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Abstract

Background: Computing semantic relatedness between textual labels representing biological and medical
concepts is a crucial task in many automated knowledge extraction and processing applications relevant to the
biomedical domain, specifically due to the huge amount of new findings being published each year. Most
methods benefit from making use of highly specific resources, thus reducing their usability in many real world
scenarios that differ from the original assumptions. In this paper we present a simple resource-efficient method for
calculating semantic relatedness in a knowledge-poor environment. The method obtains results comparable to
state-of-the-art methods, while being more generic and flexible. The solution being presented here was designed
to use only a relatively generic and small document corpus and its statistics, without referring to a previously
defined knowledge base, thus it does not assume a ‘closed’ problem.

Results: We propose a method in which computation for two input texts is based on the idea of comparing the
vocabulary associated with the best-fit documents related to those texts. As keyterm extraction is a costly process,
it is done in a preprocessing step on a ‘per-document’ basis in order to limit the on-line processing. The actual
computations are executed in a compact vector space, limited by the most informative extraction results. The
method has been evaluated on five direct benchmarks by calculating correlation coefficients w.rt. average human
answers. It also has been used on Gene - Disease and Disease- Disease data pairs to highlight its potential use as a
data analysis tool. Apart from comparisons with reported results, some interesting features of the method have
been studied, i.e. the relationship between result quality, efficiency and applicable trimming threshold for size
reduction. Experimental evaluation shows that the presented method obtains results that are comparable with
current state of the art methods, even surpassing them on a majority of the benchmarks. Additionally, a possible
usage scenario for the method is showcased with a real-world data experiment.

Conclusions: Our method improves flexibility of the existing methods without a notable loss of quality. It is a
legitimate alternative to the costly construction of specialized knowledge-rich resources.

Background

Given the massive amount of new research that has been
published in the life sciences in recent years, the scientific
community needs solutions that lead to the creation of
self-readable document repositories, which could automa-
tically classify and provide structural representation of the
knowledge expressed ‘implicitly’ (from a machine-based
perspective) in the scientific articles. Achieving this goal
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would be an important step, that eventually could lead to
improving current information access and retrieval
methods, which are mostly based on keyword queries. The
in-adequacy of currently available tools and approaches
has been mentioned in the domain literature, e. g. [1].
Establishing semantic relatedness between concepts or
their textual representation is one of the key enabling
components in automated knowledge extraction from
texts, as many text processing applications need a numeri-
cal equivalent of how the concepts fit together. According
to [2], successfull applications of approximations of
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semantic relatedness include general domain tasks such as:
word sense disambiguation [3], text summarization [4] and
information retrieval [5]. According to [6], applications of
semantic similarity (which is a more specific concept) and
relatedness measures in life sciences include direct data
analysis (discovery of protein - pathway interactions [7],
discovering similar diseases [8]), semantic search [9],
redundancy detection in clinical records [10], sense disam-
biguation [11]. Applications of semantic similarity to com-
pare gene products have been reviewed in [12].

Most existing state-of-the-art measures use some kind
of pre-existing knowledge base in order to produce a
numerical approximation of semantic relatedness between
two concepts or their lexicalizations, as reflected in a
relatively recent survey presented in [13]. This trend has
also been reflected in a recent review presented in [14]. It
can be argued that the notion of semantic relatedness is
connected with such resources due to its concept-based
nature [15]. However, as pointed out in [13,16,17],
corpus-based methods have been used with some success
as approximations of semantic relatedness. To the best of
our knowledge, all the state-of-the-art measures that are
applied in life sciences make use of highly specialised
knowledge-rich resources, which makes them barely
suitable for scenarios in which the knowledge base does
not exist, or is extremely large or subject to frequent
changes. Furthermore, their methodologies are not easy
to repeat for even a slight change of settings, as reflecting
each change in the knowledge resource would require
substantial effort. Our aim is to propose a method that is
as general and flexible as possible, with respect to a
chosen corpus, given that finding a document collection
for a domain is normally a much easier task than creating
a comprehensive knowledge base for this domain. As it is
reasonable to assume that composing a document collec-
tion is relatively easy as long as the collection size
remains small to moderate, the method should work with
a corpus significantly smaller than the web-scale.

In this paper we present a method, which can be used as
an approximation of semantic relatedness for life sciences
in knowledge-poor settings. It is purely corpusbased,
therefore it does not need any additional artifacts, apart
from a domain oriented document collection. Its distribu-
tional nature means that the costly pre-processing stage of
the method can be executed offline, regardless of the
predefined set of entities of interest, on a ‘per-document’
basis. This means that the setup of the method does not
depend on the entities of interest, nor on their quantity,
hence the entities can be unknown a priori. An atomic
goal of the method is to pro-vide a numerical approxima-
tion of semantic relatedness for a pair of input queries
(represented by terms or their collocations). Our method
is based on an idea that contexts of related lexical repre-
sentations of concepts will be similar ("You shall know a
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word by the company it keeps”, J. R. Firth, 1957), i.e. scien-
tific articles on related concepts should contain similar
vocabulary. For each input text we recover a set of best fit
documents from the corpus and compose a term vector
related to the given input. The term vector is aggregated
through the extraction of rep-resentative terms from the
best fit documents. The comparison of vectors results in a
numerical approximation of semantic similarity between
the respective textual representations. This idea is similar
to those presented in [18] (general domain) and in [19],
only here the vectors are obtained for each document in
the preprocessing and then aggregated at runtime for each
lexicalization in the function of the most suitable docu-
ments. By doing this, our method is not dependent on a
pre-existing knowledge base nor on the quantity of the
entities of interest, thus making it more adaptable to dif-
ferent use cases, which may not have suitable dictionary/
ontological resources. In a sense, we postulate a novel
approach for the rough approximation of contexts for
relatedness approximation, while existing methods focus
more on the preprocessing that enables context extraction
for a closed set of entities.

