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Abstract

protein structures with correct side chains.

by designing parallel heuristic search algorithms.

Introduction: The accurate packing of protein side chains is important for many computational biology problems,
such as ab initio protein structure prediction, homology modelling, and protein design and ligand docking
applications. Many of existing solutions are modelled as a computational optimisation problem. As well as the
design of search algorithms, most solutions suffer from an inaccurate energy function for judging whether a
prediction is good or bad. Even if the search has found the lowest energy, there is no certainty of obtaining the

Methods: We present a side-chain modelling method, pacoPacker, which uses a parallel ant colony optimisation
strategy based on sharing a single pheromone matrix. This parallel approach combines different sources of energy
functions and generates protein side-chain conformations with the lowest energies jointly determined by the
various energy functions. We further optimised the selected rotamers to construct subrotamer by rotamer
minimisation, which reasonably improved the discreteness of the rotamer library.

Results: We focused on improving the accuracy of side-chain conformation prediction. For a testing set of 442
proteins, 87.19% of X7 and 77.11% of X}, angles were predicted correctly within 40° of the X-ray positions. We
compared the accuracy of pacoPacker with state-of-the-art methods, such as CIS-RR and SCWRL4. We analysed the
results from different perspectives, in terms of protein chain and individual residues. In this comprehensive benchmark
testing, 51.5% of proteins within a length of 400 amino acids predicted by pacoPacker were superior to the results of
CIS-RR and SCWRL4 simultaneously. Finally, we also showed the advantage of using the subrotamers strategy. All results
confirmed that our parallel approach is competitive to state-of-the-art solutions for packing side chains.

Conclusions: This parallel approach combines various sources of searching intelligence and energy functions to
pack protein side chains. It provides a frame-work for combining different inaccuracy/usefulness objective functions

Introduction

The accurate packing of side chains plays a very important
role in modelling protein structures. In ab initio structure
prediction, the goal is to choose a rotamer for each posi-
tion so that the molecule is close to the natural structure.
In homology modelling, the goal is to predict the structure
of a protein that is homologous to another of a known
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structure [1,2]. In protein design, the goal is to find an
amino acids sequence that will fold into a particular back-
bone [3]. In flexible ligand docking, the goal is to display a
structural change ranging from large movements of entire
domains to small side-chain rearrangements in the bind-
ing site [4-6]. Based on Anfinsen’s hypothesis [7], the pro-
blem of packing side chains is usually mapped into a
combinatorial optimisation problem and can be solved in
a number of ways. However, a fixed backbone, an energy
function and a possible rotamer set are always foundations
of this widely studied formulation. All the current existing
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algorithms for the side-chain problem can be divided into
two categories, heuristic and deterministic.

The side-chain problems have been proven as non-
deterministic polynomial-time hard (NP-hard) [8-10].
Even when an approximate solution is sought within O
(cnR) from the optimum, where c is a constant, # is the
number of residues and R is the average number of rota-
mers per residue [11,12], the packing side chains cannot
be solved successfully. Computational complexity analy-
sis suggests that any global optimisation algorithms for
this problem may, in the worst case, run in exponential
time [11]. When they converge, dead-end elimination
(DEE) algorithms [13,14] are designed to find the global
minimum energy. Heuristics are not guaranteed to find a
global minimum, but they almost always find a low-
energy conformation in a reasonable time [15]. There-
fore, heuristic algorithms become a natural choice for
tackling the side-chain modelling problem. Traditionally,
all heuristic approaches solve such side-chain problems
as a single-objective optimisation Problem (SOP), using
Monte Carlo (MC) [16], Ant Colony (AC) [17], and
Simulated Annealing (SA) [18]. Some of the heuristic
methods combine multiple strategies, such as a combina-
tion of DEE and the A” algorithm [19], and combination
of SA and MC [20-22]. The common feature of these
heuristic approaches is that they all use an optimisation
based on a single objective function.

