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Abstract

Background: While next-generation sequencing (NGS) technologies are rapidly advancing, an area that lags
behind is the development of efficient and user-friendly tools for preliminary analysis of massive NGS data. As an
effort to fill this gap to keep up with the fast pace of technological advancement and to accelerate data-to-results
turnaround, we developed a novel software package named SeqAssist ("Sequencing Assistant” or SA).

Results: SeqAssist takes NGS-generated FASTQ files as the input, employs the BWA-MEM aligner for sequence
alignment, and aims to provide a quick overview and basic statistics of NGS data. It consists of three separate
workflows: (1) the SA_RunStats workflow generates basic statistics about an NGS dataset, including numbers of
raw, cleaned, redundant and unique reads, redundancy rate, and a list of unique sequences with length and read
count; (2) the SA_Run2Ref workflow estimates the breadth, depth and evenness of genome-wide coverage of the
NGS dataset at a nucleotide resolution; and (3) the SA_Run2Run workflow compares two NGS datasets to
determine the redundancy (overlapping rate) between the two NGS runs. Statistics produced by SeqAssist or
derived from SeqAssist output files are designed to inform the user: whether, what percentage, how many times
and how evenly a genomic locus (i.e., gene, scaffold, chromosome or genome) is covered by sequencing reads,
how redundant the sequencing reads are in a single run or between two runs. These statistics can guide the user
in evaluating the quality of a DNA library prepared for RNA-Seq or genome (re-)sequencing and in deciding the
number of sequencing runs required for the library. We have tested SeqAssist using a synthetic dataset and
demonstrated its main features using multiple NGS datasets generated from genome re-sequencing experiments.

Conclusions: SeqAssist is a useful and informative tool that can serve as a valuable “assistant” to a broad range of
investigators who conduct genome re-sequencing, RNA-Seq, or de novo genome sequencing and assembly
experiments.

Background
High throughput next-generation sequencing (NGS)
technologies are capable of generating massive amounts
of data in the form of paired-end or single-end reads
with either fixed or variable lengths. The size of data files
is often in the magnitude of mega- or giga-bytes (up to
1000 giga base pairs or Gb in a single sequencing run)

and is likely to increase further in the years to come.
While sequencing costs have dropped precipitously and
sequencing speed and efficiency have risen exponentially,
development of computational tools for preliminary ana-
lysis of these gigantic datasets have lagged behind data
generation. Hence, there is an increasing demand for effi-
cient and user-friendly programs for preliminary sequen-
cing data analysis.
Currently, there are four commercially predominant

NGS platforms, including Illumina/Solexa, Roche/454,
ABI/SOLiD and ABI/Ion Torrent [1,2]. These massively
parallel DNA sequencing technologies have been applied
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to transcriptome sequencing (RNA-Seq), de novo genome
sequencing, and genome re-sequencing. RNA-Seq is a
widely used approach to transcriptomic profiling [3,4].
Two representative efforts in de novo genome sequencing
are the Genome 10K project to obtain whole genome
sequences for 10,000 vertebrate species [5-7] and the 5K
Insect Genome Initiative (i5K) to sequence the genomes
of 5,000 arthropod species [8,9]. Genome re-sequencing
is an experimental procedure that involves sequencing
individual organisms whose genome is already known
[10]. As a new genomics approach, genome re-sequen-
cing has been applied to a wide range of fundamental
and applied biological research including genetics, evolu-
tion, biomedicine, human diseases and environmental
health, with good examples being the 1000 Genomes
Project [11] and the Cancer Genomes project [12].
Prior to in-depth analysis of NGS deep sequencing

data, e.g., differential gene expression and alternative spli-
cing analysis for RNA-Seq studies, structural variants
identification for genome re-sequencing studies, and gen-
ome assembly for de novo genome sequencing studies,
investigators are often concerned about the following
issues: (1) basic statistics of a sequencing run such as
total numbers of raw, cleaned, and unique reads as well
as the degree of reads redundancy; (2) sequencing library
quality, i.e., does the library truly represent the genome
of the re-sequenced organism, and (3) the number of
sequencing runs required, i.e., how many runs are neces-
sary to get a full representation of the sequencing library
or to suffice a de novo genome assembly. Although many
tools such as Partek Genomics Suite, CLC Genomic
Workbench, or noncommercial platforms like Galaxy
and GenePattern are currently available and capable of
indirectly addressing these issues, one would have to pos-
sess some basic bioinformatics training and script writing
skills in order to manipulate and turn the generated
results into useful and straightforward information that
can be easily understood by an experimentalists. Moti-
vated by filling this gap, the limitations of existing tools,
and also driven by the demand for accelerating data-to-
results turnaround, we have developed a novel toolkit
named SeqAssist ("Sequencing Assistant”, acronym: SA).
SeqAssist specifically addresses the aforementioned three
issues and provides investigators who conduct RNA-Seq,
de novo genome sequencing or genome re-sequencing
experiments with a quick overview and preliminary ana-
lysis of their NGS data.

