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Abstract

Many efforts exist to design and implement approaches and tools for data capture, integration and analysis in the
life sciences. Challenges are not only the heterogeneity, size and distribution of information sources, but also the
danger of producing too many solutions for the same problem. Methodological, technological, infrastructural and
social aspects appear to be essential for the development of a new generation of best practices and tools. In this
paper, we analyse and discuss these aspects from different perspectives, by extending some of the ideas that arose
during the NETTAB 2012 Workshop, making reference especially to the European context.
First, relevance of using data and software models for the management and analysis of biological data is
stressed. Second, some of the most relevant community achievements of the recent years, which should be
taken as a starting point for future efforts in this research domain, are presented. Third, some of the main
outstanding issues, challenges and trends are analysed. The challenges related to the tendency to fund and
create large scale international research infrastructures and public-private partnerships in order to address the
complex challenges of data intensive science are especially discussed. The needs and opportunities of Genomic
Computing (the integration, search and display of genomic information at a very specific level, e.g. at the level of a
single DNA region) are then considered.
In the current data and network-driven era, social aspects can become crucial bottlenecks. How these may best
be tackled to unleash the technical abilities for effective data integration and validation efforts is then
discussed. Especially the apparent lack of incentives for already overwhelmed researchers appears to be a limitation
for sharing information and knowledge with other scientists. We point out as well how the bioinformatics market
is growing at an unprecedented speed due to the impact that new powerful in silico analysis promises to have on
better diagnosis, prognosis, drug discovery and treatment, towards personalized medicine. An open business
model for bioinformatics, which appears to be able to reduce undue duplication of efforts and support the
increased reuse of valuable data sets, tools and platforms, is finally discussed.
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Background
The “bio-data deluge”, intrinsically caused by high-
throughput technologies, is currently providing scientists
with very rich, but also almost unmanageable informa-
tion. Techniques like Next-Generation Sequencing
(NGS), only to mention the most widespread, generate
data on an unprecedented scale and are now driving the
generation of knowledge in all areas of the life sciences
to new dimensions [1].
The abundant information sources that are being created

are not fully exploited because of the difficulties in finding,
selecting, extracting and integrating the most appropriate
information to address a biological question. Moreover,
typical questions are increasingly complex and frequently
require the simultaneous analyses of a great variety of data
from multiple heterogeneous information domains and
resources; they often make reference to different organ-
isms’ levels, e.g., whole organs, tissues, cells, and biomole-
cular entities. Consequently, the life science community
urgently needs new and improved approaches to facilitate
data management and analysis, which need the integration
of data resources [2]. We loosely define this activity as
“Integrated Bio-Search“. Integrated Bio-Search includes,
then, all aspects relating to technologies, methods,
architectures, systems, and applications for searching,
retrieving, integrating and analyzing data, information
and knowledge that are required to answer complex
bio-medical-molecular questions, by means of the most
appropriate infrastructures, services and tools [3].
Although we see the above aspects as an integral part of
good “data stewardship”, we explicitly exclude from this
paper other significant data stewardship challenges, like
data storage and accessibility and related tools.
Available computational infrastructures support only

part of the tasks required to answer questions in modern
biology. Currently, scientists need to laboriously explore
available sources via multiple and heterogeneous search
services, compute data analyses via various Web interfaces
to the many valuable, but not interoperable, tools accessi-
ble on the Internet, and finally struggle in combining
selected information answering the original question. This
situation partly arises as a consequence of too many indi-
viduals developing their own solutions without synergisti-
cally contributing to sharing initiatives. Furthermore, the
human-centric nature of most bioinformatics resources is
yet another source of complication in addressing questions
in veterinary or plant sciences.
Structural improvements in finding, assessing and com-

bining multiple inter-linked data and algorithmic sources
have the potential to reshape the scenario of current bioin-
formatics applications, going way beyond the capabilities
of conventional tools, Web Services and existing search
engines. This scenario presents new methodological and
technological challenges that we review in this paper.

Our major aims are to ensure that there is at least aware-
ness of the major ongoing community driven efforts and
to stimulate convergent evolution of best practices.
We are convinced that solving data integration and
automatic extraction problems requires formal models
for data, information, tools and workflows. It also needs
radically innovative solutions and some discipline; they
include the use of universal identifiers - such as computer
processable Uniform Resource Identifiers (URIs) and
Universally Unique Identifiers (UUIDs) - to refer to
concepts, proper study capture frameworks, Semantic
Web approaches, efficient pre-indexing, partial or approxi-
mate value matching, rank aggregation, continuous or
push-based search and intelligent alerts, exploratory meth-
ods and context-aware paradigms, collaborative and social
efforts, as well as building new efficient information retrie-
val approaches, based on automation of persistent and
reusable workflows. The power of formalization and mod-
elling of all these aspects is crucial for their wide reusabil-
ity and, thus, for a widespread adoption in the community.
In the following sections we focus in particular on biologi-
cal data and process modelling, formats, standards, ontolo-
gies, computational infrastructures and technologies, as
well as on data and information indexing and search.

Formal modeling in life sciences
The need for formal approaches is not less important in
biology than in the physical sciences. Formalization
brings several critical advantages. First of all, it allows for
non-ambiguous definition of concepts. Think about the
multiple acceptations of the term “gene” in narrative.
Embedded in a semantic network or in a database
schema, the class “gene” acquires a unique definition.
Supplemented with a definition written in narrative lan-
guage, it offers an efficient support for person-to-person
communication and at the same time for computer-
based implementation. Then, formal models may offer
prediction capabilities. Differential equation systems are
known to be a powerful and effective way to represent
dynamical systems and to compute the evolution of their
variables over time through their simulation. They are
intensively used in mathematical ecology to study and
predict the evolution of population sizes in ecosystems.
In other cases, however, the need to provide quantitative
values to the parameters of their equations presently lim-
its the use of differential systems in biology. It is typically
the case when studying gene interaction networks, for
which quantitative data are still lacking. However, in that
case, other types of formal models, such as Boolean equa-
tions or semi-qualitative equations, may be used.
As a consequence of the scarcity of mathematically

