolute position of the SNP.
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computational load needed to perform the alignment task.
For instance, for biallelic SNPs it will be almost halved
with respect to the first approach. Basically, G-SNPM uses
this approach to align a sequence representative of a SNP
by means an automatic three stage pipeline (see Figure 3).
First stage of the pipeline
G-SNPM uses the GPU-based SOAP3-dp short-read
mapping tool to align a sequence related to a SNP against
its related chromosomal sequence. Typically, a short-read
mapping tool is used to map a read against the overall
genome. In fact, the genome region from which the read
has been generated from the sequencer is unknown. To
reduce the running time G-SNPM uniquely aligns each
SNP against the reference chromosomal sequence shown
in the mapping data of the chip. In fact, it is very unlikely
that a SNP has been mapped to a wrong chromosome.
Then, since SOAP3-dp exploits the BWT to index a
reference sequence, it is necessary to index separately

each chromosomal sequence involved in the mapping
task.
In general, the alignment process can generate one of

three possible results. In particular, also depending on
the setting parameters, SOAP3-dp:

i. provides a unique alignment;
ii. provides multiple alignments;
iii. is unable to find an alignment with respect to the
given constraints.

As previously explained, the adopted mapping strategy
requires that G-SNPM analyzes the resulting alignments
to filter out false positives. During the alignment,
SOAP3-dp aligns each aNy symbol in a sequence as a
mismatch against any possible nucleotide in the refer-
ence sequence. Therefore, G-SNPM i) analyzes each
alignment to look for false positives, ii) removes them,

Figure 3 G-SNPM mapping strategy. G-SNPM exploits a three-stage pipeline to update the chromosomal position of a SNP. In the first stage,
SOAP3-dp is used to unambiguously map a SNP against a reference sequence. Unmapped or ambiguously mapped SNPs are remapped at the
second stage by exploiting SHRiMP2. At the third stage, mapped SNP sequences are analyzed to identify the SNP chromosomal position.
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and then iii) updates the edit distance of those align-
ments classified as true positives. To detect a unique
SNP chromosomal position, a unique alignment must
be considered valid. To this end, G-SNPM analyzes all
valid alignments of each SNP sequence to detect the
best hit and discard the others. Basically, the best hit
might be detected by calculating the score alignment of
each hit and selecting the best. However, G-SNPM ana-
lyzes a more complex score. In particular, it detects the
best hit by analyzing the BWA-like MAPQ score provided
with the last releases of SOAP3-dp that is intended to
indicate confidence of read placement accuracy. This
score assigns a Phred-like mapping quality score to each
read based on match uniqueness, sequence identity, end-
pairing, and inferred insert size.
Second stage of the pipeline
It is aimed at refining the mapping process. At this stage,
G-SNPM tries to remap those SNPs (if any) that have not
been mapped at the first stage of the pipeline; in other
words, those SNPs for which SOAP3-dp has not been
able to provide valid alignments for their representative
sequence and/or those SNPs for which G-SNPM has not
been able to find unambiguous mapping chromosomal
positions (i.e., SNPs for which SOAP3-dp found multiple
valid alignments with the same mapping quality score).
G-SNPM uses the Smith-Waterman based short-read
mapping tool SHRiMP2 to perform this stage of the pipe-
line. As for the first stage, also in this stage G-SNPM
adopts an identical policy to detect and discard false posi-
tives alignments that might be found by SHRiMP2, while
exploiting the SHRiMP2 mapping quality score to detect
the best alignment. At the end of this stage, G-SNPM
reports those SNPs for which SHRiMP2 has been unable
to find a unique valid alignment of their representative
sequences or an unambiguous SNP chromosomal
position.
Third stage of the pipeline
G-SNPM analyzes unique valid alignments of each suc-
cessful mapped SNP to calculate the absolute position of
each SNP. An output file is generated, containing for each
SNP, its name, the related chromosome, the original SNP
position, and the mapped SNP position. Moreover, infor-
mation about the alignment as the strand, and the CIGAR
string are also provided. Then, the pipeline is re-executed
to map against the overall genome i) those SNPs that
G-SNPM has been unable to map against a unique chro-
mosomal sequence and ii) those SNPs unmapped by the
chip vendor.
In G-SNPM reference DNA sequences are accepted in

standard FASTA format, whereas SNPs must be repre-
sented by using two files: a FASTA file with the represen-
tative reads of the SNPs, and another flat file with
information about the SNP, in particular the original abso-
lute SNP position and its alleles. Currently, automatic

generation of these files is provided for SNP probes of the
Illumina Chip. G-SNPM analyzes Illumina files to automa-
tically generate the previously described files for each
chromosome.

