
PROCEEDINGS Open Access

Network-based modular latent structure analysis
Tianwei Yu1*, Yun Bai2

From 9th International Symposium on Bioinformatics Reseaerch and Applications (ISBRA’13)
Charlotte, NC, USA. 20-22 May 2013

Abstract

Background: High-throughput expression data, such as gene expression and metabolomics data, exhibit modular
structures. Groups of features in each module follow a latent factor model, while between modules, the latent
factors are quasi-independent. Recovering the latent factors can shed light on the hidden regulation patterns of
the expression. The difficulty in detecting such modules and recovering the latent factors lies in the high
dimensionality of the data, and the lack of knowledge in module membership.

Methods: Here we describe a method based on community detection in the co-expression network. It consists of
inference-based network construction, module detection, and interacting latent factor detection from modules.

Results: In simulations, the method outperformed projection-based modular latent factor discovery when the
input signals were not Gaussian. We also demonstrate the method’s value in real data analysis.

Conclusions: The new method nMLSA (network-based modular latent structure analysis) is effective in detecting
latent structures, and is easy to extend to non-linear cases. The method is available as R code at http://web1.sph.
emory.edu/users/tyu8/nMLSA/.

Background
Modularity is a common characteristic of high-through-
put biological data [1]. In a large system, the biological
units, i.e. features (genes, proteins, or metabolites) are
organized into quasi-autonomous modules. In expres-
sion data, each expression module can be modeled rea-
sonably well using the latent factor approach [2,3].
Given the involvement of thousands of features, an
unknown number of modules, and unknown module
membership of the features, it is difficult to faithfully
detect the modules and recover the underlying latent
factors controlling the modules.
Dimension reduction methods at the global level, such

as Principal Component Analysis (PCA), Independent
Component Analysis (ICA) [4], sparse PCA [5,6], and
Bayesian decomposition [7] are not effective in detecting
localized signals. Clustering methods group co-expressed
features together [8], which may help identify modules
that are controlled by a single underlying signal [9,10].

However in real data, the features involved in the same
module may not co-express when more than one latent
factors control the module. We previously proposed the
projection-based Modular Latent Structure Analysis
(MLSA) [11], which detects modules using iteratively
re-weighted singular value decomposition (SVD). So far
there are no other modular decomposition methods. In
this study, we seek to improve the method using a
totally different approach. Our goal is to develop a
method that is more intuitive, flexible, and involves less
ad hoc parameter choices.
Using networks constructed from expression data can

provide a flexible framework for module detection [12-14].
Here we present a method to identify modules and the
underlying latent signals in three steps: (1) constructing a
co-expression network based on statistical inference and
local false discovery rate (lfdr); (2) detecting communities
in the network; and (3) recovering interacting latent
factors from the modules.
The goal of the algorithm is to achieve modular

matrix decomposition. We attempt to solve the problem
by assembling tools from some well-established fields.
The first is the reverse engineering of genome-scale
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networks. There are a number of methods available in
this area, which were designed with different objectives,
including Gaussian Graphical Models where the absence
of an edge signifies conditional independence [15,16],
co-expression network where edges signify marginal
dependence [13], information theory-based networks
[17], and Bayesian networks [18]. In this study, we
designed our own method to estimate an inference-
based co-expression network using the local false dis-
covery rate (lfdr) concept [19-21]. The use of local fdr
makes the procedure adaptive to shifts of baseline corre-
lation levels and avoids constructing overly dense net-
works when there are pervasive low-level correlations
between genes. Once the network is constructed, we
borrow a method from the mature field of community
detection in large networks [22-25]. This is followed by
latent factor extraction and rotation using factor analysis
methods [26]. Added together, the assembled tools make
a very good heuristic solution to the modular decompo-
sition problem.
We demonstrate the superiority of the new method

against existing modular and global decomposition
methods using simulations, and apply the method to a
real dataset to show it detects biologically meaningful
modules that are controlled by multiple latent factors.

Methods
The objective
Given a data matrix Gp×n with p features measured in n
conditions, we seek to assign subgroups of the features
into modules, such that within each module, the expres-
sion levels of the features can be modeled by a linear
factor model

G(module)
q×n = Lq×rFr×n + Eq×n,

where q is the size of the module, r is the number of
latent factors controlling the module, L is the regulation
strength (loading) matrix, and E is the residual matrix.
Our interest is estimating (1) the number of modules,
(2) the module membership of the features, (3) the
activities of the latent factors controlling each module
(F matrix), and (4) the regulation strength of each factor
on each feature (L matrix).