expressed laws describing the complexity of biological sys-
tems, computer science may provide key elements to
address the increasing need for formal modeling in the life
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sciences. This is demonstrated by the growing importance
of bioinformatics, algorithms and software. Computer
science does indeed bring to biology numerous specific
modeling formalisms, relying on discrete mathematics,
theory of languages, logic, and knowledge representation.
Databases, as opposed to files, are the very first exam-

ple of such contribution. Database design relies on
describing the domain to be covered and formalizing
entities and their relationships. Simultaneously, it directly
defines the integration of many heterogeneous bio-data
to enable comprehensive analysis. Today, the Unified
Modeling Language (UML) [4] and its derivatives are
often used for this first step, resulting in a documented
diagram that can be read and interpreted by humans on
the one hand and leads to implementation, typically in
relational database management systems, on the other.
Shifting from data storage in tabular files to data struc-
turing in a database is thus already a quantum leap into
formalization and disambiguation, offering simulta-
neously powerful retrieval, query and analysis facilities.
Computer science provides many other modeling tools,

which have no mathematical equivalent. Production rules
can be used to represent methodological expert knowl-
edge. This expertise can be integrated in complex data
analysis pipelines in which input data and intermediary
results are used to select, chain-up and parameterize
appropriate methods. Formal grammars are an elegant
solution to simulating morphogenesis. Multi-agent models
also describe and simulate complex interacting entities.
Boolean equations describe basic gene interaction net-
works. A strong advantage of all these formalisms is their
effective and efficient implementation as operational
software.
Conversely, biology has a lot to offer to computer

science. An example of the reciprocal benefits of both
disciplines is the “associative” power that computers have
now gained, beyond formal logics, through dynamic con-
cept webs. This allows computers to go “beyond the
obvious” and make “new” predictions that were too com-
plex or inaccessible by human reading and synthesis.
Furthermore, implicit and indirect associations in highly
complex concept webs can now be meaningfully exposed
by computer processing and actually guide the human in
cerebro discovery process. In fact, computers can work
more closely to the way the human mind works [5].
Computer science meets the modeling and integration

requirements of biology so tightly that it will soon play
the same role in biology as pure mathematics played and
still plays in physics. Interestingly, the evolution of bioin-
formatics method validation illustrates this growing
interconnection. In computer terms, criteria for assessing
a piece of software are intrinsic qualities spanning algo-
rithmic soundness, running time or statistical behaviour.
Technically speaking, these criteria can be considered

sufficient for theoretically validating a method and its
underlying model. In biological applications however, the
importance of benchmarking with reference or test data-
sets remains essential. In the early days of sequence ana-
lysis, artificial sequence data sets or unfiltered database
search results with loose keywords have been used in a
number of bioinformatics method papers as technical
validations for new algorithms, thereby remotely solving
any related biological question. The introduction of
Receiver Operating Characteristic (ROC) analysis [6] in
evaluating predictive models and the quasi-systematic
computation of sensitivity/specificity measures were a
first step towards reducing this validation gap between
the two disciplines. The rising of “-omics” data bridged
the definition of models and their validation. Now, many
models are designed to analyse large-scale data, and vali-
dated “in the process” through the production of inter-
pretable results. For instance, both the number of
identified proteins and the rigorous underlying statistical
models are central to validating mass spectrometry data
analysis methods developed for the purpose of identifying
proteins in a proteomics experiment. Data and method
validations have become inseparable.
In summary, computer science can provide modeling

of four different levels minimally needed to:

1. formally represent relatively simple scientific
assertions,
2. represent networks of such assertions and associa-
tions in pathway format,
3. quantitatively approximate the dynamics in such
pathways,
4. describe the actual scientific workflows used to
capture, process, integrate, analyse and model data.

In the following sections, we give illustrative, though
not comprehensive, arguments to support our vision,
shaped by our respective experience. The aim is to
demonstrate in principle that it makes sense to treat
each identifiable artifact produced in research, which
might be “reusable” as a research object, and annotate it
with sufficient metadata and provenance to actually
make it sustainably accessible and reusable.

Early community efforts and achievements
Standards arising from bioinformatics research for human
biology
It is now sufficiently clear that Web Services can play an
effective role in this context, but, in order for them to
achieve a widespread adoption, standards must be
defined for the choice of Web Service technology, as
well for semantically annotating both service functions
and the data exchanged; furthermore, a mechanism for
discovering services is needed. However, experience is
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now overwhelming that the real standards used in biol-
ogy emerge from the community.
One of the pioneering projects trying to address these

problems has been the EMBRACE EU FP6 funded pro-
ject. The goal of this project was to enable biomedical
research in the “-omics” era just before the NGS tsu-
nami. The major products that resulted from this five
years long project were:

1. EDAM ontology [7], that covers common bioinfor-
matics operations, topics and types of data, including
identifiers and formats. It comprises concepts that
are shared within the bioinformatics community and
apply to semantic annotation.
2. EMBRACE Web Service registry [8], a collection of
life science Web Services with built-in service testing
and a prelude to the internationally supported Bio-
Catalogue system [9].
3. BioXSD [10], a common exchange format for
basic bioinformatics data, was designed and
implemented.

Intended interactions between EDAM and BioXSD are
shown in Figure 1.
Another project funded in EU FP7, was GEN2PHEN

[11]; it pioneered the data, database and workflow chal-
lenges in collecting and sharing human genotype and
phenotype data.
Finally, Open PHACTS [12] is a major knowledge man-

agement effort launched under the Innovative Medicine

Initiative (IMI) framework. It is widely supported by phar-
maceutical companies, but it also moves beyond the
pharmaceutical realm. It is the first project that yielded
a widely used infrastructure based on Semantic Web
technology. The project attracted multiple associated
partners and the beta version had more than one million
hits. A rapidly increasing number of public and private
partners adapt their services to use the content and the
data model (described in Resource Description Framework
(RDF) with rich provenance) of Open PHACTS. The tech-
nology developed by this project is generic and will
increasingly be adopted in other fields of the life sciences.

