Cui et al. BMC Bioinformatics 2014, 15(Suppl 12):5S8
http://www.biomedcentral.com/1471-2105/15/512/58

BMC
Bioinformatics

RESEARCH Open Access

An improved independent component analysis
model for 3D chromatogram separation and its
solution by multi-areas genetic algorithm

Lizhi Cui"*', Josiah Poon", Simon K Poon'", Hao Chen'", Junbin Gao?®", Paul Kwan®', Kei Fan'", Zhihao Ling™*

From IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2013)

Shanghai, China. 18-21 December 2013

Abstract

in advance, which is fast and effective.

Background: The 3D chromatogram generated by High Performance Liquid Chromatography-Diode Array
Detector (HPLC-DAD) has been researched widely in the field of herbal medicine, grape wine, agriculture,
petroleum and so on. Currently, most of the methods used for separating a 3D chromatogram need to know the
compounds’ number in advance, which could be impossible especially when the compounds are complex or
white noise exist. New method which extracts compounds from 3D chromatogram directly is needed.

Methods: In this paper, a new separation model named parallel Independent Component Analysis constrained by
Reference Curve (pICARC) was proposed to transform the separation problem to a multi-parameter optimization
issue. It was not necessary to know the number of compounds in the optimization. In order to find all the
solutions, an algorithm named multi-areas Genetic Algorithm (mGA) was proposed, where multiple areas of
candidate solutions were constructed according to the fitness and distances among the chromosomes.

Results: Simulations and experiments on a real life HPLC-DAD data set were used to demonstrate our method and
its effectiveness. Through simulations, it can be seen that our method can separate 3D chromatogram to
chromatogram peaks and spectra successfully even when they severely overlapped. It is also shown by the
experiments that our method is effective to solve real HPLC-DAD data set.

Conclusions: Our method can separate 3D chromatogram successfully without knowing the compounds’ number

Background

For thousands of years, plants have played a dominant role
in the development of sophisticated traditional herbal
medicine (HM) systems [1,2]. And nowadays, HM has also
attracted much interest of both patients and scientists [3].
However, herbal medicines are extracted with boiling
water during the decoction process, which makes it very
difficult to realize quality control [4]. In 1991 [5], the
World Health Organization (WHO) accepted chromato-
graphy fingerprint, which reflects the complex chemical
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composition of the analyzed sample based on spectro-
scopic, chromatographic or electrophoretic techniques [6],
as a methodology for the assessment of natural products.
But, two disadvantages exist for chromatography finger-
print: it relies on retention time which is not stable; it is
chosen from only one specific wavelength which misses
much information from other wavelength. So, 3D chroma-
togram generated by High Performance Liquid Chromato-
graphy-Diode Array Detector (HPLC-DAD) was
researched widely [7-10]. The construction of HPLC-DAD
dataset is illustrated in Figure 1, in which there are three
compounds contained in the solution for example.

A drop of sample is injected at the top of a column
with absorbent. A cup of solvent, same as that in the
sample, carries the sample through the column. Different
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Figure 1 The principle of HPLC-DAD dataset. The vector of S; represents chromatogram peaks and the vector of a; represents spectra. The
matrix of D; represents 3D dataset containing only one compound, which is formed by a; x siT4 The matrix of X represents the dataset
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compounds will receive different resistance when they go
through the column. Given an ultraviolet detector at the
bottom of the column, a chromatogram peak represented
by si(i = 1,2, 3) is formed to reflect the concentration for
corresponding compound. If using a DAD for detection,
which has more than one thousand channels to detect
multi-wavelength simultaneously, besides chromatogram
peaks of the outflowing compounds, spectra represented
by a;(i = 1, 2, 3) will also be recorded. The matrices of D;
and X represent i compound and the mixture of all the
compounds respectively. Their relationship is given as

$1
n n sg
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where, the variable of # is the number of compounds
contained in the solution, which equals to 3 for the
example in Figure 1.

