

POSTER PRESENTATION

Open Access

Algorithmic tools for tripartite data analysis

Charles A Phillips¹, Erich J Baker², Elissa J Chesler³, Michael A Langston^{1*}

From UT-KBRIN Bioinformatics Summit 2014 Cadiz, KY, USA. 11-13 April 2014

Background

Bipartite graphs have many applications. Examples include the modeling of gene-disease associations, substrate-enzyme relationships and protein-protein interactions. Numerous algorithms have been proposed to extract dense subgraphs from bipartite graphs.

Materials and methods

In this work, tripartite graphs are considered. Applications include comparing two sets of many gene-many disease associations. An algorithm is described that finds a maximum triclique in such a graph. It employs a branching strategy inspired by maximum clique algorithms for general graphs. A binary search tree is used, in which branch nodes in the tree represent vertices in the tripartite graph, and in which branching decisions are based on whether a vertex is in or out of a maximum triclique. A reduction rule is also introduced to filter out irrelevant vertices. This algorithm was developed in the context of Gene-Weaver, an online system for the integration of functional genomics experimental results. In this system triclique extraction will enable fast transitive association of diseases based on the similarity of gene-disease associations from many experiments. Computational experience with huge volumes of experimental data is described.

doi:10.1186/1471-2105-15-S10-P32

Cite this article as: Phillips *et al.*: Algorithmic tools for tripartite data analysis. *BMC Bioinformatics* 2014 **15**(Suppl 10):P32.

Authors' details

¹Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN 37996, USA. ²Bioinformatics Program, School of Engineering and Computer Science, Baylor University, Waco, TX 76798, USA. ³The Jackson Laboratory, Bar Harbor, ME 04609, USA.

Published: 29 September 2014

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

Full list of author information is available at the end of the article

Submit your next manuscript to BioMed Central and take full advantage of:

^{*} Correspondence: langston@eecs.utk.edu

¹Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN 37996, USA