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Abstract

Differential coexpression analysis usually requires the definition of ‘distance’ or ‘similarity’ between measured
datasets. Until now, the most common choice is Pearson correlation coefficient. However, Pearson correlation
coefficient is sensitive to outliers. Biweight midcorrelation is considered to be a good alternative to Pearson
correlation since it is more robust to outliers. In this paper, we introduce to use Biweight Midcorrelation to
measure ‘similarity’ between gene expression profiles, and provide a new approach for gene differential
coexpression analysis. Firstly, we calculate the biweight midcorrelation coefficients between all gene pairs. Then,
we filter out non-informative correlation pairs using the ‘half-thresholding’ strategy and calculate the differential
coexpression value of gene, The experimental results on simulated data show that the new approach performed
better than three previously published differential coexpression analysis (DCEA) methods. Moreover, we use the
maximum clique analysis to gene subset included genes identified by our approach and previously reported
T2D-related genes, many additional discoveries can be found through our method.

Background
DNA Microarray has been widely used as measurement
tools in gene expression data analysis [1-4]. Gene expres-
sion profiling data from DNA microarray can detect the
expression levels of thousands of genes simultaneously.
Which provide an effective way for mining disease-
related genes nalysis of gene expression data can be
divided into three levels: firstly, analysis the expression
level of individual genes, and to determine its function
based on gene expression level changes under different
experimental conditions. For example, the tumor type
specific genes are identified according to the significance
of difference in gene expression using the statistical
hypothesis testing analysis method. Secondly, study gene
interaction and co-regulation through the combination of
genes and grouping. Finally, attempt to deduce the
potential gene regulatory networks mechanism and
explain the observed gene expression data.

Among the microarray data analysis methods, gene dif-
ferential expression analysis is one of the most widely
used types of analysis for disease research. Gene differen-
tial expression analysis method selects differentially
expressed genes according to expression change value of
a single gene. Gene expression value change between
normal samples and disease samples can be used to pre-
sent the possibility of the relation between gene and dis-
ease. However, the traditional pathogenicity genes
selection methods based on gene expression data treats
each gene individually and the interaction between them
is not considered. Actually, genes and their protein pro-
ducts do not perform their functions in isolation [5,6],
but in cooperation. Functional changes such as alteration
in tumor cell growth process, energy metabolism and
immune activity are accompanied with gene coexpression
changes. Differentially expressed genes selection methods
often focus only on the size of the single gene and disease
relation, ignoring a plurality of pathogenic genes of the
complex disease as a gene module with disease related, as
well as within the module gene [7].
Differential coexpression analysis, as a more compre-

hensive technique to the differential expression analysis,
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was raised to research gene regulatory networks and
biological pathways of phenotypic changes through mea-
sure gene correlation changes between disease and
normal conditions. Differential coexpression genes are
defined as genes whose correlated expression pattern
differs between classes [8]. The gene coexpression
changes between different conditions indicate gene reg-
ulatory pathways and networks associated with disease.
In gene differential coexpression analysis, a pair of gene
expression datasets under disease and normal conditions
are transformed to a pair of coexpression matrix in
which links represent transcriptionally correlated gene
pairs, and then the differential coexpression score is cal-
culated for each gene [9].
Until now, methods for differential coexpression analysis

of gene expression data have been extensively researched,
and multiple algorithms have been developed and tested
[10-13]. Carter [10] mined the molecular characteristics of
the cell state through gene coexpression topology method.
Stuart et al. [14] and Bergmann et al. [15] separately con-
structed the gene coexpression network that connected
genes whose expression profiles were similar across differ-
ent organisms. They showed that functionally related
genes are frequently coexpressed across organisms consti-
tuting conserved transcription modules [5]. Graeber [16]
and Choi [5] both studied cancer from the perspective of
differential coexpression. They found some genes were not
be detected from the perspective of gene differential
expression analysis. Butte [17] found gene coexpression
modules based on a new gene expression similarity mea-
sure method, i.e., mutual information. Varadan [18]
searched for disease-related gene differential coexpression
modules from all gene subsets by entropy minimization
and Boolean reduction methods (EMBP). Bansal [19],
Della Gtta [20] and Lorenz [21] used linear regression
method to excavate relation of gene transcription and
regulation separately. In those gene differential coexpres-
sion analysis methods, the most common choice of simi-
larity measurement is Pearson correlation coefficients
[5,11,12,22]. However, Pearson correlation is sensitive to
outliers. Biweight midcorrelation (bicor) is considered to
be a good alternative to Pearson correlation since it is
more robust to outliers [23].
Graph theoretical concepts are useful for description

