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Abstract

Background: Protein folding structure prediction is one of the most challenging problems in the bioinformatics
domain. Because of the complexity of the realistic protein structure, the simplified structure model and the
computational method should be adopted in the research. The AB off-lattice model is one of the simplification
models, which only considers two classes of amino acids, hydrophobic (A) residues and hydrophilic (B) residues.

Results: The main work of this paper is to discuss how to optimize the lowest energy configurations in 2D off-
lattice model and 3D off-lattice model by using Fibonacci sequences and real protein sequences. In order to avoid
falling into local minimum and faster convergence to the global minimum, we introduce a novel method (SATS) to
the protein structure problem, which combines simulated annealing algorithm and tabu search algorithm. Various
strategies, such as the new encoding strategy, the adaptive neighborhood generation strategy and the local
adjustment strategy, are adopted successfully for high-speed searching the optimal conformation corresponds to
the lowest energy of the protein sequences. Experimental results show that some of the results obtained by the
improved SATS are better than those reported in previous literatures, and we can sure that the lowest energy
folding state for short Fibonacci sequences have been found.

Conclusions: Although the off-lattice models is not very realistic, they can reflect some important characteristics of
the realistic protein. It can be found that 3D off-lattice model is more like native folding structure of the realistic
protein than 2D off-lattice model. In addition, compared with some previous researches, the proposed hybrid
algorithm can more effectively and more quickly search the spatial folding structure of a protein chain.

Background
The understanding of molecular conformations is one of
the crucial issues in computational biology. The incor-
rect protein folding is associated with illnesses such as
Alzheimer’s disease, bovine spongiform encephalopathy
and Creutzfeldt-Jakob disease. The biological functions
of protein are determined by their dimensional folding
structures, and their spatial structures are absolutely
determined by their primary structures [1]. Traditional
experimental methods of determining protein folding
structure are expensive, such as X-ray crystallography

and NMR spectroscopy. Because of the complexity of
realistic protein, it is extremely difficult to make an ana-
lysis of the protein folding process.
Due to the polypeptide chain forms such large number

of different spatial structure, it is still difficult to search
for the global minimum energy conformations of pro-
teins from its sequence of amino acids [2]. Therefore, the
most important problem is how to establish a highly sim-
plified but effective model which can reflect the relation
between the free energy and tertiary structure of the pro-
tein. One of the simplified protein models is the hydro-
phobic-polar (HP) model which has been widely used to
study protein structure and understand protein folding
process. The HP-lattice model represents the amino acid
chains of a protein using two types of residue, non-polar
or hydrophobic (H) residue and polar (P) or hydrophilic
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residue are on the vertices of a simple cubic lattices[3].
The HP lattice-model abstracts the hydrophobic interac-
tion process in protein folding by reducing a protein to a
heteropolymer that represents a predetermined pattern
of hydrophobicity in the protein[4]. The non-ploar amino
acids are classified as hydrophobic and polar amino acids,
which is used to force the formation of a compact hydro-
phobic core as observed in the real protein [5]. However,
the HP lattice-model doesn’t reveal all secrets of the pro-
tein, despite its simplicity. The main reason lies in that
local interactions are neglected in the simplified models,
while local interactions might be important for the local
structure of the chains [6].
To reflect more realisticly the native attributes of pro-

teins, Stillinger studied a similar AB off-lattice protein
model in two dimensions[7]. In AB off-lattice model the 20
amino acids are also reduced to two classes, hydrophobic
(A) and hydrophilic (B). For AA, BB and AB pairs respec-
tively, there is an intramolecular mix of strong attraction,
weak attraction, and weak repulsion, roughly analogous to
the situation of the real proteins[8].The interactions con-
sidered in AB off-lattice model include both sequence
independent local interactions and the sequence dependent
Lennard-Jones term that favours the formation of a hydro-
phobic core[9]. Irback et al. extended a two dimension
(2D) to a three dimension (3D) in the AB off-lattice model,
which takes account of the torsional energy implicitly [6].
In recent years, many works were devoted to the opti-

mal conformations with lowest energies in the AB off-
lattice model[10-12]. Because searching the whole con-
formational space of a protein has been proved to be
NP-complete problem, it is necessary to introduce the
heuristic optimization algorithm, such as the energy
landscape paving minimizer (ELP)[9], the genetic tabu
search algorithm (GATS)[10], the conformational space
annealing (CSA)[13], the pruned-enriched-Rosenbluth
method (PERM) [14] and the local adjust genetic algo-
rithm (LAGAA) [15] etc. This paper describes a protein
structure prediction method that is based on the AB off-
lattice model in two dimension and three dimension,
which combines the tabu search algorithm and local
adjust simulation annealing. The new improved hybrid
algorithm (SATS) is applied to find the spacial conforma-
tions with Fibonacci sequences and real proteins.