Implementation
SeqAssist was programmed using Perl with an additional
Java-enabled Graphic User Interface to enhance effi-
ciency and user-friendliness. It currently consists of three
separate workflows: SA_RunStats, SA_Run2Ref and
SA_Run2Run. SA_RunStats generates the basic statistics

such as total number of raw and cleaned reads, length
and copy number of unique sequences, and reads redun-
dancy in a single sequencing run or a pooled dataset of
several runs (see Figure 1a). The input of this workflow is
a FASTQ-formatted sequencing data file. The data file is
preprocessed to trim off adaptors and low quality read
ends with a default cutoff of base-calling quality score
(Q) at 20, followed by removal of N-containing reads.
Then, the cleaned reads are aligned against each other
using BWA-MEM (acronym for Burrows-Wheeler
Aligner-Maximal Exact Match), one of the three Bur-
rows-Wheeler Transform-based algorithms in the BWA
software package [13,14]. BWA-MEM is a robust, fast
and accurate aligner that supports paired-end reads, per-
forms chimeric alignment, and tolerates sequencing
errors (http://arxiv.org/abs/1303.3997v2). Based on the
alignment information in the BWA-MEM-generated
SAM (acronym for Sequence Alignment/Map format) file
[15], the number of unique reads is counted and both
identical and inclusive (i.e., redundant) reads are
removed. Two reads are considered identical if they
match 100% with each other and they are of equal length,
while inclusive reads are defined as the sub-sequences of
a longer read and only the longest read is kept as the
unique read. The redundancy rate is calculated as the
percentage of redundant reads in the total number of
unique cleaned reads [see Eq. (1) for formula]. The out-
put of this workflow includes the total numbers of raw,
cleaned, redundant and unique reads, and the redun-
dancy rate. Also included in the output is a tab-delimited
plain text file that lists all unique sequences along with
their length and read count (copy number). This file can
be used to further infer gene expression levels if the run
data is produced for an RNA-Seq experiment.

Redundancy rate(%) =
number of redundant reads

total number of unique cleaned reads
× 100% (1)

SA_Run2Ref analyzes the breadth, depth and evenness
of genome-wide coverage of an individual or pooled
sequencing dataset at a nucleotide resolution. Coverage
breadth is defined as the percentage of a reference
sequence (i.e., gene, scaffold/chromosome, or entire gen-
ome) that is covered by sequencing reads [Eq. (2)]; cover-
age depth is defined as the average times a reference
sequence is covered [Eq. (3)]; and coverage evenness is
defined as the coefficient of variance of scaffold coverage
breadth [Eq. (4)]. Therefore, outputs from SA_Run2Ref
can inform what genomic loci are covered and how a
genomic locus (gene), scaffold or the entire genome is
covered. In the SA_Run2Ref workflow (Figure 1b),
cleaned reads are aligned against the reference genome
sequence, generating a SAM file. Information stored in
columns 3, 4 and 6 for each alignment in the SAM file
represents mandatory fields RNAME (reference sequence
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name), POS (1-based leftmost mapping position), and
CIGAR (CIGAR string), respectively [15]. This informa-
tion is extracted along with the length of each scaffold of
reference genome to compute scaffold coverage breadth
and depth and genome coverage evenness. These statis-
tics are provided in the output files. The output also
includes a plain-text file that records the coverage depth
of each individual base on the entire genome. This file
can be used as an input for genome browser tools to
visualize coverage depth of any genomic regions. In case
that the user conducts an RNA-Seq experiment and pro-
vides gene model sequences (instead of scaffold or chro-
mosome sequences) as the input, the workflow will
calculate coverage breadth and depth for each gene
model. This information can be readily transformed into
gene expression measurements.