There are many methods to separate X in (1), such as
evolving factor analysis (EFA)[11], heuristic evolving latent
projections (HELP)[12], window factor analysis (WFA)
[13], orthogonal projection resolution (OPR)[14], evolving
window orthogonal projections (EWOP)[15], iterative tar-
get transformation factor analysis (ITTFA)[16], alternating
regression (AR)[17], parallel factor analysis (PARAFAC1/
2)[18], multivariate curve resolution-alternating least
squares (MCR-ALS)[19] and interactive self-modelling

mixture analysis (SIMPLISMA)[20], alternating trilinear
decomposition (ATLD)[21] and immune algorithm (IA)
[22]. However, all these method need the number of the
compounds to be known in advance. And the method to
obtain the compounds’ number is based on Eigenvalue,
which will miss small peaks especially when noise is
severe. Recently, Independent Component Analysis (ICA)
[23] was introduced in this field, which considered com-
pounds and noises as independent components. But two
disadvantages existed: 1) noises was considered as inde-
pendent components, which gave unexpected and useless
information in the results; 2) identifying compounds from
noises after separating all the independent components
was still needed.

In order to extract compounds directly from the data
set, this paper proposed a parallel model of Independent
Component Analysis constrained by Reference Curves
(pICARC) and its solution by multi-areas Genetic Algo-
rithm (mGA). In section 2, the principle of pICARC and
mGA were proposed. In section 3, simulations and
experiments were provided to show the performance of
our method. Finally, conclusions and future works were
summarized in section 4.

Methods

The principle of our method is illustrated in Figure 2.
The left thick box is the mathematical part, and the
right thick box are corresponding data sets in the reality.
Firstly, we construct a kind of Reference Curve (RC)
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Figure 2 The structure of our method. R(G) is Reference Curve (RQ), Y is Calculated Curve (CO), || @] po is Measurement Operator (MO) to

a; x s! with different parameter of § based on the priori
knowledge. Then inputting R(#) and X into the pICARC
model, Calculated Curves (CCs) Y will be obtained. The
distances, €(#), between R(#) and Y are calculated by
the Measurement Operator (MO) | e]|\;o. Combining all
the elements contained in the dash polygon together, it
is called generalized pICARC model, which has con-
verted the separation problem to a multi-parameter
optimization issue. Next, what is needed is to find the
parameters of §* which minimizes the value of (@)

In this paper, the algorithm of mGA, which is pro-
posed with reference to the features of R(), is used to
search @* After all the ¢* have been found, Y* will be
obtained, whose row vectors are the chromatogram
peaks for individual compounds. By using an estimator,
the spectra of the compounds will be obtained. The
priori knowledge has been introduced within our
method. What the user needed to do is just to input
your data setX.

Following, the priori knowledge about chromatogram
peaks, the pICARC model, MO, mGA and the estimator
will be introduced one by one.

The priori knowledge

According to the physical principle of chromatography,
each peak of chromatogram looks like certain curves such
as Gaussian curve, Log-normal curve, Gamma curve and
Weibull curve, etc. [24], among which, the Gaussian func-
tion was used prevalently for simulating chromatogram
peaks in many relevant researches. [25,26] So, we will use

Gaussian curve, which is illustrated in equation (2) and
Figure 3, in our research. There are two parameters: 4 and

_ 2
y= exp[—(jfZ *52) 3
2
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where, the factor of 1/4/270 is removed to set the
maximum value to 1. The amplitude information will be
found in the spectra.

The range of the parameter 1 is decided by the data
set, whose minimum value is ©¢; =1 and maximum
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Figure 3 lllustration of Gaussian curve.
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value is py = column(X). According to the quantile of
99.73%, we have the following inequality

— 1
U<M2 g«1+ 3)

pICARC model
The model of ICA is represented as (4)

X=[X1,X2,---,X[]=AXS=A><[Sl,Sz,-~~,Sl]=A>< . (4)

n

where X are the observation vectors; A is the mixed
matrix; § are the source vectors; the subscript of £ is the
number of the samples in A and S. The purpose of this
model is to obtain A and S only based on X under four
assumptions[27]. According to the separability theorem
of ICA[28], we could trust ICA to separate HPLC-DAD
data set as long as the number of the wavelength is
greater than the number of the compounds. In 1999,
the algorithm of fastICA was proposed to solve (4)
[29,30], of which the parallel form is shown as

b
b; _
max E{G(B'X)}:E G( [%1,%2, - Pxa])
. (5)
by
subject toE{(b;"i)z} SIbil2=1, (i=1,2,---,n)
where, b; is a m-dimensional vector such