Methods
AB off-lattice model in 2D
The major difference between AB off-lattice model [7] and
HP lattice model [3] is the folding angle of the model. The
AB off-lattice model deals with only two types of amino
acids, to be called hydrophobic A and hydrophilic B,
which can be used to represent 20 kinds of amino acids.
They are linked together by rigid unit-length bonds to
form linear unoriented polymers that reside in the form of

two dimensions. In 2D AB off-lattice model the angle of
the two bonds which connect three amino acid residues
can change freely, as Figure 1 illustrates [7], the configura-
tion of any n-mer is specified by the n − 2 angles of bend
θ2,..., θn−1 at each of the nonterminal residues. θi = 0 corre-
sponds to linearity of successive bonds.
The AB off-lattice model postulates that two kinds of

interactions including the intramolecular potential
energy for each molecule: backbone bend potentials V1

and nonbonded interactions V2. Residue species along
the backbone can be conveniently encoded by a set of
binary variables ξi. If ξi = 1, the ith residue is A; if ξi=-1,
it is B. Hence, the total energy function for any n-mer
chain is expressed as follows [7]:

� =
n−1∑
i=2

V1(θi) +
n−2∑
i=1

n∑
j=i+2

V2(rij, ξi, ξj) (1)

Where the distance rij between monomer i and j is
denoted as functions of the intervening angles[7]:

rij = {[
j−1∑
i=2

cos[
k∑

l=i+1

θ1]]2 + [
j−1∑
i=2

sin[
k∑

l=i+1

θ1]]2}1/2 (2)

The V1 is a simple trigonometric form:

V1 (θi) = 1/4(1 − cos θi) (3)

The V2 is non-bonded interactions with a species-
dependent coefficient:

V2(rij, ξi, ξj) = 4(r−12
ij − C(ξi, ξj)r

−6
ij ) (4)

where

C(ξi, ξj) =

⎧⎪⎨
⎪⎩
+1 AA

+1/2 BB

−1/2 AB

(5)

For any N -residue protein, the N − 2 angles of bend
should be found when the potential-energy of the 2D
AB off-lattice model obtains the minimum energy,
which is based on the thermodynamic hypothesis for-
mulated by Anfinsen: the natural structure of a protein
in its physiological environment is the one in which the
free energy of the whole system is lowest[1]. Thereby,
the protein folding problem can be defined:

min{�(θ2, ..., θn−1)} θiε (−π ,π) (6)

AB off-lattice model in 3D
The 3D AB off-lattice model also consists of hydropho-
bic (A) residues (si = +1) and hydrophilic (B) residues
(si = −1), and the energy function is given by [6]
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E = −k1
N−2∑
i=1

b̂i · b̂i+1 − k2
N−3∑
i=1

b̂i · b̂i+2 +
N−2∑
i=1

N∑
j=i+2

EIJ(rij; σi, σj) (7)

Where b̂i is defined as the bond vector between the
monomers i and i + 1 with unit length:{

b̂i · b̂i+1 = cos θi

b̂i · b̂i+2 = cos αi

(8)

As Figure 2 illustrates[6], the N -residue molecule can
be described by the N − 1 bond vectors b̂i or by N − 2
bond angles θi and N − 3 torsional angles ai, and these
two angles are the degrees of freedom of the 3D off-lat-
tice model.
The Eucledian distance rij between sites i and j is

associated with the N − 2 bond angles and N − 3 tor-
sional angles. The species-dependent global interactions
are given by the Lennard-Jones potential[6]:

ELJ(rij; σi, σj) = 4C(σi, σj)(1/r12ij − 1/r6ij) (9)

Where s1, . . ., sn is a binary string:

σi =
{

1 A
−1 B

(10)

If si = 1, the ith reside is A; if si = −1, the ith reside is B,
and the formation of hydrophobic core depends on the C
(si, sj). In addition, the strength of species-independent
local interactions is reflected by the parameters K1 and K2.