Beyond the human species
A variety of bioinformatics software solutions, analytical
methods and common procedures and standards purposely
devoted to the human species are available. Conversely,
non-human life science communities exist with different
degrees of scientific coordination, and some areas have
already agreed on ontologies and common procedures
and standards. But only few efforts have gone into the
wider task of harmonizing the research efforts of these
communities.
By adapting existing technologies from the field of

human bioinformatics and developing them further, it is
possible to build working infrastructures for bioinfor-
matics within the non-human fields of life sciences. AllBio
[13], a EU FP7 KBBE project, coordinates efforts to make
the human genome related technologies operational in the
fields of microbial, plant and livestock. Partners in AllBio

Figure 1 Intended interactions between EDAM ontology and BioXSD schema. The semantics layer supports searching by end users, as well
as automated reasoning. Both these tasks leverage shared ontologies. The syntax layer supports actual interoperability between tools, as well as
programmatic access; both tasks leveraging common exchange formats and schema. The two layers are made consistent by a proper ontology
based annotation of data and services.
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collaborate on subprojects such as the design of ontologies
for data and methods, and the choice of common intero-
perability standards.

Cyber-infrastructures
The role of grassroots communities in creating and enfor-
cing standards was highlighted in examples cited above.
Integration is a matter of standardization, and effective
standardization requires the common adoption of meth-
ods, models and tools. Nowadays, communities can best
interact through ICT infrastructures to reduce and over-
come space and time limitations. The European Strategic
Forum on Research Infrastructures (ESFRI) and its related
Research Infrastructures, many of which are now being
implemented, is a perfect witness of this need and
perspective. In 2012, the European Commission launched
a call to all research communities to identify topics requir-
ing integration in national research infrastructures: 547
proposals representing 246 topics were submitted.
A refined selection of 135 topics with high potential and
merit for future Horizon 2020 actions, 35 of which were
from the Biological and Medical Sciences (BMS) area,
were listed in the final report [14]. Among them, topics
listed in Table 1 are worth mentioning; they are related to
data integration and search, and clearly reflect the need
for the outcomes of initiatives mentioned above. In addi-
tion, virtually all projects funded in EU FP6 under the
ESFRI and IMI schemes have a (big) data component and
call for a higher level and more formal collaboration.

The BioMedBridges project [15] was funded to investi-
gate the creation of bridges between the ESFRI and other
research infrastructures in order to prevent the develop-
ment of data silos and non-interoperable tools. Currently,
more than 10 ESFRI projects started to coordinate efforts
in BioMedBridges. This shows a natural tendency of coun-
tries and international projects towards sharing the burden
of data stewardship and management. Optimal sharing of
best practices, data sets, tools and infrastructures within
disciplines of biology, but notably also across the human,
animal, plant, nutrition and biotechnology disciplines, will
be driven by scarcity and scalability of resources. Most
notably, ELIXIR [16], with the tagline “data for life”, is a
candidate for a coordinating role. Communities should
monitor the development of ELIXIR and, where possible,
align, coordinate and share local expertise with this inter-
national environment.

Major outstanding issues, challenges and trends
New integration and search challenges for Genomic
Computing
Management of data generated by NGS technologies is a
paradigmatic illustration of the so-called “big data”
challenge. The integration and search of genomic infor-
mation is a problem of its own and serves as a leading
example, as we expect comparable quantum leap develop-
ments in other “-omics” technologies and imaging as well.
Current formats and standards for the representation of
NGS data are inadequate to support efficient and high-level

Table 1 Main Biological and Medical Science topics with high potential and merit for future Horizon 2020 actions.

High potential Biological and Medical Science topics

Integrated disease and phenotype ontologies and supporting tools

Molecular profile reference databases for cells and tissues

European infrastructure for genome research

European animal genomics and phenomics infrastructure

An integrating activity for fish genome resources

Trans-national infrastructure for plant genomic science

European proteomics research infrastructure

Integration of national non mammalian model animal facilities on the European level

European primate network: maintaining and developing best practice, staff education and international standards in biological and biomedical
research

Cyber-infrastructure for farmed and companion livestock

An integrated technology platform for high-throughput, multi-level phenotyping research to design robust farm animals for tomorrow

Network of animal biological resources centers

Aquaculture infrastructures for excellence in EU fish research

European network of high containment animal facilities to improve control of livestock transboundary and zoonotic infectious diseases

European seed bank research infrastructure

Forest tree genetic resources, a pan-European patrimony to be maintained and developed at the benefit of the scientific community

Improved access of the scientific community to collections of non pathogenic, pathogenic, emerging and clinical human/animal virus isolates
(including fish and arthropods) up to biohazard risk group 4

Facilities, resources and services for mining the nature and relevance of biocide resistance

Pan-European resource for gene transfer vectors towards clinical application
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search of information, as they are mostly concerned with
the encoding of DNA-related information and not with its
use within query and search systems. The interoperability
standards, such as the Distributed Annotation System
(DAS) [17], appear similarly inadequate to efficiently sup-
port interoperability at the level that is required by the
breadth and complexity of exchanged information. In
reality, the “data deluge” generated by NGS technologies
has not been matched by corresponding progress in data
query, integration, search and analysis, thus creating a gap
in the potential use of NGS data.
Covering the gap is not easy. On the one hand, data