Coverage breadth(%) =
number of reference bases mapped by sequencing reads

length of the reference sequence in bases
× 100% (2)

Coverage depth =
total number of bases mapped to the reference

length of the reference sequence in bases
(3)

Coverage evenness =
standard deviation of scaffold coverage breadth

average scaffold coverage breadth
(4)

SA_Run2Run compares two separate sequencing data-
sets generated for the same or different DNA libraries,
computes the basic statistics for each individual dataset,
and estimates the redundancy rate between the two
datasets. SA_Run2Run informs the user of the redun-
dancy level both within each individual run and between

two sequencing runs. Like the SA_RunStats workflow
(Figure 1a), each input run dataset in the SA_Run2Run
workflow (Figure 1c) independently goes through the
same preprocessing, self-alignment and removing redun-
dant reads steps to generate two new datasets containing
unique cleaned sequences. Then, the two new datasets
are aligned against each other using BWA-MEM, gener-
ating a new SAM file. After combining all aligned reads,
reads common to both datasets (i.e., overlapping reads)
are identified, the counts of redundant reads (identical or
inclusive) are calculated for both overlapping and non-
overlapping reads. The output statistics from SA_Run2-
Run include total numbers of raw reads, cleaned reads,
and unique reads (after removing identical reads and
inclusive reads), and numbers of total and unique over-
lapping reads. The redundancy rates within each dataset
and between the two datasets can be further derived
from these statistics. Similar to the SA_RunStats output,
a list of unique sequences along with their length and
count number is provided for each run. However, differ-
ent from the SA_RunStats output, the list generated by
SA_Run2Run is broken into two files, one containing
overlapping reads and the other non-overlapping reads.
To compare two paired-end sequencing runs, one has to
run this workflow twice: Run1_R1.fastq vs. Run2_R1.
fastq and Run1_R2.fastq vs. Run2_R2.fastq. The SA_R-
un2Run workflow intends to guide the user in deciding
whether to perform more runs on a sequencing library
by looking at the percentage of reads in a new run cov-
ered by the reads in a previous run or the pooled reads of
multiple previous runs.

Figure 1 SeqAssist (SA) workflows: (a) SA_RunStats, (b) SA_Run2Ref, and (c) SA_Run2Run. The output of each workflow is described in
details in the Implementation section.
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Results and discussion
To test all SeqAssist workflows, a synthetic dataset was
generated by (1) clipping 10 distinct fragments with a
length of 150 bp at different loci of the Escherichia coli str.
K-12 substr. MG1655l genome (NCBI Reference Sequence
Accession No. NC_000913.3, available at http://www.ncbi.
nlm.nih.gov/nuccore/556503834?report=fasta) to con-
struct 10 artificial chromosomes, (2) clipping 10 sequences
of 75-100 bp in length from each artificial chromosome,
and (3) repeating each sequence 10 times. These steps
resulted in a dataset of 1,000 reads and a reference gen-
ome consisting of 10 short artificial chromosomes, both of
which were used to test the SA_RunStats and SA_Run2Ref
workflows. The synthetic dataset was further split in two
halves to create Run 1 and Run 2 that were used to test
the SA_Run2Run workflow. SeqAssist output results for
the synthetic dataset are in agreement with expected
results (see files in the SeqAssist software package for
details), validating the scripts coded for all three
workflows.
Here we demonstrate the applications of SeqAssist to

preliminary analysis of multiple experimental NGS data-
sets. As the SA_RunStats workflow is an integral part of
the SA_Run2Run workflow, we focus on the SA_Run2Ref
and SA_Run2Run workflows in the following experiments.
All the experiments were performed on a Dell M710 Blade
server equipped with 283 GB of DDR3 memory at 1,066
MHz speed, an Intel® Xeon® E5630 CPU Quad-core that
runs at 2.53 GHz, and two separate hard drives of 1.3 TB
and 2.9 TB. The operating system was Red Hat Enterprise
Linux Server release 6.3 (Santiago) using the CentOS 64-
bit distribution.