An important feature of the design is that the method
can work with very large (possibly too large for ‘per
instance’ processing), flat (with no relationships between
the data objects) and dynamic (the evolution of the set
does not imply the necessity of re-calibration) sets of enti-
ties, possibly unknown until runtime. This characteristic is
especially important, given that modern application
designs often depend on distributed data provided by third
parties. Also, many commonly used databases present only
a specific perspective on the possible relationships between
their entities, which does not necessarily correspond to the
perspective of the intended usage. Moreover, the relation-
ships defined within the databases rarely provide enough
structure for approximating relatedness of objects. The
method presented here is unaffected by these limitations,
and can be used in a dynamic environment for applica-
tions such as relatedness based query expansion, where a
query for a specific entity is expanded to encompass the
objects that are closely related to the entity of interest.

In the following section we present both the method
itself, together with its key components, as well as the
experimental settings used for its evaluation. In the third
section the results of the experiments are presented and
discussed. We additionally provide a comparative analysis
of two diferrent approaches to document preprocessing.
Moreover, we compare the results achieved for two ver-
sions of a document corpus, which covers a wide range of
Life Sciences domains and subdomains, while being man-
ageable in terms of the corpus size. Remarks on the usabil-
ity of the method are also presented together with
discussion points on corpus driven methods in general. In
the last section we summarize the work presented here.
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Methods

Overview

As indicated in the previous section, our method uses a
document collection of a fairly general nature and mod-
erately large size, with respect to the relative scope and
size of the domain of interest. The size and scope of the
corpus is discussed in more detail in the Data section of
this paper. As the method is expected to deal with free
input or very large databases, in cases where per-
instance preprocessing would have been too costly, the
corpus is the only data used in the preprocessing stage.
It was implemented as an Apache Lucene [20] index. In
the preprocessing stage each document included in the
corpus is analyzed individually so as to extract its most
important terms and/or phrases (collocations of terms).
The results of this analysis are stored as sparse vectors
in a separate database, which is described in detail
further on in this section. The database implementations
can be based on any persistent key-value map. These
two elements, the document corpus and the database of
document vectors, are used at runtime to process
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requests for a given input, i.e. a pair of text labels. A
general overview of the components and processing flow
(both offline and online) is given in Figure 1.

As already mentioned, the method requires two key
components for its online processing, namely the Docu-
ment Corpus and the Database of Document Vectors.
Those artifacts are also referred to as the document index
(as the processing requires the corpus to be queryable)
and the vector database (vector DB). The runtime input
consists of two texts, for which, the relatedness score is to
be calculated. First, we establish a set of the most relevant
documents for each of the input texts. Second, we calcu-
late a vector representation of the key-phrases associated
with the respective document sets. Once the vectors have
been extracted, the relatedness score is calculated and
returned, thus terminating the procedure. The processing
performed for the relatedness calculation for each input
pair of texts can be presented in a more structured way
with the following breakdown:

STEP 0 Step 0 is performed offline and globally, so it is
also referred to as a preprocessing step; it takes the

Offline processing
(vector extraction)

Artifacts

Document
STEP O Corpus
» (Document
% x Index)
Vector Extraction
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W
OR
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=4 | <
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Figure 1 Overview. Overview of the method’s components and its processing flow; s and t denote input texts, D(k) denotes a set of the most
relevant documents retrieved for an input k, V (D(k)) denotes a set of the most relevant document vectors for documents retrieved for an input
k, v(k) is a vector aggregated to represent the contexts of input k in the relatedness calculation and r(k;, k,) denotes the relatedness between a
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Document Corpus as input in order to create its vector-
based representation - the vector database.

STEP 1 Step 1 is the first online processing step; its
goal is to return a set of N most adequate documents
from the corpus for each of the user-provided inputs;
for this purpose the typical information retrieval model
is used, i.e. inputs are treated as queries.

STEP 2 During Step 2 the sets of the most relevant
documents retrieved in the previous step are substituted
by sets of vector-based representation of those documents;
as obtaining the vectors on the fly would be too costly,
they are retrieved from the vector DB created during the
preprocessing step.

STEP 3 In Step 3 the output from Step 2, i.e. two sets of
vectors, is converted into a pair of vectors in an aggrega-
tion process; each of these vectors corresponds to one of
the inputs.

STEP 4 In Step 4 the vectors aggregated in Step 3 are
used to calculate the relatedness score between the input
texts, which concludes the online processing for a pair of
inputs.

The specific elements of the method outlined here are
discussed later in this section.

Preprocessing and key-phrase database

As stated, the preprocessing is done on a ‘per-document’
basis. The goal of the preprocessing step is to come up
with a vector-based representation of each document from
the original corpus. In this paper we evaluate two
approaches for vector extraction: (1) plain ¢f-idf (term
frequency - inverse document frequency) with low-weight
cutoffs performed for each vector; (2) extracting possibly
important frequent key-phrases and producing a vector
representation for frequent keyphrases only. In either
approach the focus is on the very simple assumption that
the most relevant scientific articles for related concepts
should contain similar vocabulary or keywords in the
same way that related wikipedia entries share common
categories, links, key-words, etc. The latter observation
served as the basis for approaches presented in publica-
tions such as [21] and [22].

For extracting candidate key-phrases from texts we have
chosen a very simple T-GSP [23] approach, principally
because it is efficient and easy to configure. T-GSP (Text
General Sequential Pattern) is a text mining algorithm,
which uses a single pass sliding window to extract the
most frequent terms and their collocations from within a
scope of a single document. T-GSP leverages shallow nat-
ural language processing techniques, i.e. part-of-speech
tagging, to consider only those frequent candidates that
fulfill one of the predefined grammar conditions. In the
simplest case, one might consider a one element grammar
that accepts only nouns ([noun], which can be fulfilled, for
example, by a noun ‘patient’). In a slightly more complex

Page 4 of 16

case, a grammar that accepts noun collocations may apply
([noun, noun), e.g. ‘cancer patient’). Other grammars may
accept [noun, preposition, noun) or [noun, noun, noun]
collocations, etc. As a result, T-GSP generates a table of
all candidate key-phrases sorted by their occurence
frequency. At this point, in order to substantially reduce
the computation space for further processing, we apply
trimming, so that we include only a portion of the most
frequent potential key-phrases in the document vector
representation. The cutoff point here is defined as in line
16 of the pseudocode example presented in Figure 2. The
size of the portion is determined in function of phrase fre-
quency as related to the sum of all phrase frequencies
from a given document. Key-phrases are stored and passed
on in descending order by their frequencies. When the
sum of the frequencies of the included phrases exceeds a
threshold, the inclusion process continues until a less fre-
quent key-phrase is encountered.