integration is known to be a hard problem in all fields, as
it requires coping first with different data semantics
across data sources and then with efficient data sharing
in the presence of replication and errors. In NGS, pro-
blems are amplified by the lack of standards for exposing
data semantics at a level where it can be well understood
and appreciated. Indeed, while the bioinformatics com-
munity has made enormous progresses in the description
of several general-purpose ontological sources, similar
attention has not been given to a high-level description
of experimental and annotation data. Several databases
and ontologies, as well as tools, exist for describing the
general features of experimental data [18,19], or for con-
necting to annotations and displaying the corresponding
DNA regions [20], but little emphasis has been put on
describing experimental results going beyond data for-
matting. Hence, the focus on specific DNA regions of
experimental data sets, in order to “read” the experiment
from a particular biological or medical perspective, is not
adequately covered; but such capabilities are key ingredi-
ents to the support of biological research and perso-
nalized medicine. Indeed, the most important data
integration involves the human genome, which descrip-
tion undergoes frequent updates of alignment references.
his has been discussed for a period of over a year by
a group of engineers and computer scientists from the
Politecnico di Milano (Polimi) with biologists and bioin-
formaticians of the Istituto Europeo di Oncologia - Istituto
Italiano di Tecnologia (IEO-IIT). The conclusion of this
group is that the field requires a revolutionary, data-
centred approach [21]. Practices established in various
research laboratories, involving data alignment and data
analysis pipelines, cannot be easily interfered with. Yet,
there is a need for interpreting experimental data at a high
level of abstraction, in terms of specific properties of geno-
mic regions. Such interpretation is facilitated by the
presence of few well-understood physical data formats
(e.g. FASTQ, SAM, BAM, BED, bigWig, etc. [22]) that are
suitable for data extraction via simple wrapping technolo-
gies. Thus, it is possible to extract region-aware data in
high-level format from experimental or annotation
data sets (e.g. height, width and probability of peaks in a

ChIP-Seq experiment which satisfy a given threshold of
extraction, relative to the genome region where peaks are
expressed). Such information is much more compact and
semantically rich than the one that can be expressed in
the BAM, BED or bigWig data formats. Furthermore, it
can be processed by high-level programming languages.
A joint Polimi/IEO-IIT effort is ongoing towards the

definition of a “genometric data model” and a “genometric
query language” which can be used to describe the infor-
mation contained within each data set. The data model
associates a semi-structured collection of metadata with
each experimental data file; moreover, each data set is
transformed into genomic regions, each having coordi-
nates relative to a reference assembly and associated with
specific data (e.g. describing mutations, gene expressions,
transcription sites, etc.). The genometric query language is
capable of high-level operations such as comparing experi-
ments, extracting their most interesting regions and map-
ping a given region description to another within the
“genometric space”. It thus provides a good starting point
both for pattern-based queries, e.g. by extracting experi-
ments or regions that exhibit specific data patterns, and
for data analysis, e.g. by constructing region-to-region or
experiment-to-experiment networks highlighting their
similarity or relationships. While this research project is
not the only one dealing with high-level query languages
for NGS data (e.g. see [23]), it aims at preserving the way
in which data sets are produced and primarily analysed in
experimental laboratories, and operates on top of these
primary analyses.
A high-level description of genome information is the

starting point of content-based indexing and search.
Genomic information can be indexed by information con-
tent and significance in much the same way Web pages
are indexed by word content and significance. If research
centres make their NGS data available in some form of
Web interface (ranging from basic DAS 1.6 or DAS 2.0
versions, up to direct exposure of an Application Program-
ming Interface (API) to genometric queries), it will be
technically possible to implement a process very similar to
Web crawling, extending access to all the research centres
who agree to share (part of) their NGS data.
By coupling indexing to crawling, we come to a vision of

the “Web of Genomes” as a powerful infrastructure sup-
porting the future of Genomic Computing. We can initially
assume simple search patterns, such as finding experimen-
tal data related either to a given pathology (based on meta-
data) or to a panel of mutations localized on DNA regions
(based on region information). Search patterns may then
grow in complexity, up to encompassing similarity search
with specific genome regions, which characterize a given
experiment. The identified and extracted insights from
highly variable original data files could then be stored as
associations in a computer readable and interoperable
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format, such as the provenance-rich RDF, i.e. as nanopubli-
cations (see next section), that would seamlessly connect
them to all core legacy information in the same format.
How far is this vision? We still need a number of

well-traced technological achievements, based on well-
established practices that have been already applied to
other fields and primarily to the Web as we know it. This
vision arises from strong previous expertise in generic data
and Web management. It can progressively turn into rea-
lity through coordination, co-operation and support
towards reshaping the field of data search and integration
for Genomic Computing.

From data to information
As soon as data sets have undergone a first level of pre-
processing and analytics, even before the actual biologi-
cal interpretation and knowledge discovery start, the
“associations” and “assertions” about how concepts
addressed in the data sets may relate to each other
become apparent. This can range from simple associa-
tions, such as co-location or co-expression, to entirely
fleshed out assertions about how a given post-transla-
tional modification influences the 3D structure of a pro-
tein. Such associations, in essence, follow the model of
“subject-predicate-object” (SPO) triples, such as those
operated in RDF. Notably, certain assertions need more
than one SPO to become meaningful. For instance, a
single nucleotide polymorphism (SNP) in a given posi-
tion (triple 1) and in a given species (triple 2) may cause
a certain protein change (triple 3). Therefore, in many
cases a small named graph is needed to form a minimal
assertion. Following this principle, a “nanopublication”
has been defined as the smallest possible meaningful
assertion published in RDF [24]. It also relates to the
concept of “Research Objects” [25], which has been
introduced in order to capture the need for more formal
modeling in biology in the broadest sense. A Research
Object is an aggregation object that bundles together
experimental resources that are essential to a computa-
tional scientific study or investigation. If we define a
research object, ad interim for the purposes of this posi-
tion paper, as “any identifiable artifact produced in the
activities of research and formatted for computational
studies”, such research objects cover formal data models
of level 1 (such as nanopublications and micropublica-
tions), level 2 (such as a formal pathway in, for instance,
WikiPathways), level 3 (any system biology qualitative
model) and level 4 (for instance well documented and
reusable workflows).
All concepts in a nanopublication graph should ideally