Another method for solving the side-chain problem
was by using the theory of decomposing the underlining
residue relationship. One such method is SCWRL
[23-25,15], which is widely used because of its speed,
accuracy and ease of use. SCWRL3 decomposes original
residue graphs to connected subgraphs, which cannot be
disconnected by the removal of a single vertex. They find
the global minimal energy conformation for the residues
in these subgraphs [25]. The authors who proposed the
SCWRL methods also observed that residues with a sin-
gle rotamer or a single neighbour can be eliminated from
the residue graph. Then SCWRL4 [15] transfers the origi-
nal residue graphs to a tree for speeding up the solver.
However, in the tightly packed environments of protein
interiors, these methods will inherently lead to atomic
clashes and hinder the prediction accuracy. Therefore, a
new method, CIS-RR, performs clash detection-guided
iterative searches (CIS) of side-chain rotamers whilst
continuously optimising side-chain conformations using
a conjugate gradients method [26].

In general, methods for predicting side chains seem to
be limited not by the quality of search algorithms, but
also by the quality of the energy functions employed [23].
An energy function typically consists of a combination of
weighted energy terms. It is not hard to find different
approaches, which develope distinctive kinds of energy
functions. For example, SCWRL3 use an energy function
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based on logarithmic probabilities of rotamers and a sim-
ple repulsive steric energy term [25]. However, SCWRL4
also uses a short-range, soft van der Waals interaction
potential between atoms rather than the linear repulsive-
only function used in SCWRL3, as well as an anisotropic
hydrogen bond function similar to that used in Rosetta
[15,27]. The energy function of CIS-RR is also a modified
the energy function of SCWRL3. The first improvement
is to add attractive energy and weights to the van der
Waals potential. The second improvement is to penalise
the drifting of side chain dihedral angles away from the
nearest rotamer library values for the original rotamer
term. The existence of different energy functions implies
that all energy functions are inaccurate in a universal
sense (inaccuracy), but each of them is very useful in
some specific sense (usefulness). This hypothesis is
referred to as the inaccuracy/usefulness property [28].
The approaches based on SOP all use a single inaccuracy
energy function to model side chains, so the results are
sometimes inaccurate in a quantitative sense for discrimi-
nating native or near-native conformations.

In this study, a novel approach is proposed to assemble
the usefulness and decrease the inaccuracy of different
energy functions. We believe that it is more reasonable
to model packing side chains as a multi-objective optimi-
sation problem (MOP). Different energy functions should
be combined to the best possible extent. As this idea has
been successfully applied to de novo prediction of protein
backbone [28,29], we also used parallel ant colony opti-
misation based on SHOP (SHaring One Pheromone
matrix) [30]. Our parallel strategy is not for speeding up
the predictor, but can be used to hybridise the usefulness
of different energy functions. All energy functions can be
adopted by an individual colony. In this way, we can
avoid the sensitivity of the optimised parameters of
energy functions, so we expect to obtain better generality
of our predictor. This parallel strategy has been validated
experimentally.

Methods

We propose a novel parallel ant colony optimisation
(ACO) metaheuristic frame-work for packing protein
side chains by single-heuristic multi-objective algorithms
(SHMO) to reduce the inaccuracy of a single energy.
We denote a heuristic algorithm by /# and different
energy functions by ¢ = {E; , . . ., Ex }, where the num-
ber of threads amount to k. This type of algorithm is
generally denoted by [];, (Eil®) where © refers to the
control parameters in terms of heuristic search algo-
rithms and can usually be tuned empirically before start-
ing, or adaptively during the algorithm [28]. In the
pacoPacker algorithm, /# adopts ACO, and ©® contains
two variables, private and public. To be more specific,
all ant colonies share one common pheromone matrix T
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as a public variable, and each ant colony has a private
variable including heuristic matrix H; and two other
parameters, o; and f3; . A = {0, , . .., 0o }, determines
the importance of the pheromone and B = {3, , ..., B},
determines the importance of the heuristic matrix H =
{H , ..., H}. This paper’s method can be described as
[1ic (Eilei, Bi, Hi, T). The Rosetta3.4 platform [31] is
quite mature and supports the object-oriented paradigm,
therefore pacoPacker uses Rosetta3.4 for building rota-
mer libraries, constructing interaction graphs, and scor-
ing structures. Using Rosetta3.4 and OpenMP [32], our
scheme is easy to implement.

Search space

For an amino-acid sequence ¢ with # length of residues,
its side chains are packed with the lowest free energy.
Let the rotamer library for t be R = {R; , ..., R,},
where the rotamer set is R; = {r1, ..., 7, } for each residue
i in t, the number of rotamers belonging to R; amount
to m;, and different rotamer sets have a different quan-
tity of rotamers. Rotamers were read from Dunbrack
backbone dependent rotamer library (2010 version),
such that frequencies and dihedral angles varied with
the backbone dihedral angles @ and y [33].