2
thatE { <bec> } =1, X is a matrix preprocessed fromX,

G(x) = 1/4 o (x*) is a nonlinear function. Applying KKT
condition [31] and Newton method [32], the iterative
equation of B is shown as

B*-E {Xg(BTX)} _E { g/(BTX)} B ©
B* = (BB") /2B

where, g(e) is the first derivative of G(e).

As mentioned in the introduction, two major pro-
blems were found when applying the ICA model to
HPLC-DAD data set. Therefore, suitable modification
about ICA based on the priori knowledge of chromato-
gram peaks is needed to constrain the shape of the
source signals. What should be noted is that the variable
used for calculation in ICA model is the X, which gen-
erates a signal of y’; shown in equation (7). However,
the curve that should be constrained is ¥;, which is a
calculated signal to approximate siT. The D, is the

Page 4 of 10

whitening matrix. There is a difference between y’; and
¥i, which is caused by pre-processing.

Yi=laio V= b/X = bfT[il«ﬁz/ X (7)
¥i = [y viz, -+ yi] = b DX = b Dy[x1, %5, -+, %]

In order to avoid introducing a new variable, which
should represent the difference between y’; and Y¥;, the
model is constructed as
max[E{G(B'X)} — HBT)Z" —R() H ]

MO
R(0) = [r1(68), 12(0), -, 1a(8)]"
B' = [B”,d] = [[by,bs, -+, by]”, din] -
X =X, 0]
X=X 1
~r T~
E{(b{x)?} = E{(b;X')*} = [b]I* = 1

where d represents the differences existing in the
equation (7). The equation (8) is called pICARC.

Measurement operator

The purpose of MO is to measure the distance between Y;
and r;(0). Here, the vector of €(0) = [¢1(0), &2(8), - -+ , €4(0)]
contains all these distances. We gave the definition of &;(€ )as

6i(0) = ly; = 5®)|; = X" Iyi) — r:Gi: )1 ©)
j

where, j represents every element in the vectors of ¥;
and r;(0)

Multi-area genetic algorithm

GAs are a family of computational models inspired by
evolution. These algorithms encode a potential solution
to a specific problem on a simple chromosome-like data
structure, and apply recombination operators to these
structures in such a way as to preserve critical informa-
tion. Usually, GAs are used to find one global optimal
point in the searching plane. But in our problem, several
points in the 4 — ¢ plane should be found as solutions
simultaneously. In order to search multi optimal points,
we propose an algorithm named multi-areas Genetic
Algorithm (mGA).

Areas are circles which are composed of chromosomes
that are closed to one another, where the candidate
solution will be found. If the fitness of one solution is
much better than the others, the area around it will
have better fitness as well. This will lead many elites
assemble into this area. In order to balance the number
of elites among all the areas, emigrant and immigrant
policy are adopted. Except limited chromosomes left in
every area, the others will be selected as emigrants,
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which will keep balance among population in all areas.
Immigrant policy under certain criterion introduces new
chromosomes into all areas.

The flow chart of mGA is illustrated in Figure 4. Firstly,
parameters, which will be depicted in step 1), are initia-
lized. Secondly, initial population is generated. Then,
multi-areas have been formed among the population. Each
of these areas has a center and a radius. Only in the areas,
whose radius are big enough, the elite chromosomes have
the right to match with each other and generate children.
Children with high fitness values will replace the inferior
individuals. Only a certain number of those top ranking
chromosomes in an area will be kept for the next genera-
tion, the others will be selected as emigrants to avoid too
many chromosomes converging in one dominant area.
Later, the emigrants will be allocated into different areas
under certain law, which will be descripted in step 6).