The estimation procedure
Figure 1 illustrates the procedure using a toy dataset
with two modules. Generally, three steps are involved.
Step 1. Constructing co-expression network based on

local fdr. We use the concept of local false discovery
rate (lfdr) to establish links between features [19]. First,

Figure 1 An illustration of the procedure using a toy example dataset. The features belong to two modules. One module is controlled by a
single factor, and the other controlled by two factors.
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we compute the correlation coefficients rij between all
pairs of features. Secondly, we transform the correlation
coefficients by

tij = rij
√
(n− 2)/(1− r2ij),

so that the distribution of the resulting statistic is close
to normal under the null hypothesis that the pair of
features are independent [27]. Thirdly, we compute the
local false discovery rate using Efron’s procedure [19]. The
local fdr is a statistical statement of how likely two features
are independent given we observe the statistics from all
pairs of features. Fourth, if the local fdr value for a pair of
features is smaller than a threshold, e.g. 0.2, an edge is
established between the two features.
Step 2. Module detection in the co-expression network.

We first use a well-established method that detects dense
sub-graphs from a sparse graph by short random walks
[25]. To fine-tune the results, we conduct an additional
community-merging step. For a pair of communities Ci

that contains mi features and ki within-community
connections, and Cj that contains mj features and kj
within-community connections, we divide the number of
between-community connections kij by the expected
number of connections if the communities were indeed
one

δij =
kij

mimj × (ki + kj)

((
mi

2

)
+

(
mj

2

))
.

We then pool all the δij values computed from all
pairs of communities and examine the distribution. Any
outlier δij, defined by a value higher than the median
plus four times the difference between the 75th percen-
tile and the median, signifies a community pair that
should be merged into a single community.
Step 3. Detecting latent factors from each module. For

each module, we first conduct an eigenvalue decomposi-
tion of the covariance matrix, and select all eigenvectors
that account for at least 5% of the data variance. We then
find the projection length of each feature onto each eigen-

vector
{
l(j)i

}
i=1,...mi,j=1,...,nj

, where i denotes the feature and

j denotes the eigenvector. The value mj is the number
of features in the module, and nj is the number of eigen-
vectors under consideration.
Two eigenvectors are considered “interactive” if the

correlation of the projection length of the features onto
these two vectors is statistically significant. We initiate a
selected vector set with only the first eigenvector. Then
from the second eigenvector on, if the eigenvector is
interactive with any vector in the selected set, it is added
to the selected set. Otherwise we stop the iteration and
return the selected vector set as the latent variables of

the module. If more than one eigenvector is selected, we
rotate them using oblique rotation [26].
Step 4. The overall factor model. After finding a collec-

tion of F matrices, we can combine them into an overall
factor model with a sparse loading matrix to interpret the
gene expression. Let K be the total number of latent
factors found, B be the combined factor activity matrix of
all the factor scores, L be the loading matrix, and E be the
unexplained expression, we have a factor model,

Gp×n = Lp×KBK×n + Ep×n

The values in L can be filled in two ways. The first is
by performing linear regression of each gene against
only the factors of the modules the gene is assigned to.
Alternatively, we can perform regularized regression of
each gene against all the factors using lasso [28] with
BIC (Bayesian information criterion) model selection.

Simulation study
We refer to our method as “Network-based Modular
Latent Factor Analysis (nMLSA)”. We compared the
method with MLSA [11], PCA, ICA [29], factor analysis
with oblique rotation [26], gene shaving [9], and sparse
principal component analysis (SPCA) [5]. In each simula-
tion, we generated a gene expression dataset with 10
modules. Every module consisted of 100 simulated genes.
The number of latent factors controlling the module was
randomly selected between 1 and 3. An additional 1000
pure noise genes were generated from the standard
Gaussian distribution. We vary the following parameters
in the simulations:

(1) The latent factor scores were either independent
Gaussian, or randomly chosen from a mixture of four
types: Gaussian, sine wave, square wave, and sawtooth
wave (Additional file 1 Figure S1). The setting stayed
the same for every module in each simulated dataset.
(2) Different levels of within-module loading sparsity,
i.e. proportion of zero loadings, were tested. The spar-
sity of the loading matrix was achieved by drawing
samples from the binomial distribution. After the non-
zero positions in the loading matrix was determined,
for every simulated gene, if there were m controlling
factors, we divided [0, 1]into m regions by drawing (m-
1) samples from the uniform distribution between 0
and 1. We then used the sizes of the regions as the
loadings for the gene. Half of the loadings were then
multiplied by -1 to generate negative loadings. The
sparsity levels tested were 0%, 30% and 60%. The set-
ting stayed the same for every module in each simu-
lated dataset.
(3) After multiplying the loading matrix and the factor
score matrix to generate the simulated expression
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matrix, Gaussian random noise was added to achieve
different signal to noise ratios (values used: 1, 2). The
setting stayed the same for every module in each simu-
lated dataset.