Experimental NGS datasets
We selected multiple NGS datasets and two organisms of
contrasting genomic complexity to demonstrate the fea-
tures of SeqAssist. These datasets represented both fixed
and variable length reads generated on Illumina and 454
sequencing platforms, respectively. The chosen organisms
were the bacteria Escherichia coli, a prokaryote with a sim-
ple and small circular genome of 4.6 Mb in length [16],
and the water flea Daphnia pulex, an eukaryote with a
recently published draft genome consisting of 5,191 scaf-
folds with a total length of ca. 200 Mb [17].
Two datasets obtained from an E. coli genome sequen-

cing project were downloaded from http://data.clovr.org/.
One dataset (named Ecoli_454_500K) contains 500,000
shotgun 454 titanium sequences (variable length reads in
SFF format), and the other (named Ecoli_I4M_R1 and
Ecoli_I4M_R2) contains 4,000,000 paired-end shotgun
Illumina sequences (2 × 49-bp fixed length reads in
FASTQ format). The Bio.SeqIO module in Biopython
(http://biopython.org/wiki/Main_Page) was employed to
convert the SFF format to the FASTQ format for the 454

dataset by the command $ python -c “from Bio import
SeqIO; SeqIO.convert(’in.sff’, ‘sff’, ‘out.fastq’, ‘fastq’);”. The
D. pulex datasets were collected in-house by repeatedly
sequencing two libraries, each of which was prepared from
genomic DNA isolated from an individual animal. One
animal came from a population named ECT (acronym for
“Environmental Consulting & Testing”, the vendor from
which it was obtained, Superior, WI, USA) and the other
from another population named TCO (acronym for “The
Chosen One”, kindly donated by Dr. Norman D. Yan,
York University, Toronto, ON, Canada).
To demonstrate the scalability of SeqAssist, we have

also chosen a human genome re-sequencing dataset of
the CEU HapMap individual NA12878 at a 15-fold cov-
erage with an insert size of 300 bp and 3.6% duplicate
reads. The dataset (SRA ID: ERX012406) consists of 7
paired-end Illumina Genome Analyzer IIx runs and is
downloadable from NCBI’s SRA database at http://www.
ncbi.nlm.nih.gov/sra/?term=ERX012406. The reference
diploid human genome (hg18) consists of 23 pairs of
chromosomes or 3,234 Mb in total.

The SA_Run2Ref workflow
The ECT D. pulex gDNA library was sequenced twice
without multiplexing, generating two paired-end sequen-
cing datasets, ECT and ECT_rerun. These two datasets as
well as their combined dataset were run through the
SA_Run2Ref workflow, producing statistics presented in
Table 1. Approximately 88% of the cleaned reads from the
ECT or the ECT_rerun dataset was mapped to the refer-
ence genome, covering 76% of the 5,191 scaffolds or 64%
of the entire genome at a 9-fold depth. The combined
dataset covered less than 1% more scaffolds than indivi-
dual datasets, and it also had similar genome coverage
breadth and evenness as the two separate datasets, even
though it doubled the genome coverage depth. The distri-
bution of scaffold coverage breadth showed a very similar
pattern with ca. 1200 scaffolds uncovered for all three
datasets (Figure 2). In comparison with the two separate
datasets, the combined dataset covered 830 and 895 more
scaffolds at > 4-fold depth or 700 and 774 more at > 10-
fold depth than the ECT and the ECT_rerun datasets,
respectively (Figure 2). The number of scaffolds with a
coverage breadth of 50% or less in the two separate data-
sets was 188 (ECT) or 218 (ECT_rerun) more than that in
the combined dataset. These results indicate that the addi-
tional sequencing run (ECT_rerun) did not improve much
coverage breadth or evenness, and that the two runs cov-
ered almost the same scaffolds.
The TCO D. pulex library was split into two fractions:

a large fraction (LF, insert size = 572 bp) and a small
fraction (SF, 269 bp). Each fraction was sequenced five
times along with 35 other indexed libraries in a multi-
plexing fashion using Illumina MiSeq, except for the
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fifth run of LF (LF5) which was pooled with 5 other
indexed libraries (Table 2). Hence, the quantity of reads
in each LF or SF dataset is equivalent to 1/36 (or 1/6
for LF5) of a MiSeq run. As more datasets were pooled
to form new reads collections as input to SA_Run2Ref,
the ratio of mapped to cleaned reads remained stable at
82% to 85% (Table 2), and the scaffold coverage

evenness had little change (Figure 3). Although the gen-
ome coverage depth steadily increased as more runs
were added to the reads collection, the genome coverage
breadth increased simultaneously until LF5 was added
and then reached a plateau (Figure 3). The addition of
2.2 million SF reads raised coverage breadth by only 3%
(Table 2 and Figure 3). The change in the distributions