Alignment constraints
G-SNPM defines different mapping constraints at the
first and second stage of its pipeline, according to the
different two mapping tools exploited.
First stage
Typically, due the time required to find an alignment,
short-read mapping tools allow to set some parameters to
limit the maximum alignments allowed for read sequence.
For instance, by default Bowtie allows only one alignment
for read sequence. In general, this limitation might affect
the quality of the final results, especially when no sensitive
alignment parameters are imposed. Short-read mapping
tools that exploit modern GPUs allow to easily by-pass the
limitations of this constraint. By default, SOAP3-dp gener-
ates up to 1000 alignments for read. We deem that this is
a good constraint and did not modified it in G-SNPM.
However, users can easily modify it to decrease, increase,
or avoid the upper limit to the alignments that may be
found for each sequence.
As already pointed out, SOAP3-dp is the evolution of

SOAP3 that exploits dynamic programming to support
indels in alignments. Depending on whether dynamic pro-
gramming is enabled or not, SOAP3-dp will generate
gapped or ungapped alignments. When dynamic program-
ming is enabled, SOAP3-dp performs the alignment in
two steps. In the first step it looks for ungapped align-
ments that meet a given constraint on the allowed number
of mismatches. Up to 4 mismatches are allowed for this
step. In the second step, it exploits dynamic programming
to look for gapped alignments. By default, in the first step
SOAP3-dp allows up to 2 mismatches to speed-up the
overall alignment process. However, G-SNPM modifies
this constraint to allow alignments with up 4 mismatches.
Users can decreases this value in G-SNPM.
Second stage
SHRiMP2 is an accurate short-read mapping tool that
has been designed to parallelize the alignment process
on multi-core CPUs. By default SHRiMP2 uses only a
CPU-core. Then, to speed-up the analysis performed at
this stage, G-SNPM assigns all available CPU-cores to
SHRiMP2. In particular, it automatically detects the
number N of available CPU-cores, and then runs
SHRiMP2 on N-1 cores; a CPU-core is reserved to the
operating system. However, it is possible to set manually
how many CPU-cores must be assigned to SHRiMP2.
Depending on the number of available CPU cores, it

might be useful to limit the maximum number of align-
ments for sequence, with the aim to reduce the overall
mapping time. However, it should be noted that most
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SNPs are successfully mapped at the first stage of the pipe-
line. So, the activation of the second stage is sporadic and
involves only some SNP sequences. We deemed useful not
imposing any limitation on the number of alignments at
this stage, to prevent any worsening of the overall accuracy
of G-SNPM. At this stage, SHRiMP2 is enabled to allow
ungapped alignments. Alignment score and penalties are
those of default of SHRiMP2 (i.e., match score = 10; mis-
match penalty = 15, gap open penalty = 33, gap extend
penalty = 33). It is possible to change these values to meet
user constraints.

Requirements
G-SNPM works on linux based systems with a custom
installation of Python (release >=2.7.3) and equipped with
a CUDA (Compute Unified Device Architecture) enabled
GPU-card. We tested it on two families of NVIDIA GPU
cards. In particular tests have been carried out on the NVI-
DIA FERMI architecture based GTX 480 card, and on the
NVIDIA Kepler architecture based k10 and k20c cards.
Currently, SOAP3-dp can be run on CUDA-3.2 and
CUDA-4.2 releases, while no support for the CUDA 5.0
release has been provided yet. We suggest to scientists
interested to use G-SNPM to install the CUDA-4.2 release.

Results
To assess G-SNPM, we used it in the task to remap about
i) 1.2 millions of SNPs of the Illumina Chip HumanOmni
1S (version 1) aligned by the chip vendor on the build
37.1 of the human genome, ii) 370 thousands of SNPs of
the Illumina Chip CNV370 (version 3) aligned on the
build 36.1 of the human genome, and iii) 318 thousands
of SNPs of the Illumina Chip HH300 (version 2) also
aligned by the chip vendor on the build 36.1 of the
human genome. Experiments have been mainly executed
i) to highlight discrepancies in respect in map positions
provided by the chip vendor, and ii) to assess the capabil-
ity of G-SNPM to deal with the mapping problem. In the
following of this section, we first briefly summarize both
the hardware configuration and the short-read mapping
tool releases exploited to carry out experiments. Then,
we describe the way data have been prepared, so that a
scientist can easily reproduce experiments. Finally, we
present and discuss results.