The number of samples was set at 100. All possible
combinations of the parameters were tested, each repeated
100 times.
To judge the performance of the methods, we used

the information of the true hidden factors to group the
identified factors. Let K be the combined hidden factor
count from all modules in the simulated dataset. We
first performed linear regression of every identified fac-
tor against each hidden factor group (those controlled
the same module), and recorded the multiple R2. The
identified factor was assigned to the hidden factor group
with which it had the largest R2 value. The K identified
factors with the largest R2 values were retained for the
next step. Second, we performed linear regression of
every true hidden factor against the identified factors
assigned to its group, and recorded the multiple R2 as
the level of recovery of the true hidden factor. The ideal
method should yield multiple R2 values close to one.
After repeating the simulation from every parameter set-
ting 100 times, we compared the methods by the distri-
bution of the multiple R2 values.

Results
Simulation results
The simulation results are summarized in Figure 2. Each
sub-plot represents a parameter setting. The relative
frequencies (10 equal-sized bins between 0 and 1,
equivalent to the histogram) of the R2 values are plotted
in Figure 1. Different colors represent different methods.
The curves are effectively histograms of the multiple R2

values. The curve of a better method should show
higher frequency in larger R2 values. In all the scenarios,
clearly nMLSA (red) and MLSA (blue) outperformed
the other methods.
When the true signals were Gaussian (Figure 2; two

right columns), nMLSA and MLSA yielded similar
results. Both methods recovered the hidden factors
almost perfectly in all sparsity (rows) and noise (col-
umns) settings. When the true signals were randomly
drawn from four different types (Figure 2; two left col-
umns), nMLSA outperformed MLSA. Both methods
tend to either fully recover or totally miss a hidden fac-
tor, as indicated by spikes at R2 = 1 and R2 = 0. How-
ever when the within-module sparsity was moderate to
low (30% and 0%), nMLSA showed a roughly 3-fold
reduction in the chance to miss hidden factors, and
accordingly a much higher chance to faithfully recover
the hidden factors.

Real data analysis
The Spellman cell cycle data consists of four time-series,
each covering roughly two cell cycles [30]. The array
data consists of 73 conditions and 6178 genes. Because
of phase differences, the cell cycle-related genes cannot
be easily summarized by clusters although many of
them exhibit periodic patterns [31]. We applied nMLSA
to the cell cycle data as a whole, in order to discover
common patterns across the four time series. Our
method identified 7 modules containing 10 latent factors
in total. The two largest modules each contained two
latent factors (Figure 3).
While MLSA also detected the second module, it

failed to detect module 1 found by nMLSA (Figure 3,
left panel). Functional analyses using Gene Ontology
[32] indicate the module is highly biologically meaning-
ful. Based on hypergeometric tests using the GOStats
package [33], genes associated with the first factor of
the module strongly over-represent biological processes
related to RNA processing and the ribosome, which is
central to protein biosynthesis (Table 1). Genes asso-
ciated with the second factor over-represent biological
processes related to protein degradation, transport and
localization (Table 2). Protein transport and localization
processes are naturally coordinated with protein bio-
synthesis. Evidences also point to the co-regulation of
protein biosynthesis and protein degradation, under nor-
mal circumstances and experimental interference
[34-36].
The second module is even more intuitive biologically.

The factor scores showed that the second module was
governed by two periodic latent factors with similar per-
iodicity but different phases (Figure 3, right). Genes of
this module showed clear periodic behavior with differ-
ent phase shifts (Figure 4), which is consistent with the
biological knowledge that cell-cycle genes are activated
at different phases of the cell cycle [30]. We analyzed
the functionalities of the genes associated with each fac-
tor using gene ontology (GO). It was clear that cell
cycle-related biological processes dominated the list of
top processes overrepresented by genes associated with
either latent factors (Tables 3 & 4). Other methods used
in the simulations, except MLSA, could not group cell
cycle genes with different phase shift into a single
module.

Discussions
In this study, we developed the network-based modular
latent structure analysis (nMLSA). It is aimed at detecting
expression modules and latent factors controlling the
modules, the same goal as the original MLSA [11].
Compared to MLSA, the new method is based on a totally
different setup, and is substantially advantageous. Firstly,
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Figure 3 The top four factors from the Spellman dataset form two modules. On the x-axis the four time series are displayed in sequential
order.