The parameter (K1, K2) were tested again and again by
using different values in [6], and finally Irback found that
the spacial structure is more stability when the parameter
(K1, K2) was set to (−1, 0.5).
As same as, the N − 2 bond angles θi and N − 3 tor-

sional angles could be found by computing the lowest
energy of residue sequences. So the protein folding pro-
blem of the 3D AB off-lattice model can be specified as:

min{E (θ2, ..., θn−1;α3, ...,αn−1)} θi,αiε (−π ,π) (11)

Improved strategies
Tabu search, created by Glover [16], is a meta-heuristic
search method. It can be used for complex mathematical

Figure 1 A schematic diagram of a generic 9-mer in 2D. The n-mer is specified by the n - 2 angles of bend θ2,..., θn−1.

Figure 2 A schematic diagram of protein folding in 3D. The N
-mer can be specified by the N − 1 bond vectors b̂i or by N − 2
bond angles θi and N − 3 torsional angles ai.
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optimization and combinatorial optimization problems.
Tabu search uses a local or neighborhood search proce-
dure to iteratively move from one potential solution to an
improved solution in the neighborhood until some stop-
ping criterion has been satisfied. Local search procedures
often become stuck in poor-scoring areas or areas where
scores plateau. In order to avoid these pitfalls and explore
regions of the search space that would be left unexplored
by other local search procedures, tabu search carefully
explores the neighborhood of each solution as the search
progresses. The solutions admitted to the new neighbor-
hood, are determined through the use of the memory
structures. Adaptive memory helps the search process to
avoid local optima and explores the solution space eco-
nomically and effectively without getting trapped into
cycles [17]. These memory structures form what is known
as the tabu list, a set of rules and banned solutions used to
filter which solutions will be admitted to the neighbor-
hood to be explored by the search. To enhance the effi-
ciency, the following strategies are used in the algorithm
for predicting the protein folding structure.
Encoding
It is very important for the algorithm how to encode the
individual, because the different encoding will affect the
effectiveness and performance of searching for the whole
spatial structure. The solutions of individual encoding
then are often binary coded. This encoding, however, is
not well suited for protein folding structure prediction
problem. Instead, for an N-residue long chain, the indivi-
dual can be expressed as hi = {θ i

2, θ
i
3, . . . , θ

i
n−1} and

hi = {θ i
2, θ

i
3, . . . , θ

i
n−1,α

i
3,α

i
4, . . . ,α

i
n−1} in the 2D AB off-

lattice model and the 3D AB off-lattice model respec-
tively. Encoding in this way is enabled by the fact that the
optimization is performed for the protein amino acids
chain.
Annealing mechanism
Simulated Annealing (SA) [18] is a probabilistic method
for the global optimization problem of searching an
approximation to the global optimum of a cost function.
Just as the cooling process of solid shows, the solid
stays in a disorder state at the beginning with a high
temperature, and coming to more and more order when
the temperature drops lower and lower till to the frozen
state [19]. The core mechanism of SA is the Metropolis
Criterion which is used to decide whether the new state
should be accepted. The acceptance probability function
depends on the energy E and temperature T. If the
change in energy is negative the new state is accepted. If
the change in energy is positive it is accepted by the cer-
tain probability given by the Boltzmann factor. That is
to say, the good and bad solution both can be accepted
with a probability to avoid becoming trapped in a local
optimum. Annealing algorithm simulates the process

described above, the algorithm starts with a give para-
meter called start temperature, and terminates when the
temperature drops to zero or the global optimized solu-
tion is founded. In this paper, the cooling schedule is a
simple linear equation which is the same as [20] (Ti+1 =
sTi, 0 ≤ s ≤ 1, When s inclines to 1, the temperature
declines only slowly).
Adaptive neighborhood generation
Neighborhood choosing is a key activity for tabu search-
ing. In order to improve the performance of the algo-
rithm, an optimized neighborhood choosing strategy as
the following described is adopted. In our strategy, the
neighborhood is related to the current annealing state
and initial temperature. With the change of the current
annealing state and the decreasing of the temperature,
the neighborhood is more and more small. To illustrate
the relation between annealing state and neighborhood,
a linearity combination can be defined:

δNeibor = scale ∗ CurState/InitState (12)