In the second part of the preprocessing procedure
the key-phrases collected from each document are trea-
ted as a bag-of-words representation (denoted further
as BOW), which means that each document generates
a key-phrase based BOW. BOW of a document is a set
of its unique terms with their frequency counts (term
frequencies). The BOWs can be perceived as represen-
tations of the original documents. Each BOW is then
represented as a vector in a Vector Space Model
(VSM) of tf-idf weighted vectors. Weights for indivi-
dual terms are calculated as in Formula 2. This means
that BOWs are processed as if they were documents in
a typical VSM. They are tokenized (after stopwords
deletion) and in-document frequency is calculated for
each meaningful token. The tf factor may be based
either on the original document’s frequency for the
same token or on the frequency of the token inside the
abbreviation. The idf factor is based on abbreviations
vector space only. Each term token has a position
assigned to it within the vector space. Vectors are
stored as lists of position - value pairs (positive values
only) in the vector DB (sparse vector representation),
which is later used at runtime, together with the cor-
pus index. For ¢f (¢, d), where ¢ denotes a term and d
denotes a document, raw frequency is used. It can be
obtained either from the BOW itself or from the gen-
eral document. The inverse document frequency com-
ponent is calculated as follows:

DI
deD:ted +1

where D denotes the document corpus, ¢ denotes the
term and d a document. Those elements lead us to the
formula for tf-idf :

tfidf(t,d, D) = tf(t,d) x idf (¢, D) (2)

idf (t, D) = log (1)
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(num threshold):
Map abbreviation;

input

num oldFrequency=Inf;

0

1

2

3

4

5 num frequencySum=0;
6

7 boolean flag=true;
8

9

Text term=pair.term;

for each Document D from Corpus do:
TGSPAnnotationSet tgsp = D.getTGSPRepresentation();
num frequenciesTotal = tgsp.getSumOfAllFrequencies;

for each TermFrequencyPair pair from tgsp.getOrderedTFP() do:

10 num frequency = pair.frequency;

11 if frequency<oldFrequency AND flag==false then:
12 break loop;

13 end if;

14 frequencySum+=frequency;

15 abbreviation.put(term, frequency);

16 if frequencySum>= threshold * frequenciesTotal then:
17 flag=false;

18 oldFrequency=frequency;

19 end if;

20 end for;

21 end for;

Figure 2 T-GSP trimming. Procedure for T-GSP based vector extraction.

Alternatively (i.e. in the variant without T-GSP proces-
sing), vector representations of documents are produced
directly through a traditional VSM approach with trim-
ming applied individually for each vector at positions
with lower statistical significance for the documents. In
this approach #f-idf weights (as defined in Formula 2) are
associated directly with the BOW representation of the
document itself. As well as in the case of T-GSP gener-
ated BOWs, here too are tokenization, normalization and
stopwords elimination applied to the process, through the
mechanism provided by the Lucene StandardAnalyzer.

Note that cutoffs are defined differently for the two
variants of the vector extraction method. In the T-GSP
version the threshold is defined in the function of total
frequencies of all possible key-phrase candidates, whereas
the second variant simply includes a percentage of the
most significant (in terms of higher weights) dimensions
of each vector, leaving zeros in the positions not
included.

Runtime processing

As mentioned, runtime processing is executed for two
terms/phrases being tested for relatedness. The procedure
can be broken down into three steps: (1) establishing a set
of the most relevant documents for each text, (2) aggregat-
ing vector representations of these documents into a
vector for each input text, (3) calculating relatedness
approximation based on a vector based metric. In this sub-
section we describe each of these steps in more detail. The
first step, i.e. finding the most relevant documents for a

given input, is resolved straightforwardly through standard
mechanisms of the Lucene Index, through which the
Document Corpus element from the overview provided in
Figure 1 can be queried. The input texts are parsed as
queries to the index, using the least restrictive approach
for the Boolean retrieval (multi-term queries are repre-
sented as an alternative of terms). The results of the search
are passed on as input for the second step. The number of
the most relevant documents to be included in the output
is a preset parameter, the implications of which are cov-
ered in more detail in the Results section of this paper.
Aggregating a vector representation for a textual input is
done by vector addition. At this point each of the input
terms/phrases has an aggregated vector assigned to it to
represent its approximated context. The issue of context
approximation in the specific settings of scientific docu-
ments is discussed in more detail in the Results and dis-
cussion section of this paper. As for the actual calculation
of the numerical approximation of the semantic related-
ness, we decided to use cosine similarity.

Experiments

The method has been evaluated in a series of experiments,
the settings of which are described in this section. In each
of the experiments presented, the method was used to
produce a relatedness score for each input pair of textual
labels. The number of pairs per experiment varies from 29
to 6091686. In order to evaluate the performance we have
measured coverage. Coverage can indicate how well the
method adapts to different scenarios without any specific
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recalibrations. Coverage can be defined for a space of sin-
gle inputs:

{v e V(S) : vl = O}

1(S)=1-— S|

, 3)

where S is a set of inputs, r,(S) denotes coverage over S
and V (S) denotes a set of vectors generated for inputs S.
This notion seems quite informative, as it corresponds to
the percentage of inputs from a given set, that generate
non-zero vectors. However, in the literature the most
common notion is one of coverage based on input pairs
found in a given dataset:

_ |{(Ui,1/j) S V(S) sl = 0V|Uj| = 0}

(S) =1 S|

(4)

where S is a set of input pairs, r,(S) denotes coverage
over S and V (S) denotes a set of vector pairs generated
for inputs S.