Energy function

We adopted the same energy functions used by Rosetta.
These scores are combinations of different weights and
energy items, such as residue-environment and residue-
residue interactions, secondary structure packing, chain
density and excluded volume [28]. It does not matter
which function is more accurate as all the energy func-
tions share the inaccuracy/usefulness property. The
Rosetta energy functions are adopted here to illustrate
the implementation of our parallel approach. We forked
eight threads to run separately using different energy
functions, which rule out any side-chain-independent
energy terms. Different threads have different private
variables, which are listed in Table 1. Table 1 shows the

Table 1 Score function and ACO parameters
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weight of each score term on different score functions.
Each score term is represented by letter (A, B, etc.),
which correspond to Table 2.

Implementation of the algorithm
Eight parallel threads were created in our SHMO imple-
mentation. Figure 1 depicts the design of pacoPacker.
Using a protein backbone as the input of pacoPacker,
the rotamer library is generated based on the target
sequence by using the Rosetta platform. The outputs are
proteins with side chains predicted by ant colonies.
From the information shown in Figure 1, eight different
ant colonies share a single common pheromone matrix
T to exchange their search experience asynchronously.
Each colony is directed by its own energy functions,
which both co-evolve towards a better state.

Next, we will focus on a single ant colony to pack side
chains. Construction by an ant colony is described as
follows:

1. Conduct side chains based on the selection equa-
tion for each ant.

2. Perform the local search on each odd-numbered
iteration ant.

3. Update global best ant sg,with iteration best ant
sip if E(s;,) is lower.

4. Update the pheromone matrix T based on s,

5. If the termination criterion is met, let’s return to
Sgp, OF repeat steps 1 to 5.

In this workflow, each colony terminates when one of
the following criteria is met: the colony runs for a speci-
fied number of iterations; and there is no energy
improvement during the last several iterations. Two
important equations, the selection equation and the
update pheromone matrix equation are explained below.

Each ant conducts the conformation by assembling
rotamers from R. The ant picks up a rotamer 7; from
the rotamer set R; € R for residue i. For ¢ thread, the

Thread ID Score function Score terms o B
A B C D E F G H | G K LM NO P Q
1 standard 0.8 044 0.65 0004 049 056 117 117 117 11 05 2 5 5 1 0 0 31
2 scorel2 0.8 044 0.65 0004 049 056 117 0585 117 1.1 T 11 1 0 0o 11
3 scorel2 full 0.8 044 0.65 0004 049 056 117 0585 117 11 05 2 5 5 1 0 0o 1 2
4 scorel2minpack 0.8 044 0.65 0004 049 056 1.17 0585 1.17 1 T 1 1 1 0 0 13
5 scorel3 06921 0.1754 05253 -0.00764 053 063 1322 0336 2 1883 05 2 5 5 1 0571 0 2 1
7 scorel3 06921 0.1754 05253 -0.00764 053 063 1322 0336 2 183 05 2 5 5 1 0571 0 1 1
8 pack no hb envdep 08 0.1 0.65 0004 049 056 117 117 117 31 T 1 1 1 0 1T 31
6 RosettaHoles score  The RosettaHoles scores are based on packing information about a cavity ball and the local region 12

surrounding it, most importantly the contact surface area of atoms surrounding the cavity with respect to a

sequence of probe radii.
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Table 2 Score terms
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Score term Label Description

fa_atr A lennard-jones attractive

fa_rep B lennard-jones repulsive

fa_sol C lazaridis-jarplus solvation energy

fa_intra_rep D lennard-jones repulsive between atoms in the same residue

fa_pair E pairwise electrostatics term derived from statistics on the pdb database
fa_dun F internal energy of sidechain rotamers as derived from Dunbrack’s statistics
hbond_Ir_bb G long range (beta or loop) backbone-backbone hydrogen bonds
hbond_sr_bb H short range (helix) backbone-backbone hbonds

hbond_bb_sc \ sidechain-backbone hydrogen bond energy

hbond_sc J sidechain-sidechain hydrogen bond energy

dslf_ss_dst K distance score in current disulfide

dslf_cs_ang L csangles score in current disulfide

dslf_ss_dih M dihedral score in current disulfide

dslf_ca_dih N Car dihedral score in current disulfide

pro_close 0] proline ring closure energy

envsmooth p Statistically derived fullatom environment potential

atom_pair_constraint  Q Harmonic constraints between atoms involved in Watson-Crick base pairs specified by the user in the params file

rotamer selection is determined by the current heuristic
and historical knowledge, described by the following
selection equation (Equation 1):

o maxy eg, [ 73] [ ],
otherwise.