Where scale represents the original neighborhood of
the tabu search, CurState is current annealing state, and
InitState represents the initial annealing state. So the
neighborhood gradually narrows in the process of
annealing.
Local adjustment strategy
Figure 3 presents the schematic diagram of local adjust-
ment for the tetramer. If there is a local minimum solu-
tion found, how to get a further optimize solution
depend on it, is a worth considering problem. In many
cases, the global minimum solution is near to the local
minimum solution. Base on this conclusion, a local adjust
strategy is adopted to enhance the performance of the
algorithm. Give �lmin(θ), �gmin(θ) and �(θ), standing for a
gotten local minimum solution, the global minimum
solution to be founded and a current solution to generate
off-spring. So the vector �lmin(θ) - �(θ) shows the

Figure 3 A schematic diagram of local adjustment.
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direction for the off-spring of �(θ) to move towards. As
the off-spring moves, the possibility of finding global
minimum solution will increase. Aiming to make a sim-
ple description, we define:

ϕ (θ) = f
(
θx, θy, θz

)
(13)

The vector �lmin(θ) − �(θ) constrains the off-spring of
�(θ) in a cube area, if �gmin(θ) is lying in this area, the
possibility of finding it will be increasing.
The algorithm
The SATS algorithm is based on the AB off-lattice
Model. Just as the followed process illustrates, the algo-
rithm generates a hypotheses list by using the same
initial conformation mechanism in [21] (The idea is as
follows: Pick out all A-monomers and place them in
certain spots in the space, and all B-monomers wrap the
hydrophobic core.), and calculates every individual’s
energy of the list by the AB off-lattice model and stores
the individual with the best energy as a temp best solu-
tion. Then, start to descend the temperature, during this
period, a new list with individuals in a small scale
around the individuals of the hypotheses list is produced
as neighborhood list. After calculate out the individual
energy, the neighborhood list is rear-ranged by the
energy of the individual. Select several top individuals of
the neighbor-hood list as candidates and use deprecated
principle to judge whether to add it to the tabu list or
not. As the tabu list refreshed, the local adjust principle
is adopted to optimize the elements of the list aimed to
find the possible best solutions. If the current tempera-
ture is lower than the given stop condition, terminate
the algorithm and output the founded best solution.
The steps of SATS algorithm are as following.

SATS Begin
Parameter:

neighbourhood_size
candidate_size
initial_temperature
end_temperature
descend_rate

Process:
Step 1: Create hypotheses using the initial
conformation mechanism;
Step 2: Generate neighborhood solutions;
Step 3: Calculate the energy value by the off-
lattice Model;
Step 4: Select candidate solutions from
neighborhood;
Step 5: Use deprecated principle to accept the
solution and add it to the Tabu List;
Step 6: Apply the local adjustment strategy;

Step 7: Descend the temperature, if the tem-
perature is greater than the end temperture
then go to Step 2;
Step 8: Output the Result.

SATS End.

Results and discussion
The SATS algorithm has been implemented with Python
in Windows 7. There are two parts of experiment for
searching the optimum energy conformation in the AB
off-lattice model.

Results for Fibonacci sequences
In the experiments of protein folding structure predic-
tion, the Fibonacci sequences are usually selected as the
experiment data to test the performance of the optimi-
zation algorithm. The Fibonacci sequences can be
defined:

s(n) =

⎧⎪⎨
⎪⎩
A n = 0

B n = 1

s(n − 2) + s(n − 1) n > 1

(14)

For comparison, the first part adopts the same short
Fibonacci sequences with 3 <= N <= 5 in Ref. [7]. Table 1
lists the lowest energy values of thirty-six short Fibonacci
sequences calculated by our SATS, and we believe that
these spacial conformation are the ground states, which
are entirely identical to those of Stillinger [7]. We also use
two same test sequences in [8] to obtain their minimal
energies and secondary structures, as Figure 4 illustrates.
It is seen from Figure 4 that “AABABB” belongs to a-helix
and “AAABAA” belongs to b-sheet.
Then we test our algorithm on four Finbonacci

sequences with 13 ≤ n ≤ 55. Firstly, let us discuss the
situation of the 2D AB off-lattice model. The methods
used to search lowest energy states include neural net-
works [7], the pruned-enriched-Rosenbluth method [14],
the particle swarm optimization (EEPSO) [12]. Table 2
lists the lowest energies obtained by our SATS along
with those of above three methods for comparison. Of
course, with the increase of the sequence length, the
search time will longer. It is obvious that our lowest
energy values are agree with those of EPSO for n = 13
and n = 21. For other cases, our energy values are lower
than the energy values obtained by other three methods,
especially for the sequence with n = 55, the result of
SATS is obviously improved.
In order to further analyze the effect of the SATS