In the case of direct evaluations, i.e. when comparing
automatically obtained results with human judgement,
the quality of the results has been reflected by measuring
Spearman’s rank correlation coefficients, with average
values assigned for tied ranks, as defined in Formula 5:

> i(xi — x)(yi —)/)/
Jos =200 — )

where x; and y; are ranks obtained for raw scores X;
and Y; of variables X and Y .

Apart from the performance evaluation, the experiments
were also used for testing different aspects of the method
itself, i.e. its sensibility to parameters and corpus. As
mentioned, the method depends on two input parameters,
these being the candidate cutoff rate applied at the prepro-
cessing stage and the number of relevant documents
recovered for each input label. Additionally, every corpus-
based method depends heavily on the choice of corpus,
therefore the performance on two different corpora has
also been reflected to some extent in the course of the
experimental evaluation (full papers vs. abstracts only).
The following subsection presents all the data used in the
experiments, both as benchmarks and as document
repositories.

Data

Our method has been evaluated directly with the follow-
ing datasets: 566 label pairs rated by medical residents
for semantic similarity (residents-s) and 587 pairs rated
for relatedness (residents-r) [24], 101 label pairs ranked
by medical coders (101c) for relatedness, set of 29 pairs
rated by coders (29c) and physicians (29p) for related-
ness [19]. All the datasets used as references [25] in the
evaluation process are summarized in Table 1. Table 2
which has been compiled according to the study

p(X,Y) = (5)
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Table 1 Presentation of the general characteristics of the
datasets used in experiments; number of pairs and
distinct items describe the size of the datasets; the
reference column indicates whether a dataset is a
reference benchmark; the focus of the dataset column
contains the information on the type of relationships
captured in the reference results.

No of Distinct  Reference  Focus of the
pairs items dataset
residents-s 566 375 Yes Similarity
residents-r 587 397 Yes Relatedness
101c 101 191 Yes Relatedness
29c 29 56 Yes Relatedness
29 29 56 Yes Relatedness
orphanetDG 6091686 4937 No
orphanetDD 2941525 2426 No -

presented in [26] and results reported in [27], presents
reported reference results for the benchmarks. To the
best of our knowledge, this data is henceforth accurate.
Nonetheless, and more importantly, it gives an idea as
to how the state-of-the-art measures could perform
across various reference standards.

It is worth noting, that methods and benchmarks can
be focused on one of two distinct notions, i.e. semantic
similarity and semantic relatedness. Semantic similarity
tells us how two entities are similar to each other, while
relatedness is a broader term, associated with any kind
of semantic relationship between the entities of interest.
E.g. Clostridium perfringens and Gangrene should dis-
play a low similarity, as one is a bacteria and the other
is a health condition. At the same time those two enti-
ties should be semantically related, because C. perfingens
is a microbe that can produce the condition, therefore
this pair should have a high relatedness score. The dif-
ference between the notions is important for under-
standing particular results, nonetheless it would require
very specific features in a benchmark to have an impor-
tant effect in the course of the evaluation. Furthermore,
the distinction between the two notions will often
depend on a semantic perspective, and therefore might
not be very clear to human annotators. In practice, the
semantic relatedness approximation methods are often
evaluated against similarity benchmarks and vice versa,
which is partially reflected in Tables 1 and 2. We
assume that taxonomy-based measures are all focused
on similarity, as suggested in [27], as they are aimed at
capturing taxonomical relationships only.

For each of the datasets mentioned in Table 2 the
experiments were executed for both corpus versions (full
vs abstracts-only) with different values of in-document
cutoff rate (0.1 - 0.9, with a 0.1 step for the T-GSP var-
iant; 0.05 - 0.4 with 0.05 step for the plain #f-idf variant).
As for the document corpus, an open access subset of
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Table 2 Presentation of the state-of-the art results reported in the literature for the reference benchmarks.
Benchmark Reported correlation Method class Focus of the method Citation
residents-s 046 Taxonomy-based Similarity [26]
residents-r 039 Taxonomy-based Similarity [26]
101c 046 Taxonomy-based Similarity [26]
29c¢ 0.90 Taxonomy-based Similarity 271
290 0.84 Medical notes corpus; thesaurus preprocessing Relatedness [19]

PubMedCentral [28], containing 453531 life sciences
research articles, was chosen as the reference material.
The corpus we have used was last updated in the spring
of 2012, the currently available one is signifantly larger.
For testing the robustness of the method with respect to
the document corpus the method was set up with two
versions of the corpus, full documents vs. abstracts-only.
It is worth noting, that although we describe the corpus
as ‘moderately large’ and ‘fairly general’, it actually con-
tains almost half a million documents devoted to Life
Sciences. Our phrasing is closely related to the size and
scope of the domain, which contains fields as diverse as
computational biology, chemistry and plastic surgery.
Also, there is a massive number of Life Science publica-
tions, with more than 20 million article records in
Medline [29]. Nonetheless, the size and nature of the cor-
pus will depend on the application domain and specific
use cases. Our assumption is, that for the presented
method to work, it should be enough to consider a mod-
erately large and fairly large sample of the publications
from a given domain.