Table 1 Basic statistics produced by SA_Run2Ref for two sequencing run datasets

Illumina MiSeq runs (read length = 2 × 151 bp) ECT ECT_rerun ECT + ECT_rerun

Total number of raw paired-end reads 7,575,822 7,064,035 14,639,857

Total number of cleaned reads 7,524,261 7,041,454 14,565,715

Total number of reads mapped to reference genome 6,573,572 6,193,164 12,766,736

Mapped/Cleaned reads (%) 87.37 87.95 87.65

Total number of scaffolds in reference genome 5,191 5,191 5,191

Number of covered reference scaffolds 3,960 3,948 3,998

Covered/Total scaffolds (%) 76.29 76.05 77.02

Genome coverage breadth (%) 64.48 64.32 66.12

Genome coverage depth 9.24 8.67 17.91

standard deviation of scaffold coverage depth 96.11 91.88 186.95

average scaffold coverage depth 16.27 15.41 31.33

Genome coverage evenness 6.79 6.86 6.82

Run time (min) 44.6 42.0 81.9

The two datasets of paired-end reads were generated using Illumina MiSeq by sequencing the same genomic DNA (gDNA) library prepared for a water flea
(Daphnia pulex) from an ECT population. Library preparation involved shearing of extracted gDNA using a Covaris M220 focused-ultrasonicator (Woburn, MA). The
average of library insert size distribution was 301 bp.

Figure 2 Distribution of scaffold coverage breadth and depth generated in the output files of the SA_Run2Ref workflow for two
genome re-sequencing datasets produced for the same ECT gDNA library and their combination: (a) ECT, (b) ECT_rerun, and (c) ECT +
ECT_rerun. See Table 1 for more information about the sequencing runs. Breadth and depth bins are open at the lower end and closed at the
higher end, and breadth is expressed as percentage. For instance, (0.3, 0.4] stands for 30% < breadth ≤ 40%, and (0, 1] stands for 0 < depth ≤ 1.
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of scaffold coverage depth and breadth also supports
this conclusion. Except the bin for non-covered scaf-
folds, the number of scaffolds in every bin increased
continuously for both coverage breadth and depth from
collection LF1 (Figure 4a) to LF1-5 (Figure 4b), but little
difference was observed in the scaffold numbers for cov-
erage breadth between LF1-5 and LF1-5SF1-5 collec-
tions (Figure 4c).

The SA_Run2Run workflow
The R1 and R2 files of paired-end sequencing datasets
were run separately through the SA_Run2Run workflow.
The E. coli datasets (Ecoli_454_500K, Ecoli_I4M_R1 and
Ecoli_I4M_R2) were split into two halves to create two
runs in order to run this workflow (Table 3). For re-
sequencing of the E. coli genome, output statistics sug-
gest that the paired-end Illumina dataset has a higher

Table 2 Sequencing datasets and genome mapping of the Daphnia pulex TCO library

Reads
collection

Sequencing runs/collection Library
fraction

Raw
reads

Cleaned
reads

Mapped
reads

Mapped/Cleaned
reads (%)

Run time
(min)

Added run (multiplex,
read length)

LF1 LF1 Large only 383,575 381,612 311,919 81.74 7.1 LF1 (36 ×, 2 × 151)

LF1-2 LF1+LF2 Large only 1,083,738 1,076,671 907,601 84.30 13.8 LF2 (36 ×, 2 × 251)

LF1-3 LF1+LF2+LF3 Large only 1,782,006 1,743,523 1,478,140 84.78 21.7 LF3 (36 ×, 2 × 251)

LF1-4 LF1+LF2+LF3+LF4 Large only 2,218,000 2,177,265 1,848,979 84.92 26.1 LF4 (36 ×, 2 × 251)

LF1-5 LF1+LF2+LF3+LF4+LF5 Large only 4,242,048 4,178,856 3,524,528 84.34 45.9 LF5 (6 ×, 2 × 251)

LF1-5SF1 LF1+LF2+LF3+LF4+LF5+SF1 Large +
Small

4,542,917 4,478,675 3,766,787 84.10 48.1 SF1 (36 ×, 2 × 151)

LF1-5 SF1-
2

LF1+LF2+LF3+LF4+LF5+SF1
+SF2

Large +
Small

5,084,493 5,014,933 4,204,692 83.84 50.6 SF2 (36 ×, 2 × 151)

LF1-5 SF1-
3

LF1+LF2+LF3+LF4+LF5+SF1
+SF2+SF3

Large +
Small

5,530,560 5,457,878 4,561,648 83.58 52.7 SF3 (36 ×, 2 × 151)