and analysis of interaction and relationships in biological
systems. The maximum clique problem (MCP) is a classi-
cal combinatorial optimization problem in graph theory.
In 1957, Harary and Ross first proposed the deterministic
algorithm to solve the maximum clique problem [24].
Since then many researchers have presented a variety of
algorithms to solve this problem. The maximum clique
problem is widely used in different areas, such as signal
transmission, computer vision, and biological research
etc. In this paper, we will use the concept of maximum

clique to further investigate the identified gene set to
gain insight into coexpression relationship between
genes. For the sake of convenience, we use the terms
graph and network interchangeably, the former stressing
the mathematical concept, the latter the application. A
graph consists of a set of nodes and a set of edges that
connect the nodes. For a graph G = (V, E), the graph G is
specified by the set of nodes V which also means genes in
gene coexpression network, and the set of edges E which
also represents gene coexpression relationships in gene
network. A maximum clique means a clique which is a
subset of the nodes in V that every pair of nodes in the
subset is joined by an edge and is not a proper subset of
any other clique.
However, the requirement of complete connectivity for

gene maximum clique is restrictive. For real biological
data network, its data size is large and has very complex
relationships between the network nodes. When dealing
with imperfect systems or with experimental data, we may
need to consider more general notions of cohesive sub-
groups [25]. Our description here follows that of [26], they
consider different notions of cohesive subgroups that
include n-clique, k-plexes. In the analysis of gene expres-
sion data, genes closely linked functional module is not
the strict sense of maximum clique due to the lack of cer-
tain section. We use density to measure approximation
degree of functional module with maximum clique, mak-
ing it more biological significance. In our study, we used
the maximum clique concept to mine disease-related dif-
ferential coexpression gene cluster.
In this paper, we propose a new approach for gene

differential coexpression analysis based on Biweight
Midcorrelation and half-threshoding strategy. Biweight
midcorrelation is used to measure coefficients between
the all gene pairs in normal condition and disease con-
dition separately. The two gene correlation datasets are
encoded into a pair correlations matrix over all gene
pairs. We then filter out non-informative correlation
pairs using the half-thresholding strategy and calculate
the differential coexpression value of gene. We apply the
new approach to a simulate dataset and a pair of type 2
diabetes(T2D) in rats datasets. Moreover, the maximum
clique analysis are used to analyse the gene subset iden-
tified by our new approach and previously reported
T2D-related genes in the dataset. In the light of this
observation, we are confident that our method has a
high potential for generating relevant hypotheses in bio-
logical and clinical research.

Methods
Biweight midcorrelation
Differential coexpression analysis usually requires the
definition of ‘distance’ or ‘similarity’ between measured
datasets, and the most common choice is Pearson
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correlation coefficient. However, Pearson correlation
coefficient is sensitive to outliers. Biweight midcorrela-
tion is considered to be a good alternative to Pearson
correlation since it is more robust to outliers [23].
In Figure 1, for each sample Z, we measure the

expression levels of p genes, let Xij denotes the expres-
sion level of the jth gene in the Zi sample, where j = 1,...
p. The xth column vector of matrix represents the
expression profile of the gene X. In order to define the
biweight midcorrelation(bicor) [23] of two numeric vec-
tors x = (x1, ..., xm) and y = (y1, ..., ym), we first defines
vi, vi with i = 1,...,m:

ui =
xi − med(x)

9mad(x)
(1)

vi =
yi − med(y)

9mad(y)
(2)

Where med(x) is the median of x, mad(x) is the med-
ian absolute deviation of x, mad(x) is the median of new
numeric vector which each number is absolute differ-
ence between original vector value and med(x), this lead
us to the definition of mad(x) and weight wi for xi,
which are,

mad(x) = med(
∣∣xi − med(X)