Additionally, the method has also been tested on a lar-
ger scale dataset, two experiments were performed: first,
for pairwise comparisons of all possible of genes and
disorders retrieved from OrphaNet dataset [30]; second,
for disorder-disorder pairs, with data from the same
dataset. Genes include all genes mentioned in the origi-
nal dataset, while disorders are diseases believed to have
a genetic background (they have at least one associated
gene in the original dataset). The experiments involved
6091686 gene-disorder pairs and 2941525 disorder-dis-
order pairs, respectively (2511 distinct genes and 2426
distinct disorders represented by their names extracted
from the original OrphanetData). Without additional
human annotation, the quality of the method is not
measurable in the OrphaNet experiment (mostly due to
the ‘openness’ of the problem at hand), so more focus
was placed on showing specific interesting results, both
positive and negative in terms of the correctness of the
approximation. In other words, it is not possible to eval-
uate the actual results obtained from the OrphaNet
experiments, although some interesting examples from
these experiments (that are potentially close to a real-
world application of the method) are also presented in
the next section.

The pairs extracted from the OrphaNet dataset and
used in our experiments can be found in the results
files, included as supplementary material, at [31].

Results and discussion

The following section presents the results of the experi-
mental evaluation of the method. The section is divided
into three main parts: firstly, the results of direct evalua-
tion are presented and discussed; then the OrphaNet
experiment is examined. In the third part some general
discussion points are presented, mainly those that are
only loosely related to particular evaluation results.
Table 3 presents statistics of vector-representation data-
bases obtained for different settings.

Approximating human judgement

Figures 3 - 7 show the Pearson correlation coefficient of
the results vector with average human answers in the
function of number of relevant documents aggregated as
vectors for each input. Each figure corresponds to one of
the benchmarks and each includes six plots: best T-GSP,
best without T-GSP and average results; all three for each
of the corpus versions (full papers and abstracts only).
Average and best values for different vector database
settings are presented in Table 4.

In the presented method, coverage depends on the cor-
pus only, therefore its value is the same across the differ-
ent databases for each of the respective datasets. The
coverage values are summarized in Table 5. Figure 8
shows the relationship between the results of our method
and average human answers in the best-case scenario for
the residents-r dataset. Figure 9 shows the same relation-
ship obtained for the best-case settings for the compact
corpus (abstracts only).

The results obtained clearly show that, given the state-
of-the-art results cited in Table 2 the proposed method is
capable of performing on a level comparable to other
methods, outperforming them in 3 out of 5 of the refer-
ence datasets with some of the possible configurations (see
Figures 3 - Figure 7), thus adding a new perspective to the
evaluation presented in [26]. More importantly, the ‘good’
trimming threshold and document number configurations,
given a corpus, seem to work for different reference data-
sets. There is a certain drop in quality of results with the
abstracts-only corpus, more significant for the residents
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Table 3 Statistics of different vector databases in the function of their setup parameters.

Page 8 of 16

Variant Threshold [%] Vector size (mean) Physical size Composition
T-GSP 0.1 3.66 109 MB Full articles
T-GSP 0.2 11.09 257 MB Full articles
T-GSP 03 24.25 522 MB Full articles
T-GSP 04 46.36 968 MB Full articles
T-GSP 0.5 837 168 GB Full articles
T-GSP 06 140.39 279 GB Full articles
T-GSP 0.7 23996 452 GB Full articles
T-GSP 08 359.56 6.2 GB Full articles
T-GSP 09 37214 6.37 GB Full articles

No T-GSP 0.05 3831 852 MB Full articles

No T-GSP 0.1 7643 16 GB Full articles

No T-GSP 0.15 114.09 236 GB Full articles

No T-GSP 0.2 1516 313 GB Full articles

No T-GSP 0.25 189.29 389 GB Full articles

No T-GSP 03 22713 463 GB Full articles

No T-GSP 035 264.92 531 GB Full articles

No T-GSP 04 302.59 587 GB Full articles
T-GSP 0.1 277 97 MB Abstracts only
T-GSP 02 643 168 MB Abstracts only
T-GSP 03 1237 287 MB Abstracts only
T-GSP 04 22.05 483 MB Abstracts only
T-GSP 05 3472 738 MB Abstracts only
T-GSP 06 43.86 921 MB Abstracts only
T-GSP 0.7 46.69 978 MB Abstracts only
T-GSP 08 47 984 MB Abstracts only
T-GSP 09 47.01 985 MB Abstracts only

No T-GSP 0.05 49 147 MB Abstracts only

No T-GSP 0.1 9.27 237 MB Abstracts only

No T-GSP 0.15 13.69 327 MB Abstracts only

No T-GSP 02 18 416 MB Abstracts only

No T-GSP 025 2237 506 MB Abstracts only

No T-GSP 03 26.85 597 MB Abstracts only

No T-GSP 035 3128 688 MB Abstracts only

No T-GSP 04 3559 776 MB Abstracts only

datasets. It can be partially explained by data insufficiency,
as for the datasets in question it is also accompanied by a
plunge in coverage reflected in Table 5. Our choice was to
model the inability to retrieve a vector representation of
the input with a zero relatedness score. The interpretation
of this choice is, that when a concept does not appear in
the corpus, there is a good chance that it is unrelated to
the concepts that do appear in the corpus. Although not
perfect, some assumptions have to be made in this ‘null
interpretation’ issue. The one presented here, results in
the scores of the method becoming even more bottom-
loaded with the decrease of coverage, which is reflected in
Figures 8 and Figure 9. Nonetheless, the results for the
abstracts-only corpus can still be considered as fairly good,
especially given the relative sizes of the respective vector
DBs. One way of solving the coverage issue could be to

use the compact corpus for the vector DB construction
and full corpus for retrieval of the most relevant docu-
ments, when both versions of the corpus are available, but
time/resource constraints are important.