After the migration process, new generation has been
formed. New multi-areas will be separated among the
new generation again. The iteration continues until there
is no area with the size big enough to generate children.
Finally, only several areas left, which contain the candi-
dates for solution. Solutions are found according to the
decision as described in step 7).

1) Parameters initialization: The major parameters
include the number of the population, the number
of elites, length of the chromosome and the fitness
function. The first three are decided according to
the size of the search plane. The fitness of every
chromosome is given by equation (9). Here, smaller
the fitness is, more superior the chromosome is.

2) Population initialization: The population is equal
to the row number of R(#). In order to get initial
population with better fitness, two steps were
adopted. Firstly, the search space is separated into
several sub spaces equally, and maximum number of
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chromosomes is randomly generated in every sub
spaces. Then, top ones according to their fitness
value are selected as initial population.

3) Multi-areas separation: Multi-areas are formed
among the population according to following steps: (a)
select the chromosome with best fitness as the center
of an area; (b) give an user-defined radius and draw a
circle; (c) calculate the distance between center and
the other chromosomes contained in this area, update
the radius of this area with the largest distance; (d) for
chromosomes not belonging to a specific area, repeat
Step (a) to (d) until no more chromosome left.

Some of these circles (areas) may overlap with each
other. For those circles with severe overlapping, they
should be merged as a big area for immigration; this
will be further described in step 6).

4) Mating and reproduction: Every elite finds a mate
which has the highest hamming distance, i.e. the num-
ber of different bits between them, by the sequence
ordered of fitness. New chromosomes, the children,
are generated by crossing every different bit between
the mated pairs. If a child has better fitness value than
any one of its parent, it will be classified as excellent
child, which will be reserved; otherwise, it will be
dropped.

5) Select migrants: Only limited chromosomes, whose
number is user-defined depending on application,
according to their fitness will stay in one area, the
others are selected as emigrants. In this step, only the
number of the migrants is decided. The generation of
immigrants will be descripted in step 6).

6) Migrant quota among areas allocation: For every
circle (area), more elites in the previous generation,
less immigrants will be allowed, to avoid too many
elites in one area. If two areas are severely overlapped,
they will be merged as one big area to receive immi-
grants. Otherwise, the quota will be unfair because of

Parameters initialization

Initial population generation

Separate population into areas

Mating among elites in corresponding areas and reproduce

Replace the inferior individuals using excellent children

Sort population in areas and choose the ones need emigrate

Allocate quota among areas according to their previous elite number

No area could generate new children

Choose the legal centers of areas as solutions

Figure 4 Flow chart of mGA.
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the overlap. Take the experiments in this paper as an
example. There is a severe overlap between area 1
and area 3. And there are 23 elites in area 1 and 1
elite in area 3. If the area 1 and area 3 are not com-
bined as one, there will be a small number of
migrants for area 1 but many for area 3. The immi-
grant in area 3 can also be considered as immigrant
for area 1 because of the overlap. There is also an
overlap between area 1 and area 5, but the center of
area 5 is at the boundary of the # — o plane, which is
ignored for further evolution.

The chromosomes with the same number as the
initial population will be generated randomly for
every circle (area), but only top ones decided by the
quota are selected as immigrants.

7) Find solution: As the algorithm proceeds, the radii
of the areas will become smaller. When all the radii
become small enough, the program ends. The center
of each area is the candidate solution. If the center
is a local minimum, it will be selected as a solution.

Estimator
After obtaining all the chromatogram peaks, Y* ~ S, by
solving equation (8), the spectra can be estimated with
Y* and X with considering the noise contained in X. For
simplicity, we ignore the noise in this paper to calculate
spectra by
A = X x pinv(S) (10)

Where the pinv(e) is the pseudo inverse function.

Equation (10) is derived from equation (1) directly.

Results and discussion

In this section, a group of simulations were given to
explain the principle of our method. Then several
experiments on a real HPLC-DAD data set were given
to demonstrate the practicability of our method. Two
criteria were used to evaluate our method: 1) to see
whether the compounds’ number found by our method
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was right; 2) to see the errors between the true spectra
and calculated spectra.