∣∣) (3)

w(x)
i = (1 − u2

i )2I(1 − |ui|) (4)

Where the indicator I(1 − |ui|) takes 1 if 1 − |ui| > 0

and 0 otherwise. Thus, the weight w(x)
i

is close to 1 if xi

is close tomed(x), approaches 0 when xi differs from by
nearly 9mad(x), and is 0 if xi differs from med(x) by

more than 9mad(x). An analogous weight w(x)
i

can be

defined for yi. Given the weights, we can define biweight
midcorrelation of x and y as:

bicor(x, y) =

∑m
i=1 (xi − med(x))w(x)

i (yi − med(y))w(y)
i√∑m

j=1 [(xj − med(x))w(x)
j ]

2
√∑m

k=1 [(yk − med(y))w(y)
k ]

2 (5)

It should be noted that the equations of biweight mid-
correlation does not invole an explicit identification of
outliers, and all elements whose weight wi = 0 can be
considered outliers. The user can also set up the maxi-
mum allowed proportion of outliers using the argument
“maxPOutliers”, the “max POutliers” is interpreted as
the maximum proportion of low and high outliers sepa-
rately. The value of bicor ranges from -1 to 1. Where -1
represents the maximum negative correlation and 1
represents the maximum positive correlation. Zero
represents irrelevant.

’Half-thresholding’ strategy in constructing gene
coexpression networks
Gene expression data has the characteristic of small samples
and large number of genes, and contains noise and unre-
lated genes. Therefore need to use the appropriate strategy
to extract disease-related genes. There are currently two
accepted strategies, namely hard-thresholding and soft-
thresholding, for inferring gene coexpression network from
original gene coexpression values. Those strategies can
remove noise and irrelevant genes effectively. However,
hard-thresholding ignores continuous nature of the coex-
pression information and encodes gene connections in a
binary fashion, dichotomizing the continuous correlation
values to be coexpression and non-coexpression. It is sensi-
tive to the choice of the threshold and may be result in the
loss of co-expression information.
The soft-thresholding keeps all possible coexpression

relationships and uses the power b (i.e. soft-threshold) to
emphasize the original high coexpression values and
reduce the original low coexpression values simulta-
neously. Although soft-threshold overcomes the disadvan-
tages of the hard-threshold, it keeps noisy variations and
unrelated gene information in its calculation. These inter-
ference information lower the accuracy of gene differential
coexpression analysis, especially when soft-threshold strat-
egy uses a low value as the powerb. During our gene dif-
ferential coexpression analysis, pair of gene expression
datasets under disease and normal conditions are trans-
formed to a pair of coexpression matrix. We calculate
bicor coefficients over all gene pairs in each dataset. We
use mij to denote bicor coefficient between genei and
gene j under normal condition, and nij to denote bicor
coefficient under disease condition. The ‘half-thresholding’
strategy [17] keep coexpression value in both coexpression
matrix if at least one of the two coexpression values
exceeds the threshold. For example, we keep m12 and n12

if they both exceed threshold value 0.4. In this way, weFigure 1 Example of a gene expression matrix.
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ignore ‘non-informative relationship’ whose correlation
values in both networks are below the threshold and filer
the gene pair, but thoroughly examine the possibly mean-
ingful coexpression changes of values remaining in the
two coexpression matrix.

The ‘biweight midcorrelation and half-thresholding’
method (BMHT)
In our method, for each dataset, we calculate the
biweight midcorrelation coefficients between the expres-
sion profiles of all gene pairs in normal condition and
disease condition separately. The biweight midcorrela-
tion coefficients matrix represents the original correla-
tion structure in each condition. After calculated
biweight midcorrelation coefficients of all gene pairs, the
two datasets are encoded into a pair correlations matrix
over all gene pairs. We then filter out non-informative
correlation pairs using the half-thresholding strategy.
This results in a new coexpression networks of gene set.
In gene expression data, for genei, the biweight mid-

correlation coefficients between it and its N neighbors
in the filtered set can be calculated from two vectors,
i.e., X=(xi1,xi2,...,xin) and Y=(yi1,yi2,...,yin) for the two con-
ditions. We calculate the differential coexpression value
of gene iusing the following equation.