LF1-5 SF1-
4

LF1+LF2+LF3+LF4+LF5+SF1
+SF2+SF3+SF4

Large +
Small

5,920,185 5,845,827 4,872,885 83.36 54.8 SF4 (36 ×, 2 × 151)

LF1-5 SF1-
5

LF1+LF2+LF3+LF4+LF5+SF1
+SF2+SF3+SF4+SF5

Large +
Small

6,411,123 6,333,054 5,270,616 83.22 56.5 SF5 (36 ×, 2 × 151)

All the NGS run datasets were generated by sequencing the TCO gDNA library which was split into two fractions: a large fraction (LF) with an average insert size
of 572 bp and a small fraction (SF) with an average insert size of 269 bp. An Illumina MiSeq was used for sequencing and both fractions were each sequenced
five times in a 36 × or 6 × multiplexing fashion, resulting in datasets LF1 to LF5 and SF1 to SF5. The reads collections were mapped to a D. pulex reference
genome by running the SA_Run2Ref workflow.

Figure 3 Change in genome coverage breadth, depth and evenness as more sequencing runs for the same TCO library were pooled
and used as the input of SA_Run2Ref. See Table 2 for the sequencing runs pooled to form reads collections.
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Figure 4 Change in the distribution of scaffold coverage breadth and depth as more sequencing runs for the same TCO library were
pooled and used as the input of SA_Run2Ref. Shown are distributions for three reads collections: (a) LF1, (b) LF1-5, and (c) LF1-5SF1-5. See
Table 2 for the sequencing runs pooled to form reads collections. Breadth and depth bins are open at the lower end and closed at the higher
end, and breadth is expressed as percentage. For instance, (0.3, 0.4] stands for 30% < breadth ≤ 40%, and (0, 1] stands for 0 < depth ≤ 1.

Table 3 The output statistics and derived statistics from running five pairs of NGS datasets through the SA_Run2Run
workflow

NGS datasets Ecoli_I4M_R1 Ecoli_I4M_R2 Ecoli_454_500K ECT_R1 ECT_rerun_R1 ECT_R2 ECT_rerun_R2

Run1 Run2 Run1 Run2 Run1 Run2 Run1 Run2 Run1 Run2

Output statistics

Total number of raw reads in
the run

2,000,000 2,000,000 2,000,000 2,000,000 250,000 250,000 7,575,822 7,064,035 7,575,822 7,064,035

Total number of cleaned reads
in the run

1,968,732 1,997,550 1,999,692 1,999,283 231,123 231,245 7,538,930 7,046,481 7,542,743 7,046,396

Number of unique reads in the
run (after removing identical
redundant reads)

1,487,552 1,482,834 1,450,704 1,405,779 224,217 224,537 7,114,791 6,702,601 7,242,351 6,839,442

Number of unique reads in the
run (after removing identical &
inclusive redundant reads)

1,487,552 1,482,834 1,450,704 1,405,779 221,379 221,622 6,885,175 6,407,251 6,945,743 6,546,440

Total number of overlapping
reads in the run

712,022 730,780 810,225 834,999 18,304 18,321 950,696 941,648 807,790 770,963

Number of unique overlapping
reads in the run

360,898 360,898 403,927 403,927 15,786 15,786 621,978 617,458 537,199 530,419

Number of unique overlapping
reads from both runs

360,898 403,927 15,786 625,044 538,561

Derived satistics

File size after preprocessing 266MB 266MB 266MB 266MB 216MB 216MB 2.6GB 2.4GB 2.5GB 2.4GB

Number of redundant cleaned
reads in the run

481,180 514,716 548,988 593,504 9,744 9,623 653,755 639,230 597,000 499,956

Redundancy rate within the
run

32.3% 34.7% 37.8% 42.2% 4.4% 4.3% 9.5% 10.0% 8.6% 7.6%

Total number of non-
overlapping reads in the run

1,256,710 1,266,770 1,189,467 1,164,284 212,819 212,924 6,588,234 6,104,833 6,734,953 6,275,433