Simulations and discussion

As illustrated in Figure 5, five compounds’ chromato-
gram peaks, which are represented by different para-
meters of (i, o) respectively, are constructed in the
simulation dataset. The parameters for the compounds’
chromatogram peaks from 1 to 5™ are: (50, 21), (75,
12), (90, 10), (155, 17) and (175, 9) respectively. These
initial parameters’ distribution on the # — 0 plane is
shown in Figure 6. There are many areas for the initial
parameters, but few areas for the final parameters. The
program is available from the corresponding author.

From the simulation, we can see:

(1) The method proposed in this paper could separate
3D chromatogram into chromatogram peaks and spec-
tra effectively without know the compounds’ number
in advance even severe overlap exist. The pICARC
model transformed the separation problem to a multi-
parameter optimization issue, which could be solved
by swarm intelligent algorithm. The algorithm of
mGA could find all the solutions simultaneously.

(2) Sometimes, the result given by this method was
incorrect. This is because that the chromosome is
initialized randomly, which will cause undetermined
situation. This problem can be solved by running
program multiple times and compare the candidate
results to obtain the final results. Ten times of simu-
lation have been done in this simulation and seven
times have the correct result, which is list in Table 1.
(3) The implementation of the mGA is fast. Among
ten times of simulation, the slowest one took 11
steps and 4.3652 seconds.

Experiments and discussion

The program of experiment is available for free at from
the corresponding author. The data set of “adataset.mat”,
which is used in the experiment, can be downloaded

Profile

(b)

(c)

Figure 5 Dataset for simulation. (a) Chromatogram peaks for compounds. (b) Spectra for compounds. (c) 3D chromatogram.
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(a)

final parameters.

Figure 6 Distribution of the parameters. The abscissa is 4, the ordinates is ¢.(a) Distribution of the initial parameters. (b) Distribution of the

(b)

from http://www.mcrals.info for free [33]. The data set is
illustrated in Figure 7. The data set is a three-compound
system with two pesticides identified and one unknown
interferent. The three-way data set is formed by one
matrix with the three compounds and two matrices of
standards with one known compound.

Ten experiments were run totally. As the population
initialization was randomly, we just list the initial popu-
lation and initial multi-areas for the first experiment in
Table 2. Among the ten experiments, eight gave the
same results: (19, 7), (31, 13) and (60, 10). The initial
population distribution and the final population distri-
bution of one experiment are illustrated in Figure 8.
The calculated results are illustrated in Figure 9.

From the results, we can see:

(1) The method proposed in this paper can separate
true HPLC-DAD data set into chromatogram peaks
and spectra without know the compounds’ number
in advance. In the ten experiments, eight gave cor-
rect results. And the maximum step and time cost
are 16 and 2.6854 seconds.

(2) In (a) of Figure 9, the Profile is the projection of
the data set along the axis of wavelength. And the
chromatogram peaks are products of the calculated
curves by the maximum value of the corresponding

Table 1 Correct results for the simulation.

Areas Center Radius NumE NumP ErrorC ErrorS
1 (155,17) 1 6 6 6.8102e-9  1.8503e-7
2 (7512) 14142 2 5 1.0044e-8  1.1303e-8
3 (90,10) 1 21 26 1.0864e-8  1.372e-7
4 (17519)  3.1623 4 6 16714e-8  5.1367e-8
5 (50,21) 1 1 3 24052e-8  1.4096e-7

Column of NumeE is the elites’ number contained in this area. Column of
NumP is the population’s number contained in this area. Column of ErrorC is
the 6(0) between the reference curves with the center as parameters and
the chromatogram peaks. Column of ErrorS is the error between the
calculated spectra and the true spectra.

calculated spectra. The reason that the second peak
is higher than the profile is that there is some values
in the spectra are negative. The reason for the nega-
tive will be discussed in next item.

(3) In (b) and (c) of Figure 9, there are still errors
between the calculated spectra and true spectra. This
could be caused by following two reasons: noise existed
in the data set; difference between the reference curve
and true chromatogram peaks. For the first reason, the
estimator, shown in equation (10) should be improved.
For the second reason, more detailed reference curve
should be proposed to replace equation (2).