When it comes to the T-GSP vector extraction vs plain
if-idf vector extraction, one can see that plain ¢f-idf seems
to work slightly better, at least without additional optimi-
zation of the T-GSP parameters, which is beyond the
scope of the work presented here. Nonetheless T-GSP
extraction results in a method that still provides results
comparable with those of the state-of-the-art methods,
therefore it performs reasonably well in terms of noise
reduction. Its interesting property is that the documents
can be processed independently up to the point at which
the trimming is performed (trimming is applied locally at
document level) and it does not use the statistics of the
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Figure 3 Correlation with human judgement. Selected results (correlation in the function of N documents aggregated per vector) for the
residents-s dataset; legend indicates the vector extraction variant (T-GSP/No T-GSP), cutoff point ¢ and corpus used (F - full corpus, A - abstracts-
only); horizontal reference line correponds to the reference value presented in Table 2.
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Figure 4 Correlation with human judgement. Selected results (correlation in the function of N documents aggregated per vector) for the
residents-r dataset; legend indicates the vector extraction variant (T-GSP/No T-GSP), cutoff point ¢ and corpus used (F - full corpus, A - abstracts-
only); horizontal reference line correponds to the reference value presented in Table 2.
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Figure 5 Correlation with human judgement. Selected results (correlation in the function of N documents aggregated per vector) for the29c
dataset; legend indicates the vector extraction variant (T-GSP/No T-GSP), cutoff point ¢ and corpus used (F - full corpus, A - abstracts-only);
horizontal reference line correponds to the reference value presented in Table 2.
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Figure 6 Correlation with human judgement. Selected results (correlation in the function of N documents aggregated per vector) for the 29p
dataset; legend indicates the vector extraction variant (T-GSP/No T-GSP), cutoff point ¢ and corpus used (F - full corpus, A - abstracts-only);
horizontal reference line correponds to the reference value presented in Table 2.
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Figure 7 Correlation with human judgement. Selected results (correlation in the function of N documents aggregated per vector) for the
101c dataset; legend indicates the vector extraction variant (T-GSP/No T-GSP), cutoff point ¢ and corpus used (F - full corpus, A - abstracts-only);
horizontal reference line correponds to the reference value presented in Table 2.
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entire corpus until this moment. As a result, the idf part
of tf-idf scheme is computed after the trimming has been
done. All this makes the T-GSP variant potentially more
appealing in terms of parallelism and memory efficiency.

Data analysis

Potential data analysis application of the method is pre-
sented through example experiments with the OrphaNet
dataset, which involves relatedness calculations for pairs
of terms/phrases related to orphaned and rare diseases.
Two experiments have been carried out, for disorder -
gene (orphanetDG) and disorder - disorder (orpha-
netDD) relatedness. The same setup of the method has
been used for both experiments: full article corpus,
aggregation of 20 documents per input, preprocessing
without T-GSP, with trimming threshold set at 0.05.
The method performed well regarding recall, as it mana-
ged to retrieve representation vectors for 99.86% and
99.71% of the inputs involved in the respective experi-
ments. Tables 6 and 7 present some of the results
obtained in the course of the experiments. In each of
the tables rows 1-3 present potentially relevant results,
while rows 4-5 illustrate a visible flaw of the approach

in the OrphaNet experiments. Full results of the Orpha-
Net experiments can be accessed at [31].

In the positive examples, the approach works as
expected. The negative examples illustrate one of the
differences between knowledge-based and distributional
methods for approximating relatedness between con-
cepts or their lexical representations. The method might
display undesired behavior when input collocation of
words share common tokens. Obviously, this might
occur in a ‘true positive’ situation (Table 6 row 1), but
sometimes inputs will produce a high score because
they are tied by a common token of little significance.
An example is presented in Table 7 row 4. The inputs
share the word ‘syndrome’, while the other terms of
both inputs fail to influence the retrieval of the most
relevant documents, as they are most probably not pre-
sent in the corpus. This problem can be dealt with by
adding more elements to the method. Solutions could
include adding more restrictive boolean filtering at the
point of document retrieval or using query-document
weights to reduce the impact of low importance docu-
ments at the point of vector aggregation. Both solutions
were tried in the course of the direct evaluation, but in
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Table 4 Correlation with human judgement obtained for various combinations of vector extraction variant, trimming
threshold and corpus.