Number of unique non-
overlapping reads in the run

1,126,654 1,121,936 1,046,777 1,001,852 205,593 205,836 6,263,197 5,789,793 6,408,544 6,016,021
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redundancy rate than the 454 dataset, which is sup-
ported by not only the redundancy within the run (32%
to 42% vs. 4%), but also the redundancy of overlapping
reads between two split “runs” (97% to 107% vs. 16%)
(Table 3). For D. pulex genome re-sequencing, the two
paired-end datasets had a relatively low redundancy
level within each run (8% to 10%) and a low ratio of
overlapping reads to total cleaned reads (11% to 13%)
(Table 3 and Figure 5). However, based on the output
statistics from SA_Run2Ref, the rerun of the ECT library
did not improve genome coverage breadth (Table 1 and
Figure 2). It can be concluded from output information
taken from both workflows that, despite nearly 90% of
the reads from the two sequencing runs being different,
they essentially cover the same scaffolds. If the main
goal of the re-sequencing experiment was to obtain

reads representing the entire genome, the additional run
of the ECT library was apparently unnecessary.
With regard to redundant reads, a distinction is drawn

between identical and inclusive reads. If reads are of the
same length, there is no difference between these two types
of redundant reads. Consequently, the number of unique
overlapping reads in Run1 is the same as those in Run2
and both runs (see output statistics for Ecoli_I4M_R1 and
Ecoli_I4M_R2 in Table 3 for examples). Preprocessing of
Illumina datasets may cause length differentiation between
cleaned reads. For datasets of reads with variable length,
the number of unique reads after removing identical reads
is higher than that after removing both types of redundant
reads (see output statistics for Ecoli_454_500K, ECT and
ECT_rerun datasets in Table 3 and Figure 5). As a result,
the number of unique overlapping reads in Run1 may

Table 3 The output statistics and derived statistics from running five pairs of NGS datasets through the SA_Run2Run
workflow (Continued)

Number of redundant non-
overlapping reads in the run

130,056 144,834 142,690 162,432 7,226 7,088 325,037 315,040 326,409 259,412

Redundancy of non-
overlapping reads in the run

11.5% 12.9% 13.6% 16.2% 3.5% 3.4% 5.2% 5.4% 5.1% 4.3%

Number of redundant
overlapping reads in the run

351,124 369,882 406,298 431,072 2,518 2,535 328,718 324,190 270,591 240,544

Redundancy of overlapping
reads in the run

97.3% 102.5% 100.6% 106.7% 16.0% 16.1% 52.9% 52.5% 50.4% 45.3%

Total overlapping reads/total
cleaned reads (each run)

36.2% 36.6% 40.5% 41.8% 7.9% 7.9% 12.6% 13.4% 10.7% 10.9%

Total overlapping reads/total
cleaned reads (both runs)

36.4% 41.1% 7.9% 13.0% 10.8%

Total runtime (min) 13.3 13.0 8.2 106.3 110.8

Overlapping reads are defined as those found in both runs. Unique overlapping reads from both runs are those left after removing redundant reads (identical or
inclusive) from the combined overlapping reads from both runs.

Figure 5 Breakdown of cleaned reads from two sequencing runs (ECT and ECT_rerun) into overlapping and non-overlapping reads
based on the output from SA_Run2Run (see Table 3 for more info). “N” represents reads containing N that were removed during
preprocessing.
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differ from that in Run2 and in both runs (see output
statistics for ECT and ECT_rerun datasets in Table 3 and
Figure 5).

Analysis of the human genome re-sequencing dataset
Two paired-end sequencing runs, ERR032971 and
ERR032972, within the ERX012406 dataset (NA12878)
were analyzed using the three workflows to show the
scalability of SeqAssist. Both runtime and memory usage
were recorded and shown in Table 4 and Figure 6,
respectively. The human genome is 15 times bigger than
the D. pulex genome, and the size of the human genome
re-sequencing runs in base pairs (6.4~6.6 Gbp) is nearly
triple that of D. pulex (2.1~2.2 Gbp, Table 1). However,
the runtime of the human data through the SA_Run2Ref
workflow (229~319 min, Table 4) was ca. 5.2~7.6 times
that of the ECT (44.6 min) or the ECT_rerun (42 min)
data (Table 1). For the SA_Run2Run workflow, their run-
times differed only by 3.5-fold, i.e., 96~110 min for
D. pulex vs. 348~381 min for human. The memory space
consumed by SeqAssist when running the two human
datasets did not exceed 10% of the 284-GB RAM, except
for a surge that occurred when multiple threads were
used for calculating the statistics after the completion of
BWA alignment at ca. 9700 seconds in the SA_Run2Ref
workflow (Figure 6). These results suggest that SeqAssist
is fully capable of handling any sequencing run data gen-
erated by current NGS platforms for organisms with a
reference genome of any size and complexity, and results
can be produced rapidly within a working day (less than
8 hours). This feature satisfies the demand for a quick
turnaround from mega data to preliminary results.