j randomly pickup rj from R;,

Where t; is defined later in Equation 3, which denotes
the useful experience accumulated by previous searches,
7n; denotes the heuristic value. Let the heuristic matrix
be: Hy = l_[ien,iemi nij, where 7;; is the energy difference
induced by residue i picking up rotamer r; , which is
standardised according to Equation 2.

nij = 72[ — arctan AE. (2)

qo tunes the bias between the two selection policies. A
random probability g will be generated when a rotamer
is needed. Once the rotamer is picked, 7} is inserted into
the protein backbone from the position of residue i.

The second formula updates the pheromone matrix T
after all the ants have finished their work in an iteration.
Let the pheromone matrix be: T = nien,jgm‘ Tij, where t;;
is the pheromone value accumulated by residue i pack-
ing rotamer 7;. For each 7; of residue i in sy, the value is
updated using Equation 3.

Repacked PDB and Rotamer Library S
pacoPacker

AC(Er) AC:(E2) ACy(Es) AC4(Es)
Parallel
threads

ACs(Es) ACs(Es) AC(E7) ACs(Esg)

Shared [T]
decoyl ) [ decoy2 s s e e e decoy8
Figure 1 pacoPacker schematic flowchart.
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Tij = (1 — p)Ti]‘ + pA‘L’,‘]‘. (3)

Where p € [0, 1) is the pheromone evaporation factor,
and Aty is calculated by a quality function which con-
verts the energy value to a certain amount of phero-
mone. We describe this situation in Equation 4.

T _arctan %) ifr of residuei € s bi
A‘L’i]‘ =42 n’ J . 80 (4)
Tij, otherwise.

Our SHMO scheme is simple with the help of
OpenMP. The pheromone matrix is extracted from AC,
and multiple colonies are run as parallel threads with
private variables in each colony to co-evolve with the
common pheromone matrix.

Rotamer minimization

Rotamer minimisation was implemented in two ways.
First, the pacoPacker runs on each normal rotamer as it
is placed; after that, the pacoPacker runs a global minimi-
sation on the side chains at all the packable positions. We
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will not provide much detail about this method, as the
Rosetta3.4 mechanism was adopted to achieve it. Second,
pacoPacker runs a gradient minimisation on each rota-
mer as it is placed and keeps the minimised rotamers. To
use this second method, we devised a new data structure
to remember minimised rotamers (Figure 2). If there are
M = m; + my + - -+m,, rotamers, and each normal rota-
mer has its own alternative obtained by minimising itself,
they are called subrotamers. We describe the set of sub-
rotamers for r; from R; as A;; , which can be calculated
quantitatively by Equation 5, where i € n,j € m;, 1; € R;

Ajj = {rj}
Ajj = (min(r;), 7}

. | (5)
Al = {min(RandomP(AgA ), AZ'A }

A detailed explanation of this equation is shown in
Figure 3. An ant selects the rotamer r; for the i residue
based on Equation 1, then find its subrotamers A; as
shown in step 5 in Figure 3, and randomly picks up a

A subrotamers
i
Il An
= | |
Ri 2 ={ A2 |
I'm =|| Alml |
I » A2
R> > x
I'm: N A2m: |
I > Ail
Ri >
Tm > Aim
Tl % Anl |
Ra >
T ‘I Anmn |

Figure 2 Data structures of rotamers and subrotamers.
A
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2 for : < 1 to n do

15 end

input : the xth ant construction M.
output: the xth ant which has new side-chain.
1 randomly sorting residue positions;

3 choose rotamer r; based on equation (1);
4 u=rj;

5 if Ai; is not empty then

6 randomly pick up a subrotamer z from A;;;
7 ‘ U=z

8 end

9 © = minimization(u);