Parameters residents-s residents-r 29p 29c 101c
Extr.; ¢; Corpus Max (N) Avg Max (N) Avg Max (N) Avg Max (N) Avg Max (N) Avg
T-GSP; c = 09; F 0.54 (38) 0.53 0.51 (27) 0.5 0.68 (57) 063 0.79 (31) 0.74 0.58 (39) 0.55
T-GSP; c = 08; F 0.54 (38) 0.53 0.51 (26) 0.5 0.68 (57) 0.62 0.77 (47) 0.73 0.58 (39) 0.55
T-GSP, c =07, F 0.54 (58) 0.52 0.52 (38) 051 0.68 (56) 063 0.79 (32) 0.74 0.58 (40) 0.55
T-GSP; ¢ = 06; F 0.52 (58) 051 0.5 (37) 049 0.66 (60) 063 0.78 (24) 0.74 0.59 (38) 0.56
T-GSP; c = 05; F 053 (38) 052 0.5 (37) 049 0.69 (47) 0.64 0.79 (33) 0.74 0.55 (29) 0.53
T-GSP; c = 04; F 0.52 (38) 0.51 0.5 (26) 049 0.65 (57) 06 0.75 (25) 0.7 0.56 (27) 0.52
T-GSP; c = 03; F 049 (41) 047 047 (55) 045 0.65 (57) 06 0.75 (29) 0.7 0.53 (31) 0.5
T-GSP, c =02, F 047 (52) 044 044 (58) 04 064 (17) 0.58 0.77 (32) 071 0.51 (23) 048
T-GSP, c =0.1; F 042 (37) 0.38 0.38 (57) 0.34 061 (25) 047 0.75 (26) 06 042 (34) 0.36
T-GSP; - F 0.54 049 0.52 046 0.69 06 0.79 0.71 0.59 0.51
No T-GSP; ¢ = 04; F 0.56 (34) 0.55 0.52 (26) 0.51 0.73 (47) 0.69 0.82 (32) 0.77 06 (42) 0.56
No T-GSP; ¢ = 03; F 0.56 (38) 0.55 0.53 (38) 051 0.73 (47) 0.69 0.82 (32) 0.78 0.59 (42) 0.56
No T-GSP; ¢ = 0.35; F 0.56 (34) 0.55 0.53 (26) 051 0.73 (47) 0.69 081 (31) 0.78 06 (42) 0.56
No T-GSP; c = 0.2, F 0.57 (58) 0.55 0.53 (38) 0.52 0.74 (60) 0.7 0.84 (32) 0.79 0.59 (39) 0.56
No T-GSP; ¢ = 0.25; F 0.56 (58) 0.55 0.53 (38) 0.52 0.74 (54) 0.69 0.82 (33) 0.78 0.59 (42) 0.56
No T-GSP; c = 0.1; F 0.57 (58) 0.55 0.54 (38) 0.52 0.75 (59) 0.71 0.85 (31) 08 0.59 (36) 0.55
No T-GSP; ¢ = 0.15; F 0.57 (58) 0.55 0.53 (38) 0.52 0.75 (54) 0.7 0.84 (32) 0.79 0.59 (43) 0.56
No T-GSP; ¢ = 0.05; F 0.58 (58) 0.55 0.54 (58) 0.52 0.76 (59) 0.7 0.85 (33) 08 0.59 (39) 0.55
No T-GSP; - F 0.58 0.55 0.54 0.52 0.76 0.7 0.85 0.79 06 0.56
-~ F 0.58 0.52 0.54 049 0.76 0.64 0.85 0.75 06 0.53
T-GSP; ¢ = 09; A 037 (53) 0.35 04 (59) 0.38 0.66 (26) 063 0.82 (55) 0.77 051 (42) 048
T-GSP; ¢ = 0.8; A 037 (53) 0.35 04 (59) 0.38 0.66 (26) 063 0.82 (55) 0.77 0.51 (42) 048
T-GSP; ¢ = 0.7; A 0.37 (53) 0.35 04 (59) 0.38 0.66 (24) 063 0.82 (53) 0.78 0.51 (42) 048
T-GSP; ¢ = 0.6; A 036 (55) 035 039 (59) 037 0.66 (25) 0.63 0.82 (24) 0.77 0.52 (41) 049
T-GSP; ¢ = 0.5; A 035 (56) 034 0.39 (59) 037 0.66 (24) 0.62 0.8 (24) 0.75 0.51 (41) 048
T-GSP; ¢ = 04; A 035 (52) 034 0.38 (56) 0.36 067 (52) 063 0.8 (57) 0.75 046 (48) 043
T-GSP; ¢ = 03; A 032 (57) 0.31 0.37 (58) 035 0.68 (52) 061 0.82 (56) 0.72 045 (51) 042
T-GSP; ¢ = 02; A 032 (57) 0.31 0.35 (57) 033 0.6 (50) 046 0.74 (26) 062 046 (41) 0.39
T-GSP; ¢ = 0.1; A 028 (57) 0.25 0.28 (60) 024 0.62 (49) 047 0.7 (48) 057 038 (52) 0.26
T-GSP; - A 037 033 04 035 0.68 0.59 0.82 0.72 0.52 043
No T-GSP; ¢ = 04; A 04 (48) 0.38 042 (52) 04 0.72 (50) 0.65 0.83 (50) 0.78 0.56 (36) 0.52
No T-GSP; c = 0.3; A 04 (52) 0.38 042 (52) 04 0.71 (50) 0.64 0.83 (56) 0.77 0.55 (36) 0.51
No T-GSP; ¢ = 0.35; A 04 (52) 038 042 (53) 04 0.72 (50) 0.64 0.83 (50) 0.77 0.55 (36) 0.51
No T-GSP; c = 0.2; A 039 (53) 037 042 (53) 039 0.69 (50) 06 0.84 (32) 0.75 0.56 (42) 0.51
No T-GSP; ¢ = 0.25; A 039 (52) 037 042 (53) 039 0.71 (49) 0.64 0.84 (31) 0.77 0.55 (42) 0.51
No T-GSP; ¢ = 0.1; A 038 (57) 0.36 041 (60) 0.38 0.68 (60) 0.57 0.82 (58) 071 0.55 (53) 049
No T-GSP; ¢ = 0.15; A 0.38 (53) 0.36 041 (53) 0.38 0.69 (60) 0.59 083 (32) 0.74 0.55 (43) 049
No T-GSP; ¢ = 0.05; A 037 (34) 034 041 (34) 037 0.69 (60) 0.5 0.83 (58) 0.66 0.52 (59) 043
No T-GSP; - A 04 037 042 0.39 0.72 06 0.84 0.74 0.56 049
5 A 04 0.35 042 037 0.72 06 0.84 0.73 0.56 046

The table presents both average and best results obtained for each combination of parameters. For best results, information about N value (number of

aggreagted documents) is also included. Parameter c is the trimming threshold, while F denotes ‘Full corpus’ and A stands for ‘Abstracts only’. -’ denotes an
aggregation (max/avg) over all parameter values.

Table 5 Coverage (recall) recorded for different reference datasets.

Dataset: residents-s residents-r 29p 29c 101c
Corpus: F A F A F A F A F A
IS 0.95 0.77 0.94 0.75 1.0 1.0 1.0 1.0 097 0.92

I 0.97 0.85 0.96 083 1.0 1.0 1.0 1.0 0.98 0.96
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Table 6 Selection of interesting results obtained from the orphanetDG experiment.

T T, pT, 1)
1 Bardet-Biedl syndrome Bardet-Bied!| syndrome 1 1.0
2 Birt-Hogg-Dube syndrome Folliculin 0.95
3 Facioscapulohumeral dystrophy FSHD region gene 1 0.95
4 Haim-Munk syndrome Alstrom syndrome 1 0.38
5 Autosomal recessive Stickler syndrome Usher syndrome 1C (autosomal recessive, severe) 0.34

Table 7 Selection of interesting results obtained from the orphanetDD experiment.