Figure 2 Simulation results from modular latent structure models. In every simulation, 10 modules, each consisting of 100 simulated genes,
were generated. The number of latent factors per module was randomly selected between 1 and 3. The latent factors were either independent
Gaussian (two right columns), or randomly chosen from a mixture of four types (two left columns). Gaussian random noise was added to
achieve different signal to noise ratios (columns), and different levels of within-module sparsity (proportion of zero loadings) were tested (rows).
An additional 1000 pure noise genes were generated from the standard Gaussian distribution. Each simulation setting was repeated 100 times.
The success of latent factor recovery was evaluated by the R2 values obtained by the regression of each latent factor against the identified
factors assigned to the module to which the latent factor belongs. The relative frequencies (10 equal-sized bins between 0 and 1, equivalent to
the histogram) of the R2 values are plotted.
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Table 1 Top 25 GO terms overrepresented by genes associated with factor 1.

GOBPID Pvalue Term

GO:0042254 3.27E-75 ribosome biogenesis

GO:0022613 2.04E-68 ribonucleoprotein complex biogenesis

GO:0034470 6.20E-67 ncRNA processing

GO:0034660 1.31E-65 ncRNA metabolic process

GO:0006364 1.55E-60 rRNA processing

GO:0016072 1.47E-59 rRNA metabolic process

GO:0006396 3.00E-51 RNA processing

GO:0071843 1.48E-50 cellular component biogenesis at cellular level

GO:0042273 5.74E-33 ribosomal large subunit biogenesis

GO:0000460 4.04E-30 maturation of 5.8S rRNA

GO:0000466 2.05E-29 maturation of 5.8S rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA)

GO:0016070 1.33E-26 RNA metabolic process

GO:0042274 4.46E-26 ribosomal small subunit biogenesis

GO:0044085 3.25E-25 cellular component biogenesis

GO:0030490 1.57E-21 maturation of SSU-rRNA

GO:0000462 3.11E-21 maturation of SSU-rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA)

GO:0000469 3.59E-21 cleavage involved in rRNA processing

GO:0010467 7.58E-21 gene expression

GO:0090304 2.29E-16 nucleic acid metabolic process

GO:0009451 2.58E-16 RNA modification

GO:0000478 8.00E-16 endonucleolytic cleavage involved in rRNA processing

GO:0000479 8.00E-16 endonucleolytic cleavage of tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA)

GO:0006139 1.09E-15 nucleobase-containing compound metabolic process

GO:0000447 1.37E-15 endonucleolytic cleavage in ITS1 to separate SSU-rRNA from 5.8S rRNA and LSU-rRNA from tricistronic
rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA)

GO:0000472 1.42E-14 endonucleolytic cleavage to generate mature 5’-end of SSU-rRNA from (SSU-rRNA, 5.8S rRNA, LSU-rRNA)

Table 2 Top 25 GO terms overrepresented by genes associated with factor 2.

GOBPID Pvalue Term

GO:0006511 1.99E-09 ubiquitin-dependent protein catabolic process

GO:0019941 2.44E-09 modification-dependent protein catabolic process

GO:0044257 2.65E-09 cellular protein catabolic process

GO:0051603 3.79E-09 proteolysis involved in cellular protein catabolic process

GO:0043632 4.21E-09 modification-dependent macromolecule catabolic process

GO:0030163 7.26E-09 protein catabolic process

GO:0010499 2.24E-08 proteasomal ubiquitin-independent protein catabolic process

GO:0044265 9.94E-08 cellular macromolecule catabolic process

GO:0007005 1.38E-07 mitochondrion organization

GO:0043623 2.59E-07 cellular protein complex assembly

GO:0043248 3.56E-07 proteasome assembly

GO:0009057 5.19E-07 macromolecule catabolic process

GO:0006508 5.25E-07 proteolysis

GO:0071842 3.02E-06 cellular component organization at cellular level

GO:0015031 4.89E-06 protein transport

GO:0008104 6.28E-06 protein localization

GO:0043161 6.81E-06 proteasomal ubiquitin-dependent protein catabolic process

GO:0045184 7.86E-06 establishment of protein localization

GO:0010498 1.01E-05 proteasomal protein catabolic process

GO:0006461 1.35E-05 protein complex assembly

GO:0034613 1.41E-05 cellular protein localization
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Table 2 Top 25 GO terms overrepresented by genes associated with factor 2. (Continued)

GO:0070271 2.51E-05 protein complex biogenesis

GO:0070727 2.56E-05 cellular macromolecule localization

GO:0034621 3.00E-05 cellular macromolecular complex subunit organization

GO:0009987 3.93E-05 cellular process

Figure 4 Expression levels of genes involved in module 2. Genes are hierarchically clustered. The four time series are displayed in sequential
order.
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Table 3 Top 25 GO terms overrepresented by genes associated with factor 3.