refer to a well established vocabulary, so that linking to
ontological knowledge is possible and computers under-
stand exactly what is meant by each URI in the graph. It is
important that nanopublications can also be expressed in

a human readable language, based on a correct linking of
the URIs in the graph and the terms used in a narrative
(in different languages) of the concepts in question. Next,
the nanopublication needs provenance to be placed in
context. Not only minimal information about the condi-
tions under which the assertion has emerged and those
under which it is considered “true”, but also all other
metadata that are usually associated with a classical narra-
tive research article (such as authors, publisher, etc.)
should be associated with the nanopublication. In fully
compliant nanopublications, these parts of the connected
graphs forming the entire nanopublication are also mod-
eled in RDF (see guidelines and examples at [26]).
Nanopublications have now been created from different

data types, such as locus specific databases [27], the
Fantom 5 data set, GWAS data [28], chemistry and phar-
maceutical databases [29], UniProt and neXtProt. In
principle, each data source containing assertional infor-
mation can be republished in this format, which is both
machine interoperable and human readable, with relatively
limited effort, without distorting neither the original data
format nor the legacy database. Nanopublications can also
be re-created by text mining, although they suffer from
the same challenges as all text mining approaches [30]. An
increasing number of narrative sources (including
PubMed) are now being “nanopublished”, i.e. published as
nanopublications, and major international publishers are
investigating how they can expose the scientific conclu-
sions and evidences contained in their narrative collections
in this format.

Expanding collaborative efforts and broadening
communities
In the previous sections, we have highlighted some tech-
nologies and methodologies that can efficiently support
new data integration and search challenges set by NGS
and the development of new high-throughput equipment.
We have especially stressed the role of modelling, standar-
dization, and interoperability. We also hinted at addressing
methodological and technological outstanding issues
through the expansion of collaborative efforts. As in other
fields, community efforts, such as data annotation and
curation, are progressively enabled by the growing support
of social information and communication technologies.
The technical environments that are available for commu-
nity annotation, data publishing and integration play an
increasingly important role in the life sciences [31-34].
Yet, some factors are still limiting the possible valuable
contributions arising from social efforts. Here, some of
these factors are shortly discussed, focusing on those that
restrain the participation of scientists to bio-data integra-
tion, mining and validation. In particular, we identified
two major difficulties. First, scientists appear to currently
lack the motivation to contribute positively to annotation
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in databases or knowledge bases. Second, valuable work
done by authors who do not produce de novo data, but
carefully select data from repositories for reanalysis, is
poorly acknowledged. The following sheds some light on
these questions and the various possible answers brought
by communities with different social roles.

Data curation: from ignoring to cooperative
Many of us search or browse bioinformatics online
resources. While doing so, we occasionally activate a
link that unexpectedly breaks or points to absurd con-
tent. We mentally complain about it, but we usually
ignore it and resume browsing. Some of us do spend
the couple of minutes necessary to report this broken or
mistaken link to the development team (if still in exis-
tence) and thereby spare the trouble to other users. In
this case, “contributing” is pointing out errors but not
solving issues. Indeed, too few of us envisage on-line
resources as community wealth to which contribution
would mean definite improvement and added value, i.e.
a form of curation, which benefits all.
The activity of biological data curation has evolved over

the years to a point where there is now an organised
International Society of Biocuration [35] within which the
question of community-based curation is debated and pro-
moted, among other themes. The need for a coordinated
action in this domain was emphasised for instance when
the Swiss-Prot team introduced in 2007 the “adopt a pro-
tein” scheme [36], encouraging specialists of a given
protein to oversee the update of the corresponding
UniProtKB/Swiss-Prot entry. As it seems, scientists are
not born protein adopters and the initiative could not be
sustained. In the same period, a more sophisticated wiki
based attempt was made in WikiProteins: the paper calling
for a million minds [Mons 2008] from 2008 has mean-
while collected more than 120 citations, but is not in
line with the number of community annotations in
WikiProteins, and the attempt was discontinued. Other
wiki-based approaches, such as the GeneWiki (in the
context of WikiPedia) [32] and for instance WikiPathways
[33], have met with slightly more traffic, but to the best of
our knowledge the only community annotation effort that
really took off to a level of satisfaction is ChemSpider [37].
However, with these lessons learned, an alternative invita-
tion to contribute was devised a few years later in the
human protein-centric knowledge platform neXtProt [38].
The neXtProt scheme promotes users’ participation
through the specific input of a selected network of specia-
lists. Experts contribute by submitting experimental data
sets and defining metrics for quality filtering in agreement
with the neXtProt team. Very recently, curated associa-
tions on, for instance, Post Translational Modifications
from NextProt have been formatted as nanopublications;
this will allow the community contributions to certain

snippets of information to be fully recognized (see
next section).
In essence, biological data curation history tends to

show that direct contribution may not be the ultimate
strategy for gathering quality information and attracting
potential contributors when it is limited to the addition
of comments or facts in a Web page. Instead, guided
input, so as to capture and shape information upon cri-
teria that were previously and collectively agreed upon,
seems more of a realistic approach. Future tools should
rely on social interfaces encouraging users’ cooperation
in a constructive and targeted manner. Some efforts
have already been made in this direction, e.g. for colla-
borative ontology development [39] and for interactive
knowledge capture by means of Semantic Web technol-
ogies [40]. Yet, this important future area of scientific
contribution suffers from the same roadblock as the
“data-based science” discussed before. Unless a culture
develops where these contributions (when measured
perfectly) influence the career of the next generation of
scientists, community contributions will always be lim-
ited to the “altruistic few” [41].