T T, p(Ty, T3)
1 Pentosuria Argininemia 0.97
2 Leukonychia totalis Blepharophimosis - epicanthus inversus - ptosis 0.95
3 Ellis Van Creveld syndrome Postaxial acrofacial dysostosis 0.79
4 Clouston syndrome Crisponi syndrome 0.98
5 Autosomal dominant vitreoretinochoroidopathy Autosomal dominant macrothrombocytopenia 0.98

the case of the reference datasets they only resulted in a
slight decrease in the quality of the results.

This issue, although it seems to be related to data
sparseness, also points to a deficiency, characteristic of
all lexical distributional proxies for semantic relatedness.
One may notice, that the methods in this class are not
able to cope with synonymy and polysemy, as the repre-
sentations of concepts are assigned in the funtion of
their lexicalizations, i.e. the input texts. Although this is
true, it is also worth noting that neither of the KB-based
methods resolve this problem without additional infor-
mation, i.e. it is not possible to correctly disambiguate
an ambiguous textual input to a specific taxonomy node
without contextualizing the input (e.g. by supplying a
unique identifier). The architecture of our method
enables a seamless incorporation of additional informa-
tion available at runtime, as it can be done through
reformulating the queries in STEP 1 of the method (e.g.
by using non-ambiguous synonyms in the case they are
available). This strategy seems reasonable in knowledge
poor settings as in many cases it could work with partial
or incomplete knowledge. We assume that evaluating
this approach is an interesting line for future research.
On the other hand, when no additional information is
available, polysemy can be inferred through context
mining, as suggested, for example, in [32] or more
recently in [33].

Having said which, the output of the OrphaNet
experiments does present value for the data analysis.
Depending on the actual needs of the final user, differ-
ent heuristic strategies of results filtering can be
employed. For example, rows 2-3 of Table 6 and rows
1-3 of Table 7 were extracted with a script that returns
high scoring pairs with no common tokens. If the actual
task was to create relatedness clusters for an application
such as query expansion, there is a good chance that

replacing the scores for the entities that share common
tokens with a null /missing value would still produce
good clustering results.

General remarks

The method presented here relies heavily on the idea
that related concepts/phrases share common contexts.
Moreover, it was assumed that it would be enough to
roughly approximate the contexts, by representing them
with selection of the most important ones only.
Although this approach does display flaws, characteristic
to distributional methods (as shown by the OrphaNet
examples), some of them can be dealt with (or con-
trolled to some extent) by fine tuning the method for
given usage scenarios. Tuning a general method in
many cases is still a lot more feasible than creating a
comprehensive, domain-spanning knowledge base with
an extensive lexical layer, which in many cases is either
impossible or requires a substantial effort on the part of
the community. Thus, in knowledge-poor environments
the corpus-based methods can produce reasonably good
results, given an adequate document collection.

The experimental evaluation has shown that using
research documents/abstracts for context approximation
can lead to good evaluation results. One hypothesis,
potentially to be pursued in future work, is that the good
quality of the results is related to the properties of
research articles and research corpora. A research article,
although technically is processed as free-text, does actu-
ally have a fairly rigid structure and use of words is much
more restrictive than in general domain texts. It is also
worth pointing out that the open subset of PMC is an
ever growing full article corpus, whose potential often
seems to be overlooked.

While it is true that distributional measures are corpus
dependent, this does not have to be seen as a flaw. This
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characteristic means that distributional measures are more
likely to evolve with a domain of knowledge, as corpora
follow the developement of a domain much more natu-
rally than thesaurus-like resources. In fairly static domains
this might be less important, but in the dynamic fields,
such as genomics or metabolomics, where the panorama
shifts quickly, the distributional methods will not only be
more usable, but will also cater to different needs. For
example, a measure coupled with an evolving corpus can
be used to monitor changes in concept/word relatedness
over time, something which is complicated to model with
other approaches.

Overall, our impression is that, even in the static
cases, the corpus dependent methods are easier to use
and adapt, unless there is an available knowledge base
suitable for a specific application scenario. At the same
time, the available Life Sciences databases are often
insufficient and it is unrealistic to assume that there will
be KB representations adequate for each specific case
that involves semantic relatedness, whereas the research
papers are published on an extremely wide variety of
problems and subproblems. Therefore, scientific texts
contain knowledge, which is less dependent on a specific
perspective of a given KB, whereas the structured
sources, such as ontologies, often represent only a very
specific vision of a domain, e.g. modeled through the
taxonomic relationships. Because of that, the distribu-
tional methods will be more likely to capture a wide
variety of semantic relationships between the objects,
regardless of the structured description of the domain.
Additionally, scientific texts in an up-to-date corpus also
contain knowledge on newly minted entities, as opposed
to the formalised domain descriptions, which tend to
follow with a delay. Whether or not free text is the best
way of representing the knowledge acquired through
research, constitutes a separate discussion point, raised
for example in [34]. Nonetheless, this is the current
state of the academic publishing and it might not
change in the immediate future. Therefore, it is essential
to provide the basic enabling techniques that work in
knowledge-poor settings.

Conclusions

In this paper we have presented a corpus-based methodol-
ogy for calculating an approximation for lexical semantic
relatedness for use in the life sciences domain in knowl-
edge poor settings. Its quality and properties have been
demonstrated through direct evaluation, i.e. tests with
reference datasets that contain term/phrase pairs scored
by human annotators. The method outperformed the
state-of-the-art solutions in 3 out of 5 reference datasets.
Additionally, it has been used in an open experiment with
label pairs extracted from the OrphaNet database. The
results of the experiments have been included as
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Additional file 1 with the larger files, related to the
OrphaNet experiments, made available at [31].

Additional material

Additional file 1: Results obtained for reference datasets. The file
contains the raw results obtained for the 809 unique label pairs that
appear within all 4 reference datasets. The results were obtained for the
method based on an entire corpus (full articles) with the trimming
threshold of 0.05, with 58 documents aggregated per input. Please note
that the OrphaNet result files, which are too large for being included in
the publishing process, can be accessed at [31].
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