10 if subrotamer u is accepted then

1 Aij +

12 T = U;

13 end

14 M, + SubstituteF(r;, My).

Figure 3 Ant constructed side chains by minimising each placed rotamer.

subrotamer from A;; to replace the primary rotamer at
position i. The 97 step attempts to optimise the subrota-
mer achieved by Rosetta. All minimisation algorithms in
Rosetta choose a vector as the descent direction, deter-
mine a step along that vector, then choose a new direction
and repeat [31]. We selected “dfpmin” as an exact line
search for these steps. If this minimised subrotamer results
in a drop in energy, it was kept and made into the residue
i. Minimisation needs more time, so for researches with
sufficient time who want to obtain more accurate results,
this application would be a good choice.

Results

The principal idea behind pacoPacker is to make the par-
allel ant colonies share only one pheromone matrix, which
can combine different energies to guide each ant in con-
structing protein side-chain conformations. We tested
pacoPacker by making comparisons with two popular
side-chain modelling programs, CIS-RR and SCWRLA4.
CIS-RR combines a novel clash-detection guided iterative
search (CIS) algorithm with continuous torsion space opti-
misation of rotamers (RR) [26]. SCWRL4 is an improved
version of SCWRL3 [25] which uses the new rotamer
library, more efficient search algorithms and a soft Vander
Waals potential plus hydrogen bonding based scoring
function [15]. All these predictors are based on discrete
rotamers.

Experimental settings

We performed all the tests on a computer cluster contain-
ing 20 nodes with 16-core 1.9 GHz AMD Opteron CPU
per node under Linux 2.6.18 and GCC 4.1.2. CIS-RR and

SCWRL4 were ran using their default settings to produce
one prediction for each test instance. We ran pacoPacker,
with eight ant colonies running in parallel, on the same
test instances. As all these threads were synchronised to
work out eight predictions and each is a nondeterministic
approach, different numbers of decoys for each test
instance were generated. The number of predictions for
each test instance ranged from 2130 ([PDB:1CBN] 46 resi-
dues) to 4650 ([PDB:1B90] 635 residues). We selected the
highest accuracy rate of each test instance from paco-
Packer to compare with CIS-RR and SCWRLA4.

The benchmark instances were taken directly from
other research, which contained 442 protein targets with
lengths of 46 to 1184 amino acid residues [26,15].
Because [PDB:2QOL] cannot be predicted by CIS-RR
and [PDB:1G8Q)] is considered as a missing main chain
atom by Rosetta, we excluded them from this bench-
mark. A fair evaluation is a difficult task, so we used
two criteria to assess the accuracy of side chain packing.
One was defined as the percentage of correctly pre-
dicted X} and X, angles within thresholds of 40° and
20° compared with the native structures. The second
criterion was the root mean square deviation (RMSD) of
the side-chain heavy atoms [34]. Both evaluation meth-
odologies are adapted from third-party software [26,35],
where they consider residues with symmetric terminal
groups, or with a possibly flipped terminal group.

Protein chain based evaluation performance

Firstly, we compared pacoPacker with CIS-RR and
SCWRLA in side-chain modelling. As shown in Table 3 for
the accuracy improvement in terms of correct X dihedral
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Table 3 Comparison of pacoPacker, CIS-RR and SCWRL4
in the 442 structure set

Method X1(4OO) X1(2O°) X12(400) X12(2O°) RMGSD
(A)

SCWRL4 82.80% 79.61% 74.98% 68.21% 207
CIS-RR 84.88% 82.07% 77.13% 70.13% 1.62
pacoPacker  87.19% 83.53% 77.11% 70.02% 1.60

angles and RMSD, pacoPacker is comparable to the
recently developed side-chain programs. As SCWRL4
showed relatively poor performance, so we only present a
detailed comparison between pacoPacker and CIS-RR.
Within 40° the X} of the whole protein was improved by
2.31% with pacoPacker (87.19% by pacoPacker versus
84.88% by CIS-RR), and the y12 was comparable (77.11%
by pacoPacker versus 77.13% by CIS-RR). A similarly con-
sistent trend was also seen for the accuracy rate of X; and
X1, within 20° In case of the other metrics, pacoPacker is
the best with its lowest RMSD.