Hardware and software configuration
Experiments described hereinafter have been carried out
on a 12 cores Intel Xeon CPU E5-2667 2.90GHz with
128 GB of RAM. An NVIDIA Kepler architecture based
Tesla k20c card with 0.71 GHz clock rate and equipped
with 4.8 GB of global memory has been exploited to
execute SOAP3-dp. Moreover, we used the following
software releases: SOAP3-dp rel. 2.3.116 and SHRiMP2
rel. 2.2.3.

Data preparation
We downloaded the .csv file version of the Manifest of
the analyzed chips from the Illumina website. Then, we
used our Illumina parser, which is distributed together
with G-SNPM, to automatically generate the working
files used by G-SNPM. Successively, we downloaded the
builds 36.1, 37.1 and 37.3 of the human genome from
the NCBI Reference Sequence Database [55]. Then, we
used G-SNPM-Builder (also distributed along G-SNPM),
to build the BWT indexes required in the first stage of
the pipeline.

Analysis of mapped SNPs
We used G-SNPM to perform two different experi-
ments. As for the former, we used it to remap the SNPs
of each chip against the same genome build previously
used by the chip vendor. This experiment permits to
put into evidence and to analyze possible discrepancies
between the SNPs positions obtained with G-SNPM and
those provided by the chip vendor. As for the second
experiment, we first used G-SNPM to remap the SNPs
against the newest build 37.3 of the human genome and
then, we analyzed the reliability of the updated posi-
tions. Table 2 reports some details about the SNPs of
the analyzed chips. As for the HumanOmni 1S chip, we
observed that the vendor provided the positions of
1.180.662 SNPs. As the overall number of SNPs was
1.185.976 no information about the position of 5.314
SNPs was provided. The chip vendor provided the posi-
tions of all the 373.397 SNPs of the CNV370 chip, ver-
sion 3, and of all the 318.237 SNPs of the HH300 chip,
version 2.

Remapping SNPs against the same reference sequence
used by the chip vendor
Table 3 summarizes results obtained remapping SNPs
with G-SNPM against the same reference sequences used
by the chip vendor. In the table are reported: i) the overall
number of SNPs mapped using G-SNPM, ii) the number
of those uniquely mapped, iii) the number of SNPs for
which G-SNPM has been unable to find any alignment,
and iv) the number of SNPs for which our tool found posi-
tions that differ from those provided by the chip vendor.
As for the chip HumanOmni 1S, G-SNPM has been able

Table 2 Analyzed chips

CHIP name hg build SNPs unmapped SNPs

HumanOmni 1S 37.1 1.185.976 5.314

CNV370 ver 3 36.1 373.397 0

HH300 ver 2 36.1 318.237 0

The first column reports the name of the chips and the second the reference
build of the human genome used by the chip vendor to map the SNPs. The
third and fourth column report the overall number of SNPs of the chip and
the number of them unmapped by the chip vendor, respectively.
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to remap 4.460 of the 5.314 SNPs for which the chip ven-
dor did not provide any mapping position. Most of these
SNPs have been mapped at the first stage of G-SNPM. In
particular, they have been mapped by SOAP3-dp looking
for ungapped alignments and without exploit any heuris-
tic. Only 35 of these SNPs have been mapped looking for
gapped SNPs. In the last column of Table 3 is reported
that 4.626 SNPs have been differently mapped with
G-SNPM. It should be observed that this value includes
also the 4.460 SNPs mapped only by G-SNPM. Analyzing
the SNPs mapped by the chip vendor, only 166 of them
have been mapped differently with G-SNPM, one on a dif-
ferent chromosome. As for the other chips, G-SNPM
mapped uniquely against their related reference build
almost all SNPs. Experimental results shown that G-
SNPM mapped differently 14.391 SNPs (7 on a different
chromosome) of the chip CNV370, version 3, and 1.822
SNPs (none on a different chromosome) of the chip
HH300, version 2. Also for these chips G-SNPM mapped
almost all SNPs without considering gapped alignments.
In our opinion, the differences between the SNPs mapped
by G-SNPM with respect those mapped by the chip ven-
dor can be attributed to differences in the alignment algo-
rithms and settings. As reported in the background
section, different works have proved that often unreliable
positions are provided along the chip, typically due to the
fact that not very accurate alignment were obtained. We
do not known which algorithm and alignment settings
used the vendor. Then, it was difficult to compare the
accuracy of our tool with the one of the vendor. In any
case we claim that G-SNPM is very accurate. Being based
on SOAP3-dp, it looks for ungapped alignments with up
to four mismatches without exploiting any heuristics. It is
worth pointing out that only a very low percentage of
SNPs positions have been calculated starting from gapped
alignments and that almost all sequences representative of
the SNPs have been uniquely mapped. As for the SNPs of
the HumanOmni 1S mapped by G-SNPM and for which
the chip vendor did not provide any position, we can sup-
pose that either no valid alignment have been found for
them or, conversely, that multiple valid alignments have
been found making impossible to unambiguously map