Conclusions
We have demonstrated the main features of SeqAssist
using multiple genome re-sequencing datasets. Output
statistics from SeqAssist can guide the user in evaluating
the quality of a DNA library prepared for genome re-

sequencing and in deciding whether there is a need to
perform additional sequencing runs on the library.
Based on the low coverage breadth (66%) and the high
reads mapping rate (88%) (Table 1), it appears that the
ECT gDNA library may not be a good representation of
the entire genome. The same holds true for the TCO
library if considering its maximal breadth (62%, Figure 3)
and mapping rate (84%, Table 2). In terms of the number
of multiplexed sequencing runs required for the TCO
library, five runs of the large fraction seemed to be suffi-
cient because they reached the maximal coverage
breadth, with a total raw reads number of 4.2 million.
In summary, the SA_RunStats workflow generates basic

statistics about an NGS dataset, including numbers of raw,
cleaned, redundant and unique reads, redundancy rate,
and a list of unique sequences with length and read count.
The SA_Run2Ref workflow estimates the breadth, depth
and evenness of genome-wide coverage of the NGS data-
set at a nucleotide resolution. The SA_Run2Run workflow
compares two NGS datasets to determine the redundancy
(overlapping rate) between the two NGS runs. Statistics
produced by SeqAssist or derived from SeqAssist output
files are designed to inform the user: whether, what per-
centage, how many times and how evenly a genomic locus
(i.e., gene, scaffold, chromosome or genome) is covered by
sequencing reads, how redundant the sequencing reads
are in a single run or between two runs.
SeqAssist is a useful and informative tool that can serve

as a valuable “assistant” to a broad range of investigators
who conduct genome re-sequencing, RNA-Seq, or de novo
genome sequencing and assembly experiments. For RNA-
Seq experiments, SeqAssist output files that contain
unique sequences along with their mapped genomic loci
and copy numbers may be readily transformed into gene
expression data. An investigator who de novo assembles a
genome from sequencing data may use SeqAssist to map
the original reads to the assembled genome and obtain a
ratio of mapped to cleaned reads. As an additional para-
meter to existing metrics [18], this ratio can be used to
objectively compare the quality of different assemblies
made from the same sequencing data. For further in-
depth analyses of NGS data, one is advised to use other
appropriate tools available from the bioinformatics com-
munity. For instance, one may choose to apply spliced
aligners such as RUM [19] and SpliceSeq [20] to identify
splice junctions for alternative splicing detection of RNA-
Seq data, or employ a structural variant (SV) discovery
software such as BreakDancer [21], Pindel [22] and
PRISM [23] to call SV events and discern breakpoints
from genome re-sequencing data.
We plan to improve visualization features of SeqAs-

sist in the future versions. Specifically, the nucleotide-
resolution mapping and coverage depth (copy number)
information generated from SA_Run2Ref shall be

Table 4 Runtime of the three SeqAssist workflows
recorded when analyzing two paired-end human genome
re-sequencing run data files of a CEU HapMap individual
NA12878

Run data file Bases
(Gbp)

SA_RunStats
(min)

SA_Run2Ref
(min)

SA_Run2Run
(min)

ERR032971_R1 3.2 194 NA 348

ERR032972_R1 3.3 208 NA

ERR032971_R2 3.2 198 NA 381

ERR032972_R2 3.3 208 NA

ERR032971 6.4 NA 229 NA

ERR032972 6.6 NA 319

The read length was 101 bases and the number of reads was 31.9 M and 32.6
M for ERR032971 and ERR032972, respectively. The runtime is rounded up to
the closest minute. NA: not applicable.
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transformed into interactive visual graphics to allow
the user to visualize gene coverage or expression levels.

Availability and requirements
• Project name: SeqAssist
• Project home page: http://orca.st.usm.edu/cbbl/
seqassist/
• Operating systems: Linux (Ubuntu)
• Programming language: Perl v.5.14.2 with the follow-
ing packages: Parallel::ForkManager and Getopt::Long
• Other requirements: BWA (http://bio-bwa.source-
forge.net/), Cutadapt (https://code.google.com/p/
cutadapt/), GNUplot, and Java Runtime Environment
(JRE version 1.6.0_30 or greater)
• License: Free for commercial and academic uses.
• Any restrictions to use by non-academics: None.
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