algorithm, we also give the lowest energy conformations
of four Finbonacci sequences in Figure 5. The hydro-
phobic (A) is represented by the red ball, and the hydro-
philic (B) is represented by the while ball. As is known
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to all, a hydrophobic cores always are surrounded by
hydrophilic residues for a realistic protein chain. It is
observed from four conformations that n = 13 forms the
single hydrophobic core, while other three conforma-
tions only form the particle clusters. This shows that
the 2D AB off-lattice model can show some important
attributes of the real protein to certain extent, and it
still should be improved.
In the case of 3D AB off-lattice model, it also shows that

the results obtained with SATS are better than the results

of the previous algorithms. The methods used to search
lowest energy states in 3D off-lattice model include the
annealing contour Monte Carlo (ACMC) algorithm [22],
the energy landscape paving minimizer ELP [9], the confor-
mational space annealing (CSA) algorithm [13] and the
local adjust genetic algorithm studied by us in [23]. Table 3
lists the lowest energies obtained by different methods. For
n = 13, the energy value of SATS is agree with that of
ACMC, but is lower than energy values obtained by other
three method. For n = 21, our energy value is agree with
those of ELP and LAGA, but is slightly lower than that of
CSA and much lower than that of ACMC. For n = 34 and
n = 55, our results are the lowest energy in all results
obtained by different methods, which shows that SATS has
better performance for long sequence. Similar to 2D pre-
diction, Figure 6 depicts the 3D lowest energy conforma-
tions with the same way in [21] (Where the hydrophobic
(A) is denoted by the red ball, the hydrophilic (B) is
denoted by the grey ball). Each of four sequences can fold
into a single hydrophobic core flanked by the hydrophilic
residues, compared with 2D off-lattice model, the 3D AB
off-lattice model is more approach to realistic protein fold-
ing structure.
The curves in the Figure 7 are about the minimum

energies of 2-dimensional model and 3-dimensional
model obtained by different algorithm. From Figure 7,
we can find that our methods show much better perfor-
mance with increasing sequence length.

Results for real protein sequences
The second part deals with some real protein sequences
from the Protein Data Bank (PDB). The K-D method
[24] is adopted to distinguish between hydrophobic resi-
dues and hydro-philic residues. In short, I, V, L, P, C,
M, A and G are belong to hydrophobic residues (A),

Table 1 The minimum energies obtained by SATS for the
short Fibonacci sequences.

SEQUENCE ENERGY SEQUENCE ENERGY

AAA -0.65821 AAAAA -2.84828

AAB 0.03223 AAAAB -1.58944

ABA -0.65821 AAABA -2.44493

ABB 0.03223 AAABB -0.54688

BAB -0.03027 AABAA -2.53170

BBB -0.03027 AABAB -1.34774

AABBA -0.92662

AAAA -1.67633 AABBB 0.04017

AAAB -0.58527 ABAAB -1.37647

AABA -1.45098 ABABA -2.22020

AABB 0.06720 ABABB -0.61680

ABAB 0.64938 ABBAB -0.00565

ABBA -0.03617 ABBBA -0.39804

ABBB 0.00470 ABBBB -0.06596

BAAB 0.06172 BAAAB -0.52108

BABB -0.00078 BAABB 0.09621

BBBB 0.13974 BABAB -0.64803

BABBB -0.18266

BBABB -0.24020

BBBBB -0.45266

Figure 4 The schematic diagram of helix and sheet. (a)The lowest energy of AABABB is -1.36198.(b) The lowest energy of AAABAA is
-3.69750.).
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Table 2 The minimum energies obtained by different algorithm for Fibonacci sequences with 13 ≤ N ≤ 55 in 2D.