these SNPs. As for the 854 SNPs unmapped also by our
tool, we assume that G-SNPM tried to map them using
some heuristics that did not permitted to find valid
alignments.

Remapping SNPs against the build 37.3 of the human
genome
Table 4 summarizes results obtained remapping SNPs
with G-SNPM against the build 37.3 of the human gen-
ome. It should be observed that results are slightly differ-
ent from those obtained remapping the SNPs against the
same build used by the chip vendor. Results show that
G-SNPM has been unable to remap some SNPs pre-
viously mapped against the oldest builds. As for the chip
HumanOmni 1S, almost all SNPs unmapped by the chip
vendor have also been mapped against the newest build
of the genome. In particular, G-SNPM has been unable
to find a valid alignment for 868 SNPs (i.e., 14 SNPs
more than in the previous experiment). For the other
SNPs unmapped by the vendor, G-SNPM found that
they map to the same positions in both builds. As for the
other chips, G-SNPM has been unable to find a valid
alignment for 23 SNPs of the chip CNV370, version 3,
and for 20 SNPs of the chip HH300, version 2. As for the
unmapped SNPs, it is possible that, i) due to the refine-
ment of the reference sequence, some SNPs are no longer
present in the latest build or that ii) the refinement of the
reference sequence required complex gapped alignments
that G-SNPM is unable to find, due to the procedures
adopted in the two stages of its pipeline. As in the pre-
vious experiment, almost all SNPs have been mapped at
the first stage of G-SNPM, while looking for ungapped
alignments.
To analyze the reliability of our tool, we compared the

SNPs positions on the build 37.3 obtained with G-SNPM
with i) those obtained using a genome remapping tool,
and with ii) those retrieved by dbSNP. As for the first
comparison, we used the NCBI Genome Remapping Ser-
vice because at the time of writing of the manuscript it is
the only assembly-assembly converter tool able to project
features from the build 36.1 to the build 37.3, whereas
neither the NCBI Genome Remapping Service nor the

Table 3 Results obtained using G-SNPM to remap the SNPs against the same reference build used by the chip vendor