Exchange, access, provenance and reward models
An outstanding issue is the social award system and the
perceptions prevailing around data sharing. In white
papers advocating data sharing, authors usually empha-
sise technical challenges rather than the actual process of
data sharing, although there are as many social challenges
associated with actual data sharing as there are technical
challenges. Obviously, technical challenges come first:
data can only be shared if they are interoperable in for-
mat or have been captured with proper metadata
attached.
Making data Open Access is clearly not enough; data

accessibility and reusability by others than the data genera-
tors, is what really matters. As stated in previous sections,
reuse of valuable data sets will support e-science discovery
processes. In this context, provenance is the key for users
planning to include existing data in a meta-analysis. Prior
to adding a data set to the analysis mix, an e-scientist
needs to evaluate the set, its overall relevance, quality and
the underlying methods. For this crucial decision step, the
metadata, including rich provenance, are needed.
In many cases, data can be excluded or included from/in

an analysis workflow by properly instructed machines. For
instance, all data on genes of a given species, e.g. mouse,
can be automatically discarded, as long as sufficient prove-
nance is associated with each candidate data set. It is thus
very important that the concept “mouse” as Mus musculus
is associated with a data set based entirely on mouse
experiments, and properly referred to with a computer
readable identifier. But it is also important that such iden-
tifier is at the appropriate position in the metadata fields,
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or in a RDF graph; this, for instance, to allow for the dis-
tinction between an occasional mention of the concept
Mus musculus in a table or graph, as opposed to the state-
ment “this entire set was generated on ‘mouse’ experi-
ments”. However, this ideal situation is currently far from
reality. Even with Digital Object Identifiers (DOIs) for data
sets and initiatives such as FigShare [42], Dryad [43] and
the Research Data Alliance [44], we will need many years
before each valuable data set can be properly judged and
interpreted by others than its creators. This becomes even
more pertinent in multi-scale modeling and the associated
multi-omics and multi-technology data sets that increas-
ingly dominate contemporary biology. It is not enough to
“find a data set of potential relevance”, because soon there
will be too many, or to see some metadata on how the
study was performed, although this is a conditio sine qua
non. For real e-science approaches in biology, we need to
see the provenance of each individual data element as it
may appear, for instance, as a crucial edge in a graph-
based hypothetical discovery interface.
Nanopublications and micropublications are here

important. It is clear that entire complex data sets with
hundreds of thousands, and sometimes millions, of inter-
esting associations can be published as nanopublications;
so, they are no longer lost in a huge number of hyperlinks
to remote repositories, but each and every individual asso-
ciation becomes a research object in its own right, and is
discoverable by computers and humans alike, all across
the Web.
Assuming nanopublications and micropublications can

solve the data integration issue, the next challenge is to
“build a market” for such small information units. They do
not intrinsically carry enough evidence to be trusted. The
decision to “trust” them or not is taken on the basis of the
source information, the associated methods and the rea-
soning that led to the claim in question. Again, additional
steps (in fact, a form of annotation) are needed to create
such computer and human readable units with rich
enough provenance. This raises the question of finding the
means of improving scientists’ motivation to spend extra
time on annotation.
Naturally, we lack much of the technical infrastructure

that is needed to make this all reality, but, in practical
sense, these needs are “easier” to fulfil than breaking
through the science ecosystem hurdle to make “prepara-
tion for sharing” of data a core activity for every data
creator and publisher. In fact, what we need is “desktop
publishing” of data and information, very much like
today authors carefully pre-format their papers according
to guidelines for authors. Modern publishers should
become data publishers, as well as narrative publishers,
and should assist scientists in the curation and shaping of
newly published data sets and of their provenance, much
the same as they currently do for narrative.

Especially for sensitive data, both in terms of privacy
and competitiveness, a trusted party status for the needed
data publishing and stewardship infrastructure is a condi-
tio sine qua non. Therefore, such a data exchange envir-
onment can only be built effectively as a federated and
“approved” infrastructure, serving national as well as
international data driven projects, and as a public-private
partnership.
For purposes of clarity, in Figure 2 we have summarized,

and grossly oversimplified, the basic workflow of data dri-
ven science. What is needed for e-science is, in fact, a
completely new way of publishing, using, searching and
reasoning with massive data output, in an open, software-
driven, interactive environment.
Relevant scientific data, such as open source publica-

tions (e.g. Public Library of Science (PLoS) or BioMed
Central (BMC)), individual assertions from closed access
publications, abstracts (e.g. PubMed) and relevant legacy

Figure 2 The basic workflow of data driven science. The general
principle that a data exchange platform should enable and support is
depicted. A newly generated data set is combined with other data sets
(ideally all core legacy information of relevance) and new insights,
including complicated processes, such as multi-omics data integration,
multi-scale modeling, computer reasoning and inference, etc., are
derived from that data integration and modelling. To this end, users
should be allowed to upload their (novel) data and run standard
workflows of choice on the combined data.
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data sources (e.g. ChEMBL, UniProt), that constitute a
central core of biological information requested by almost
all domains, should be made available in an interoperable
format to make their direct integration, comparison and
modeling with new data possible (Figure 3). Currently,
only a small percentage of information in databases, for
instance SNP-phenotype associations, can be recovered by
text mining from abstracts, or even the entire narrative
part, of full text articles. Many of these types of associa-
tions are included in tables and figures, which escape
ordinary text mining algorithms, and in supplementary
data, which are ignored by text mining. It is therefore cru-
cial to move to a situation where massive numbers of
associations can be published in a “discoverable” and
interoperable format, with proper references to the produ-
cers of the data and associated narrative elements in order
to allow award of the efforts.
Notably, publishers have already played a role by impos-

ing annotated data submission and, some of them, by
being involved in the definition of related standards,
e.g., MINSEQE [45] or MIAPE [46] standards that are

governing corresponding data repositories: ArrayExpress
[47] for MINSEQE or PRIDE [48] for MIAPE. However, a
major roadblock at this point in time is that many grant
and manuscript reviewers still do not recognise the value
of studies that do not entail the production of new experi-
mental data, but only exploit results from data reposi-
tories. Without challenging the sustained importance of
proving a biological hypothesis with sound experimental
data, it should nonetheless be admitted that validation
does not necessarily impose being the creator of the
data used as evidence.
Finally, social hurdles for data sharing are not limited to

the conservatism of publishers and funders, which could
be overcome hopefully soon. Additionally and more
importantly, there is no “scientific” reward for sharing, i.e.
acknowledgement of its value as a scientific product. If no
mechanisms exist for any generally acknowledged reward
for sharing and making own data discoverable, well anno-
tated, principally interoperable and citable, a routine of
data sharing is not likely to be established. Movements
like Altmetrics [49] are crucial to raise a discussion and to