GOBPID Pvalue Term

GO:0000278 4.02E-19 mitotic cell cycle

GO:0022402 4.08E-17 cell cycle process

GO:0007049 6.05E-17 cell cycle

GO:0022403 5.72E-15 cell cycle phase

GO:0007017 8.75E-15 microtubule-based process

GO:0048285 2.31E-13 organelle fission

GO:0000280 5.08E-13 nuclear division

GO:0051301 8.45E-13 cell division

GO:0000226 8.50E-13 microtubule cytoskeleton organization

GO:0000087 9.22E-13 M phase of mitotic cell cycle

GO:0007067 1.39E-12 mitosis

GO:0000279 2.71E-09 M phase

GO:0007010 1.75E-08 cytoskeleton organization

GO:0007059 2.33E-08 chromosome segregation

GO:0030472 3.11E-08 mitotic spindle organization in nucleus

GO:0032886 3.46E-08 regulation of microtubule-based process

GO:0070507 3.46E-08 regulation of microtubule cytoskeleton organization

GO:0016043 5.99E-08 cellular component organization

GO:0007051 7.48E-08 spindle organization

GO:0051329 7.69E-08 interphase of mitotic cell cycle

GO:0007052 1.09E-07 mitotic spindle organization

GO:0051325 1.12E-07 interphase

GO:0006928 1.15E-07 cellular component movement

GO:0007018 2.33E-07 microtubule-based movement

GO:0010564 6.27E-07 regulation of cell cycle process

Table 4 Top 25 GO terms overrepresented by genes associated with factor 4.

GOBPID Pvalue Term

GO:0007049 5.54E-08 cell cycle

GO:0051301 8.21E-08 cell division

GO:0000278 7.99E-07 mitotic cell cycle

GO:0000087 1.12E-06 M phase of mitotic cell cycle

GO:0022402 1.57E-06 cell cycle process

GO:0022403 6.92E-06 cell cycle phase

GO:0048285 2.16E-05 organelle fission

GO:0000280 3.03E-05 nuclear division

GO:0010458 3.55E-05 exit from mitosis

GO:0000910 3.70E-05 Cytokinesis

GO:0000279 4.43E-05 M phase

GO:0007067 7.91E-05 Mitosis

GO:0033205 0.000523865 cell cycle cytokinesis

GO:0032506 0.000572574 cytokinetic process

GO:0010970 0.001012686 microtubule-based transport

GO:0030473 0.001012686 nuclear migration along microtubule

GO:0030705 0.001012686 cytoskeleton-dependent intracellular transport

GO:0072384 0.001012686 organelle transport along microtubule

GO:0000114 0.00177365 regulation of transcription involved in G1 phase of mitotic cell cycle

GO:0046459 0.00185316 short-chain fatty acid metabolic process

GO:0007018 0.002062712 microtubule-based movement

GO:0016575 0.002062712 histone deacetylation
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the number of tuning parameters and heuristic choices is
substantially less compared to MLSA. Secondly, the
method is much more intuitive to understand. Thirdly, it
is more flexible. As an example, one can easily limit the
gene relations to positive correlations and ignore negative
correlations using nMLSA, while MLSA has to take both
positive and negative correlations. Fourth, nMLSA can be
adapted for nonlinearly associated modules if a nonlinear
association measure is used in the co-expression network
building, while MLSA is limited to linear relations. In the
nonlinear case, it is difficult to define latent factors. The
challenge is subject to our future studies.
Instead of using hard cutoffs, nMLSA utilizes the

concept of local false discovery rate (lfdr). As different
datasets exhibit different levels of baseline correlation
[37], using hard cutoffs on correlations may result in
unsatisfactory results. Using local false discovery rate
procedures that are flexible in the null distribution
estimation, nMLSA is naturally adaptive to the charac-
teristics of the data. Given the nMLSA procedure relies
on existing network community detection algorithms,
it is admitted that the performance of the method
relies on the choice of the community detection algo-
rithm. The research field of community detection is
mature and a number of good methods are available.
Thus it is not difficult to tune the method to achieve
good performance.

Conclusions
In summary, the new network-based method nMLSA is
more effective than existing methods in recovering biolo-
gically meaningful latent variables and latent variable
groups. The method can potentially be extended to detect
nonlinearly associated modules if a nonlinear association
measure is used to build the network.

Additional material

Additional file 1: Figure S1. The four types of input signal from which
the data were simulated.
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