SNPs

CHIP name hg build mapped uniquely mapped unmapped differently mapped

HumanOmni 1S 37.1 1.185.122 1.185.118 854 4.626

CNV370 ver 3 36.1 373.397 373.382 0 14.391

HH300 ver 2 36.1 318.237 318.237 0 1.822

A summarization of the discrepancies observed remapping the SNPs with G-SNPM against the same reference builds previously used by the chip vendor to
detect the SNPs positions. The first and the second column report the name of the chip and its reference build, respectively. The third column reports the overall
number of SNPs mapped using G-SNPM, whereas the fourth column reports the number of them that are uniquely mapped. The fifth column reports the
number of SNPs for which G-SNPM did not provide any valid alignment. Finally, the sixth column reports the number of mapped SNPs for which G-SNPM
provided different positions with respect to those detected by the chip vendor.
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UCSC LiftOver and Ensembl AssemblyConverter services
are currently able to project features from the build 37.1
to the build 37.3. Therefore, this experiment has not been
performed for the chip HumanOmni 1S. The NCBI Gen-
ome Remapping Service projects the coordinates of a
chromosomal region between two different builds of a
genome. In this case, we are interested to project against
the build 37.3 the coordinates of those regions that con-
tain the SNPs in the build 36.1. Assuming that the SNPs
positions provided by the chip vendors are correct, we can
identify these regions retrieving the sequences representa-
tive of the SNPs, their relative positions within these
sequences, and their absolute positions within the chromo-
some sequence. This information is present in .csv files of
the Manifest of the chips analyzed for this study. Table 5
summarizes results obtained with the NCBI service. It
should be observed that it has been unable to convert the
coordinates of several regions if compared with the num-
ber of SNPs unmapped by G-SNPM. In particular, it has
been unable to project the coordinates of 212 SNPs of
the CNV370 chip, version 3, and the coordinates of 28
SNPs of the HH300 chip, version 2. Typically, regions are
unmapped either as they are deleted in the new reference
or as intersects multiple chains. Moreover, we analyzed if
the SNPs mapped with G-SNPM fall in the regions that
have been projected with the NCBI service. Results
reported in Table 6, show that G-SNPM mapped 7.296
SNPs of the chip CNV370, version 3, in different regions of
those obtained with the NCBI service, as well as 454 SNPs
of the chip HH300, version 2. Differences might be related
to the fact that G-SNPM looks for the nucleotide present
in the SNP position and discard those alignments that do

not match with one of the possible alleles for the SNP. As
the NCBI service does not perform this check, it can report
also wrong regions. As for the second comparison, we dif-
ferently analyzed the SNPs of the HumanOmni 1S chip
from those of the chips CNV370 and HH300. In particular,
we retrieved from dbSNP the SNPs of the HumanOmni 1S
chip unmapped by the vendor. Only 47 of them have a
rsID whereas the others have been derived from the 1000
Genomes Project (kgp identifiers). We converted the SNPs
with kgp identifiers to rsIDs in dbSNP132 using Mega-
BLAST [56] to align against the database the sequences
representative of the SNPs. We observed that only 859 of
5.314 SNPs were present in dbSNP132 and all of them
with multiple positions. Only a little percentage of them
validated. For about half of these KGP SNPs, and for all
SNPs in the chips with rsID we found in dbSNP the same
positions obtained with our tool. As for the other chips, we
looked for all SNPs mapped by G-SNPM on dbSNP.
About 281 thousands SNPs of the CNV370 chip and about
238 thousands SNPs of the HH300 chip were present in
dbSNP. We observed that G-SNPM did not provide identi-
cal SNPs positions for 1.447 SNPs of the CNV370 chip and
for 1.281 SNPs of the HH300 chip. As for the SNPs for
which G-SNPM provided different positions, we observed
that dbSNP reports longer flanking sequences that those
reported by the vendor. This can be related to the different
mappings of G-SNPM as well as the regions unprojected
by the NCBI Genome Remapping Service.

Performance analysis
Table 7 summarizes the performance of G-SNPM in
terms of overall mapped SNPs and running time.
Results are reported for all experiments we performed
and are distinct according to the mapping option. As
previously explained, G-SNPM tries to remap against

Table 4 Results obtained using G-SNPM to remap the SNPs against the build 37.3 of the human genome

CHIP name hg build mapped SNPs uniquely mapped SNPs unmapped SNPs

HumanOmni 1S 37.3 1.185.108 1.185.103 868

CNV370 ver 3 37.3 373.374 373.371 23

HH300 ver 2 37.3 318.217 318.216 20

The first and the second columns report the name of the chip and its reference build, respectively. The third column reports the overall number of SNPs mapped
using G-SNPM, whereas the fourth column reports the number of them uniquely mapped. The fifth column reports the number of SNPs for which G-SNPM did
not provide a valid alignment.

Table 5 SNPs chromosomal regions projected with the
NCBI Genome Remapping Service against the build 37.3
of the human genome

CHIP name projected regions unprojected regions

CNV370 v. 3.0 373.185 212

HH300 v. 2.0 318.209 28

A summarization of the results observed converting from the build 36.1 to the
build 37.3 of the human genome the coordinates of the regions containing
the SNPs detected by the chip vendor. The first column reports the name of
the chip, whereas the second and the third report the number of regions
successfully projected against the build 37.3 and the number of regions for
which the NCBI service has been unable to provide any conversion,
respectively.