Figure 3 Integration of scientific data. Relevant scientific data, that constitute a central core of biological information requested by almost all domains,
could be made available in an interoperable format to make their direct integration, comparison and modeling with domain specific data possible.
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demonstrate technical feasibility of a fine grained judge-
ment about an individual’s contribution to a scientific
record. However, until the “reward” reaches a steady and
wide acceptance by reviewers, funding bodies and publish-
ers, nothing will change. They have the means to push
researchers make a proper data stewardship part of their
natural workflow. It is only since recently that we need to
take the “reusability” of the data that are being generated
into account in the study design. Several funders already
require a well-drafted data stewardship plan for any pro-
posal that will generate significant data sets. This practice
should be encouraged; proper standards, best practices,
guidelines and reward systems should be implemented
and made easily findable, so that biologists with little or
no affinity with bioinformatics or data sharing can still
participate. Only if all these prerequisites for data sharing
are in place, the culture may change and a genuine
open data exchange culture in the life sciences can be
established.

Business models for bioinformatics
If all the above would be solved properly, we still need a
sustainable environment to make this a reliable part of the
scientific practice. This means that funding-cycle based
approaches alone will not suffice. Several examples exist of
crucial resources, used by each and every scientist, that
have faced financial crises in periods between solid fund-
ing (e.g. Swiss-Prot [50]). Therefore, it seems that the
entire system can function only with private and public
parties working together in a structured partnership, each
filling their own natural niche. Business aspects that can
sustain the development, validation and maintenance of
data access, integration, search and analysis efforts are
thus an important challenge in bioinformatics.
The major driving force of the growing bioinformatics

market is the need for new drug development technolo-
gies. Currently, the major pharmaceutical companies are
suffering from a lack of revolutionary new ideas, the use
of which, in turn, will require new approaches to develop
a new generation of drugs. In trying to address the cru-
cial need of bioinformatics methods for understanding
disease mechanisms and boosting the drug discovery pro-
cess, many active players in this market, such as big and
middle size pharmaceutical companies, university clinics
and governmental institutions, initiated their own plan,
thereby producing the same solutions again and again.
As a result, the pharmaceutical industry, the only consti-
tuency that can “take a drug all the way to the market”
invests lesser funds in pursuing in-depth biological stu-
dies. Community initiatives in structural public-private
partnerships, such as in the IMI programme, may be a
solution for sharing costs and granting proper access to
data, e.g. core legacy data (Open PHACTS [12]), pharma
data (European Translational Information and Knowledge

Management Services - ETRIKS [51]), clinical data (Eur-
opean Medical Information Framework - EMIF [52]) and
even compounds (European Lead Factory - ELF [53]). New
mixed business models for software and data, e.g. based on
the Freemium [54] model, could guarantee the sustainabil-
ity of the projects mentioned above.
At the same time, the use of computer technologies and

bioinformatics opens new opportunities for drug discov-
ery, research and development, which have not been
widely applied until now. Small biotech firms and public
institutes could form a rapidly growing force in the early
stages of drug development, while “big pharma” industries
could likely be more and more specialising in the later
phases of lead development and final marketing. Several
commercial companies have already been created to fill
these needs. These companies offer bioinformatics tools
and databases that provide generic solutions for some of
the drug development process’ tasks. Although such com-
mercial tools are used quite extensively, still the overall
annual revenue value of all these companies totals only to
about 100 million dollars. This is almost 100 times less
than the overall bioinformatics market needs (8.6 billion
dollars in 2014, see Table 2), which means that currently
most of the money in this field is spent on creating many
similar in-house solutions: a really inefficient way of
spending resources.
In such a situation, the development of universal

bioinformatics platforms capable of providing unified
solutions for drug discovery is urgently needed. Such
platforms can only succeed in a public-private partner-
ship setting, or at least with the proper mix of Free-
mium and highly secure options to serve the needs of
all players in all stages of fundamental and translational
research. One example of an approach to tackle this
challenge is the BioUML platform [55] that was devel-
oped as an open modular system, consisting of a series
of software and databases, which covers most fields of
bioinformatics, including modelling, statistics, systems
biology and chemoinformatics. It contains many mod-
ules, developed by various parties, both on a commercial
basis and for a public use. Since researchers are likely to
prefer solutions that are adapted to their purposes,
including those modules that they get from third parties
integrated with their own solutions, BioUML also sup-
ports the integration of tools and creation of customized

Table 2 Global bioinformatics market by submarket.

Segment 2007 2008 2009 2014

Tools 659.10 850.30 1,099.20 4,071.90

Content/database 948.40 1,133.70 1,358.50 3.439.20

Services 222.20 276.50 345.10 1,093.00

Total 1,829.70 2,260.50 2,802.80 8,604.10

2007-2014 values in million dollars (from: Business Insights, Ltd. report).
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solutions for a particular user. Furthermore, the open
source nature of the BioUML platform allows the crea-
tion of new modules by the community of third-part
developers, thus increasing the number of modules and
features in the platform.
BioUML is only one possible solution: there is a chance

that other similar efforts develop, thus limiting the effi-
ciency of a unique shared platform. ELIXIR may play a
crucial role, in close coordination with other projects and
Institutes like, for instance, SageBionetworks, National
Center for Biotechnology Information (NCBI) and
European Bioinformatics Institute (EBI), in shaping the
ecosystem around these major needs, by also ensuring
the right balance between huge top down projects and a
plethora of academic platforms missing the needed mix
of scientific and professional quality.
On the industrial side, companies with a viable bioin-

formatics expertise in-house may incorporate a set of
tools and databases in their own information infrastruc-
ture. Others may want to use a safe cloud model or may
even outsource their research in this field. A core of
legacy data that can be combined with proprietary com-
pany data is clearly the future, and the entire range of
possibilities, from completely open to completely closed,
may therefore be required.
As stated above, bioinformatics is one of the fastest

growing segments in the life sciences sector. Bioinformatics
and data publishing platforms, such as those described in
this position paper and especially the open source based

platforms, have a considerable opportunity in this market.
We expect that such platforms may awake the interest of
several classes of consumers, such as:

• programmers developing software for bioinfor-
matics and systems biology, who will get an oppor-
tunity for quick and easy creation of various new
software modules,
• bioinformaticians in large pharmaceutical compa-
nies and in academic institutions, who serve the
experimental laboratories in support of bioinfor-
matics infrastructures,
• biologists and medical chemists, who are the end
users.

Table 3 lists the main reasons why each of these users
will be interested in the platforms. The introduction of
such universal platforms will open yet another business
opportunity for publishers, biologists and bioinformati-
cians, namely providing data analysis services through the
platforms. Services take a big part of the market and the
share of services in the bioinformatics market is growing,
mainly due to the fact that major pharmaceutical compa-
nies choose to outsource many of the research and devel-
opment activities. Currently, most of the active service
providers are creating their own mix of tools and
approaches, leading to many different offerings of solu-
tions that often contradict, or simply do not fit together,
in case several steps of the data analysis are outsourced to

Table 3 User classes of open source bioinformatics platforms and main reasons why they will be interested in the
platforms.

Users Reasons to be interested in open source bioinformatics platforms

Software programmers

Convenient tools and utilities for creating new modules

Ready to use libraries of classes for working with main bioinformatics and system biology objects (e.g. sequences, genes, networks, etc.)

Ready integration with all main databases that are needed for working with new modules

Ability to upload personal modules to the platform and set the policy of their licensing (free, or commercial through an application store)

Bioinformaticians

Convenient unified environment that combines a variety of programs and algorithms in different ways, which may become necessary for
the analysis of different data from laboratory tests

Unified interface for all modules of the platform that eases the training process of the end users

Convenient system that can use several programming languages and statistical packages for the creation of scripts, which bioinformaticians
can prepare for their further usage in processing of large amounts of routine data

Convenient system for construction of work procedures for automatic execution of a given sequence of programs; after their creation, the
obtained procedures are passed to end users for automated processing of new data

Biologists and medical chemists

Availability of a large number of ready-to-use modules on different branches of bioinformatics, system biology and computer aided drug
modelling

User-friendly interfaces

Ability of creation of personalized structured data repository “in the cloud”, with data of different origins (e.g. transcriptomics, proteomics, etc.)

Ability to provide reproducible research

Ready-to-use operating procedures for automatic execution of given sequences of programs that can answer dedicated biological questions
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different providers. Universal, open platforms can solve
most of these problems by providing, on one side, a uni-
versal interface for all data inputs and outputs and by con-
stituting, on the other side, a free market place for the
service providers.

Conclusions
Great advances in bio-molecular data production are sol-
ving the previous paucity of biological-molecular data;
computational standards and techniques are now needed
to prevent and reduce the inaccuracy of these data, as well
as to support their interpretation. The aim is to provide a
quantity of reliable and precise enough data to be used in
data driven computational inference and biological knowl-
edge discovery. This transition is rapidly shifting the cur-
rent main issues in the life sciences towards managing the
enormous amount of diverse data effectively and making
sense of it. We have mentioned the challenges and how
they are tackled in major international initiatives. Other
scientific communities, such as physicists, also generate
huge amounts of data and have already solved some of the
related issues. Yet, challenges are different. To begin with,
physics deals with fewer objects than the life sciences;
thus, complexity (i.e. number of possible relationships
between objects) is greater in the life sciences than in phy-
sics, where the same objects always occur in the large
physics datasets. Consequently, in the new life science
panorama, finding, selecting, extracting, meaningfully inte-
grating and comprehensively processing the most reliable
and appropriate information raise numerous issues.
Computer science can support their solving in several
ways, firstly through formalization and modelling of
entities and relationships. Formal modelling provides
many critical advantages, including the non-ambiguous
definition of entities and concepts, which directly supports
integration, search and comprehensive analysis of multiple,
heterogeneous and complex bio-data. Secondly, bioin-
formatics solutions can encompass the standardization
of common data and information capture and the intero-
perability of infrastructures; they can also support data
semantics to ease direct integration and comparison with
new data.
Based on large and commonly supported research

infrastructures, universal computational platforms cap-
able of providing unified solutions for multiple life
science needs are emerging. They can both provide uni-
versal interfaces for data inputs and outputs. The intro-
duction of such universal platforms represents an
additional business opportunity in the fast growing bioin-
formatics sector of the life science market. This business
model, together with open source and open access
policies, has the potential to sustain the development and
maintenance of good computational systems and effec-
tive data integration and validation efforts.

Besides technological and methodological aspects,
social aspects are currently playing a very relevant role in
bioinformatics and in the life sciences in general. Among
them a crucial aspect is the difficulty of attracting contri-
butions to sharing and annotating data, due to inap-
propriate interfaces and the limited use of adequate
provenance and reward models. The actual accessibility
and reusability of the data is the main underlying issue
that can be addressed with the inclusion of metadata,
including rich provenance information as in nanopublica-
tions, a recently proposed scheme for publishing a poten-
tially massive number of associations in a “discoverable”
and interoperable format.
In conclusion, we strongly recommend that bioinfor-

maticians and experimental scientists first carefully con-
sider joining one of the existing community efforts
mentioned in this paper, before deciding to embark on
any of these challenges in splendid isolation.
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