We made further comparisons between the three pre-
dictors. In Figures 4 to 7, each symbol represents a single
protein target, a red cross denotes a better pacoPacker
yield and a blue criss-cross denotes a worse yield. Some
differences between the two methods were less than 0.5%
for the accuracy of X dihedral angles and 0.005A for
RMSD, respectively. These are denoted by a green asterisk.
As shown in Figures 4 and 6, when compared with CIS-
RR, there were 342, 210 and 242 targets predicted by
pacoPacker for X3, X1, and RMSD respectively, showing
that it has the advantage over CIS-RR. Moreover, Figures
5 and 7 show that pacoPacker was better than SCWRL4
for 332, 211 and 267 targets for X}, X, and RMSD respec-
tively. These results clearly show that pacoPacker has a
high reliability based on SHOP.
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Individual residues based evaluation performance

Next, we sought to evaluate how pacoPacker works on
different types of amino acids. Figure 8 shows that paco-
Packer improved the percent correct of both X7 and X},
dihedral angles. For &}, excluding Ala and Gly, paco-
Packer has 15 types of amino acids holding the top spot.
In Glu, Lys and Ser, they had an average increase of more
than 5%. PacoPacker made the greatest contribution to
the accuracy of X. It also can be proven from the situa-
tion that pacoPacker made the greatest contribution to
the accuracy of A via its accurate prediction of Ser and
Thr. The residues, which were predicted accurately, were
predominantly aliphatic and aromatic residue types. For
X12, pacoPacker accounted for 6 types of amino acids in
the lead, whilst CIS-RR accounded for 5 and SCWRL4
accounted for 3. Previous research has shown that for the
short polar amino acids (Asp, Asn and Ser), CIS-RR
shows lower performance, which could be due to the dif-
ference in scoring functions [26]. However, pacoPacker
improves them both in X} and X}, which has again
shows the importance of combining different energies.

Effects of rotamer minimisation

From the results presented in the previous two sections,
we show the superiority of X} while the performance of
X, is not strong. For example, when compare the num-
ber of red crosses on Figure 4(A) with Figure 4(B),
pacoPacker has 342 best-performing proteins for A},
which is more than the 210 best-performing proteins for
X12. In addition, Cys, Ser, Thr and Val only on wing X},
clearly dominate the area of X;. High quality & is sig-
nificant for side-chain prediction, because it is a founda-
tion of residue. On the other side, there is still room for
improvement of X5, so we naturally optimised each
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Figure 4 Comparison of pacoPacker and CIS-RR for X’ angles in the 442 structures set. Each symbol corresponds to a single protein
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rotamer as it was placed (rotamer minimization). An
overview of how this method performs is given below.
Figure 9 shows the effects of minimisation by compar-
ing RMSD among three different models, and test
instances is randomly from the benchmark as above.
Model 1 (blue asterisk) uses gradient minimisation on
each rotamer when it is placed (the method presented
in this paper), model 2 (red solid box) packs the same
way as model 1 but then runs a global minimisation on
the side chains at all packable positions, and model 3
(green box) with normal rotamers is optimised by global

minimisation only. Figure 9 shows that models 1 and 2
both decrease the RMSD compared with model 3,
which means that our method can contribute to the
quality of repacking. Most of time model 1 is compar-
able with model 2, so we can only use our method to
gain optimisation as well as global minimisation. How-
ever, there were 18 proteins (data not shown), which
had higher RMSD predicted by rotamer minimization.
These can be classified into two groups: Those which
already have high accuracies of X} and X, within 20%
with approximately 80% accuracy) and those which are
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large in size, including [PDB:20TU] (976 residues),
[PDB:10K7] (739 residues), [PDB:1YTL] (631 residues),
[PDB:2EPI] (388 residues). This means that structural
integrity is important for proteins that are large in size,
because rotamer minimisation cannot play a full role.

Discussion

Under the inaccuracy/usefulness property hypothesis, SOP
is not an ideal computational model for protein structure
prediction [28]. This means that even if the corresponding
SOP is completely solved, the SOP answer may not be
correct, and in most cases it will not be perfect. Paco-
Packer proposes a novel hybrid parallel approach to
repack protein side chains based on SHOP [28,30].