Table 6 Comparison between G-SNPM and the NCBI
Genome Remapping Service

CHIP name regions differently remapped

CNV370 ver 3 7.296

HH300 ver 2 454

The table shows for each analyzed chip the number of SNPs remapped with
G-SNPM against the build 37.3 of the human genome whose positions did
not fall inside the regions obtained with the NCBI Genome Remapping
Service.
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the overall genome sequence those SNPs that have been
unmapped against the same chromosomal sequence
detected by the chip vendor. In these cases, analysis at
the second stage of G-SNPM can require a very long
running time. G-SNPM by default tries to align these
SNPs only at the first stage. To force the second stage
alignment, users must specify the “D” option. In the
table, results are summarized for both cases. It should
be observed that the running time greatly increases
when the “D” option is used. Only a small percentage of
SNPs is further mapped against the overall genome
sequence at the second stage of G-SNPM. The time for
mapping the SNPs of chip HH300, version 2, do not
change after activating this option “D”, as all SNPs are
in fact mapped at the first stage. Moreover, the table
shows that G-SNPM aligns almost 1.2 million of SNPs
of the HumanOmni 1S chip faster than the almost 370
thousands SNPs of the CNV370 chip, version 3, and the
almost 318 thousands SNPs of the HH300 chip, version 2.
Justification must be sought in the fact that in the Huma-
nOmni 1S chip almost all SNPs are mapped at the first
stage of G-SNPM. As for the others, G-SNPM required
more time to try to map SNPs at the second stage. Table 8,
summarizes the number of sequences that G-SNPM tried

to align at the second stage of the pipeline and its related
processing time. Results shown in Table 8 highlight the
presence of a considerable imbalance with respect to the
number of sequences processed at the first stage (for
instance considering the HumanOmni 1S chip, G-SNPM
processed about 1.2 millions of SNPs against the build 37.1
in 20 minutes, of which 13 minutes to process 17
sequences at the second stage).

Conclusions
G-S NPM is a useful and powerful tool that can simplify
the work of researchers that plan to remap the SNPs
chromosomal positions before to perform any GWAS.
Typically, researchers use sequence alignment tools as
BLAST or BLAT to update the mapping position of a
SNP to a genome or a transcriptome. However, no gen-
eralized and/or computationally efficient solutions have
been proposed to address this problem. G-SNPM is the
only general-purpose tool devised to deal with the map-
ping of SNPs. Being based on modern GPUs, it exploits
the computational power of these hardware accelerators
to guarantee a very fast mapping without compromising
the accuracy. G-SNPM can be easily integrated in spe-
cialized pipelines and workflows devised to cope with
specialized GWAS, as well as annotation tasks that
requires to remap the SNP probes.
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Table 7 Overall analysis of mapped SNPs and running time

option D disabled option D enabled

CHIP name reference build mapped SNPs global time mapped SNPs global time

HumanOmni 1S 37.1 1.184.688 20 m 1.185.118 1 h 34 m

HumanOmni 1S 37.3 1.185.031 19 m 1.185.103 1 h 30 m

CNV370 v. 3.0 36.1 373.382 56 m 373.382 2 h 5 m

CNV370 v. 3.0 37.3 373.367 52 m 373.371 2 h 2 m

HH300 v. 2.0 36.1 318.237 29 m 318.237 29 m

HH300 v. 2.0 37.3 318.216 37 m 318.216 37 m

The table is divided in two parts. The first summarizes the performance of G-SNPM when only its first stage has been used to remap against the overall genome
sequence those SNPs previously unmapped against the same chromosomal sequence detected by the chip vendor (option “D” disabled). The second part of the
table summarizes the performance of G-SNPM when both stages have been used to remap against the overall genome sequence those SNPs previously
unmapped against the same chromosomal sequence detected by the chip vendor (option “D” enabled).

Table 8 Analysis of the performance at the second stage
of G-SNPM

CHIP name reference build sequences analyzed time

HumanOmni 1S 37.1 17 13 m

HumanOmni 1S 37.3 17 12 m

CNV370 v. 3.0 36.1 56 41 m

CNV370 v. 3.0 37.3 81 49 m

HH300 v. 2.0 36.1 10 22 m

HH300 v. 2.0 37.3 36 27 m

A summarization of the performance in terms of running time at the second
stage of the G-SNPM. The table shows the number of sequences that G-SNPM
tried to align at the second stage and the time required to align them. It is
evident a considerable imbalance of the processing time between the first
and the second level. The table summarizes the performance with option “D”
disabled.
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