N SEQUENCE Emin Eperm EEPSO ESAT S

13 ABBABBABABBAB -3.224 -3.217 -3.294 -3.294

21 BABABBABABBAB -5.288 -5.750 -6.198 -6.198

BABABBAB

34 ABBABBABABBAB -8.975 -9.220 -9.834 -10.707

BABABBABABBABBABABBAB

55 BABABBABABBABBABABBABAB -14.409 -14.905 -16.447 -18.467

BABBABABBABBABABBABABBABBABABBAB

Figure 5 The 2D lowest energy conformations of the four Fibonacci sequences obtained by SATS algorithm. (a) n = 13; (b) n = 21; (c) n
= 34; (d) n = 55. (The red balls represent hydrophobic A monomers, white balls represent hydrophilic B monomers.
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while D, E, F, H, K, N, Q, R, S, T, W and Y are belong to
hydrophilic residues (B). Table 4 lists the same four
short real protein studied by Ref.[12]. Table 5 shows the
minimum energy obtained by four different algorithms.
The results of SATS are lower than those of other three
algorithms, especially for 1EDN. This shows that SATS
is effective to predict the folding structure of the real pro-
tein. Figure 8 shows the lowest energy configurations of
four real protein sequence obtained by the SATS method,
corresponding to the lowest energy values in Table 5. It
can be seen from the Figure 8, the configurations of the

1EDP and 1BXL form the hydrophobic core respectively,
the other two protein sequences only formed several par-
ticle clusters.
Table 6 lists the same two long real proteins of 1AGT

and 1AHO studied by Ref.[11]. For 1AHO, the result of
SATS is much better than those of PSO [11] and SA [25].
For 1AGT, the result is better than the result of SA while
is slightly worse than the result of PSO. Figure 9 shows
the information about sequence of two real proteins from
PDB, and depicts the lowest energy conformations
obtained by SATS. In these two conformations, the

Table 3 The minimum energies obtained by different algorithm for Fibonacci sequences with 13 ≤ N ≤ 55 in 3D.

N SEQUENCE EELP EACMC ECSA ELAGA ESATS

13 ABBABBABABBAB -26.498 -26.507 -26.471 -26.498 -26.507

21 BABABBABABBAB -52.917 -51.757 -52.787 -52.917 -52.917

BABABBAB

34 ABBABBABABBABBABABBAB -92.746 -94.043 -97.732 -98.765 -99.876

ABBABBABABBAB

55 BABABBABABBABBABABBAB -172.696 -154.505 -173.980 -176.542 -178.986

ABBABBABABBABBABABBAB

ABBABBABABBAB

Figure 6 The 3D lowest energy conformations for the four Fibonacci sequences obtained by SATS. (a) n = 13; (b) n = 21; (c) n = 34; (d) n
= 55. (The red balls represent hydrophobic A monomers, white balls represent hydrophilic B monomers.

Figure 7 The energy curves obtained by different algorithms. (a) The energy curves in the 2D model;(b) The energy curves in the 3D
model.
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hydrophobic monomers also form several clusters of
hydrophobic residues. This experiment also demonstrates
the AB off-lattice model can reflect some characteristics
of the real protein.

Conclusions
This paper has shown that protein folding conformation
based on only anfinsen’s thermodynamic hypothesis can
be feasible by SATS method which combines simulated
annealing algorithm and tabu search algorithm. In order
to verify the efficiency of the algorithm, 2D off-lattice
model and 3D off-lattice model are both adopted by
using Fibonacci sequences and real protein sequences
respectively. In addition, local adjust strategy is used to
improved the accuracy and speed of searching the pro-
tein native state. It is obvious that some of our results

Table 4 The four short sequences of real protein.

PDB ID SEQUENCE

1BXP MRYYESSLKSYPD

1BXL GQVGRQLAIIGDDINR

1EDP CSCSSLMDKECVYFCHL

1EDN CSCSSLMDKECVYFCHLDIIW

Table 5 The lowest optimum energies of the short real
protein sequences.

PDB ID EGAA ELAGAA EEPSO ESATS

1BXP -2.24484 -2.24484 -4.392713 -4.42913

1BXL -8.74685 -8.81260 -8.847081 -8.907082

1EDP -5.60713 -6.64530 -10.06692 -11.06572

1EDN -7.09609 -7.81925 -11.13420 -13.15426

Figure 8 The lowest energy conformation for the four real protein sequences obtained by SATS. (a)1BXP; (b) 1BXL; (c) 1EDP; (d) 1EDN.
(The red balls represent hydrophobic A monomers, the white balls represent hydrophilic B monomers.
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for lowest energy are better than those of other meth-
ods. Therefore, SATS is more effective in solving the
protein folding structure problem. In the future, the one
of most important work is how to make the algorithm
more effective and accuracy for real protein sequence
prediction in 3D space. Besides, the AB off-lattice model
only considers two kinds of residues and two kinds of
interaction energy, so it cannot reflect more important
properties of the real protein. Therefore, we should
study other models to explore the more interaction
energy of protein amino acids.
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