Conclusions

In this paper, the pICARC model and its solution by mGA
were proposed. A priori knowledge of chromatogram peaks
is introduced into ICA model. And the shape of the chro-
matogram peaks, which are the source signals in the ICA
model, is constrained with certain kind of function with
parameters. Because the Gaussian curve is used widely in
relevant field, we use Gaussian curve to constrain the shape
of the chromatogram peaks. In order to solve this model,
which contained several objective points in the 4 — o
plane, we modified the algorithm of GA to propose the
algorithm of mGA. This algorithm separated all the popula-
tion into multi-areas according to their fitness and dis-
tances from each other. Immigrant policy was adopted to
keep the variety of the population. In order to avoid gather-
ing too many elites into one dominant area, the immigrants
were allocated according to the former elite number of the
destination area. Finally, simulations and experiments were
done to prove the performance of our model and its solu-
tion algorithm. In this section, conclusions were summar-
ized firstly, and then future works were prospected.

Conclusions
(1) The pICARC model transformed the separation
problem of HPLC-DAD data set to a multi
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0025 oon 004

(d) (e)

Figure 7 HPLC-DAD data set used in the experiments. (a) 3D chromatogram contains all the three compounds. (b) 3D chromatogram
contains only the first compound. (c). 3D chromatogram contains only the second compound. (d) The spectrum of the first compound. (e) The
spectrum of the second compound.

parameters optimization issue, which can be solved
by abundant optimization algorithms.

(2) By introducing a priori knowledge of chromato-
gram into the ICA model, only the useful signals
will be picked out from the mixed data set. It is not
necessary for us to know the compounds’ number in
advance or to discriminate the signal from noises
after finding out all the independent components.

This means that this model improves the accuracy
as well as saves the time for calculation.

(3)The algorithm of mGA is a useful method to
search multiple objective points in the 4 — 0 plane
simultaneously. The information of chromosome’ fit-
ness and their distance from each other were used
to cluster them into multi-areas. Immigrant policy
and quota allocation law were made to keep the
variety for every areas. Genetic operators were used
to keep the evolution among areas.

Table 2 Initial population and initial multi-area for the
first experiment.

Areas Center Radius Error NumE NumP  Big area Future works
! (B1L13) 5659 00045 23 25 ! According to the discussions in section 3, three major
2 @17 56569 00062 8 13 2 works are needed to be done in the future:
3 (25,12) 5 0.0099 1 2 1
4 (60,70) 58310 00100 3 X 3 (1) Improved estimator should be developed to elim-
5 (3716) 5099 00108 ! 8 0 inate the effect caused by noise existing in the data
6 (53.17) 5 00173 0 9 0 set. The estimator used in this paper, shown by
7 (44,17) ! 00180 0 2 0 equation (10), ignores the noise. So there are errors
8 (98,17) 5 0.0205 0 3

0 existing in the results.

(2) More accurate reference curves should be intro-
duced into the pICARC model. The other functions
referred in section II should be used to see whether

Column of error is the 6(0) between the reference curves with the center as
parameters and the chromatogram peaks. Column of NumeE is the elites’
number contained in this area. Column of NumP is the population’s number
contained in this area.
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() (b)
Figure 8 Distribution of population. (a) The initial population. (b) The final population.
p
Profile o First True Spectrum Second True Spectrum
//' ---~ First Calculated Spectrum \ --- Second Calculated Spectrum
sl error=1.4087 : error=4.4334
\ \\_himf
(b) (c)

Figure 9 Results of the experiment. (a) Three calculated chromatograms. (b) Compare between first true spectrum and first calculated
spectrum. (c) Compare between second true spectrum and second calculated spectrum.

better results could be obtained. In reality, the chro-
matogram curve maybe more complex than the
functions referred in this paper, new reference
curves with more parameters could be proposed
based on the experiments for out model.

(3) Facing new reference curves, which could have
more parameters than that used in this paper, new
optimization algorithm should be developed to fit
the new parameters space.
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