Table 4 shows the distribution of best conformations for
each protein from pacoPacker on different threads. The
best conformations are constructed on different threads,
where each energy is very useful in some specific sense,
but is inaccurate in a universal sense. Therefore, we need
an approach based on MOP. For using MOP to solve pro-
tein structure prediction problems, the Pareto-based

approach, which focuses on the dominance analysis of the
solutions found by the search, will probably result in a
large Pareto front with solutions where no single energy
function can be dominant. PacoPacker is different as it
does not construct a Pareto front, but collects the best
solutions found by parallel search procedures directed by
different energy functions. The SHOP strategy was pro-
posed as a useful parallel ACO method [30]. Using SHOP,
these multiple colonies of pacoPacker can exchange their
search experiences asynchronously and co-evolve towards
better solutions while each colony is guided by its own
objective function and algorithm parameters [28]. In 442
structures test set, the close half targets of pacoPacker
maintain optimum accuracy, unlike that in the other two
programs. Why does the pacoPacker approach have a
good performance?

Firstly, from the view of an individual colony, the pher-
omone matrix accumulates the search experience of ants,
which describes which rotamer should be a priori consid-
ered as the choice for each residue. Such an experience
bias is established by evaluating the conformations found
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by the previous generation of ants using the correspond-
ing energy function. Then by sharing 7', each colony can
achieve different search experiences from other colonies
asynchronously, and each colony is also directed by their
own energy functions to co-evolve towards a better state.
The process of sharing one T can accumulate the search
experience of all parallel ant colonies and propagate the
bias among them. As the pheromone matrix T provides
an indeterministic bias for all the running colonies, it
may be easier to find better solutions.

For example, [PDB:2FLU] was one of the most accurate
predictions from paco-Packer with a RMSD of 0.98, while
the second most accurate prediction was 1.33 from CIS-
RR. The best conformation appeared in the 27 genera-
tion of thread 8, which ends on this generation. The other

threads ended incrementally after the 29” generation. In
this situation, almost all threads stop at the same time,
which gives pheromone matrix T enough time to learn
experiences fairly from different threads. There were some
poor solutions, such as [PDB:1WVH] where the RMSD
was increased by 1.23 with pacoPacker. In this case, the
best conformation of pacoPacker was structured by thread
6 on the 40” generation, and other threads stopped after
25" generation. This may be because some threads
accomplish too early so that the pheromone matrix T’
learns search experiences with bias, which may be solved
with more time. From a user perspective, we summarise
when pacoPacker performs well in Table 5. This shows
that the proportion of proteins repacked increased as the
sequence length decreased. Therefore pacoPacker can

Table 4 Best conformations of pacoPacker distributed on different threads

ID Thread0 Thread1 Thread2

Thread3

Thread4 Thread5 Thread6 Thread7

Quantity 29 31 35

33 39 107 139
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Table 5 The proportion of proteins repacked by
pacoPacker with lower RMSD compared with other
predictors

Sequence Length Number CW CIS-RR CW SCWRL4 CW both

>500 53 28.3% 30.2% 13.2%
500~400 34 41.2% 38.2% 20.6%
400~300 62 56.5% 62.9% 41.9%
300~200 108 59.3% 66.7% 51.9%
200~100 139 63.3% 67.6% 51.1%

<100 46 76.1% 76.1% 63.0%

The first column denotes the range of sequence length; the second column
records the number of proteins; the remaining columns show the proportion
of proteins packed side chains by pacoPacker with smaller RMSD than CIS-RR
or SCWRL4 alone, or combined.

provide the highest accuracy for packing side chains when
the sequence length is lower than 400 amino acids.

Conclusions

In summary, pacoPacker makes each heuristic search work
with its own energy function and they complement each
other in a qualitative way. Different energy functions train
search trajectories to obtain different search intelligences.
Our parallel strategy diffuses the intelligence to all the paral-
lel searches by SHOP, so that all ant colonies can share their
accumulated hybridised intelligence. Such co-evolvement
guided by multiple objective functions simultaneously has
an impact on the nature folding procedure of native pro-
teins [28]. The prediction accuracy of packing side chains
was improved for most of the proteins, which proves that
pacoPacker has feasibility and practical value, but at a cost
of increased CPU time. However, an important reason for
using pacoPacker is that it does not need training and tun-
ing of the energy function parameters before the predictor
can work.
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