dci(BMHT) =

√
(xi1 − yi1)2 + (xi2 − yi2)2 + ... + (xin − yin)2

n
(6)

This calculates the average coexpression change
between a gene and its informative coexpression genes.
Then we can use the dc values to rank genes. Naturally,
the question arises, i.e., whether our findings are arti-
facts of the high dimensionality and low sample of the
data? To assess this question, we apply permutation test
to evaluate the statistical significance of gene differential
coexpression value. Under the null hypothesis, we
assume that all genes are mutually independent in both
conditions. During the permutation test, we firstly ran-
domly permute the disease and normal conditions of
the samples M times, then calculate new Biweight Mid-
correlation coefficents using ‘half-thresholding’ strategy
based on the new values, finally calculate the dc statis-
tics. For gene set c, the permutation p-value is:{∑M

m=1
I
[
dc

(
p

Tm
1

c , p
Tm

2
c

)
≥ dc(pT1

c , pT2
c

]}/
M (7)

Here I(*) is an indicator function. If the absolute value
of the dc of the permuted experimental matrices is larger
than that of the original dc, I = 1. Otherwise, I = 0. The
Tm

1 and Tm
2 denote samples derived from the m-th per-

muted dataset. An estimated FDR is obtained by convert-
ing the p-values to q-values using Benjamini-Hochberg
method [29]. The p-value for each gene can then be

calculated. In our study, we considered M = 1000. As this
method is based on the Biweight Midcorrelation and
Half-thresholding, it is denoted as BMHT in this paper.

The maximum clique analysis
More and more researchers realized that gene module is
high related with disease, but not individual gene. In
gene expression network, gene is only related with other
genes. Based on the characteristic of no self-loop, the
graph of gene coexpression network is a simple undir-
ected graph, and the diagonal elements of gene coex-
pression matrix are all 0. The gene coexpression matrix
is a square and symmetric matrix whose rows and col-
umns correspond to the genes and whose element Aij

denotes the coexpression relationship between genes.
The graph of maximum clique network is a complete
graph that every pair of nodes is joined by edge, and the
adjacency matrix elements of the complete graph are all
1 except the diagonal elements. For a simple undirected
graph G containing N nodes, its adjacency matrix
A = (aij)N×N contains only 1 and 0. It is a square and
symmetric matrix obviously. aij = 1 represents that gene
i and j is coexpressed, aij = 0 means that gene i and j is
not connected.
We set two thresholds T1 for adjacency matrix A1 in

normal condition and T2 for adjacency matric A2 in dis-
ease condition. A1(i,j) set to 1 if the value of A1 (i,j)
greater than or equal to T1, otherwise, A1(i,j) set to 0.
A2(i,j) set to 1 if value of A2(i,j) less than or equal to T2,
otherwise, A2(i,j) set to 0.We integrated A1 and A2 into
a matrix A after we had intersection the corresponding
elements of A1 and A2. A (i,j) = 1 means coexpression
value of gene i and gene j in A1 greater than or equal to
T1, and coexpression value of gene i and j in A2 less
than or equal to T2. Equation 6 summarized the pro-
cess. We excavated cliques which have biological signifi-
cance from A adjacency matrix to further investigate
gene regulatory networks.

ifA1(i, j) ≥ T1, thenA1(i, j) = 1,

elseA1(i, j) = 0

ifA2(i, j) ≤ T2, thenA2(i, j) = 1,

elseA2(i, j) = 0

A(i, j) = A1(i, j)&A2(i, j)

(8)

Results and discussion
Experiment result on simulate datasets
In this experiment, we analyzed a pair of simulated
datasets used in a published study [27], which were gen-
erated based on two yeast signaling networks using
SynTReN [28]. The simulate datasets consists of
20 genes, 50 samples in normal and disease conditions.
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MBP1_SWI6, PHO2, CLB5, TRP4, CLB6, FLO1, FLO10
were identified as differential coexpression genes. We
evaluated BMHT method in terms of its capability to
discover the differential coexpression genes from the
simulated datasets, and compared it with methods, i.e.,
‘Log Ratio of Connection’(LRC), ‘Average Specific Con-
nection’(ASC), and ‘Weighted Gene Coexpression Net-
work Analysis’(WGCNA). We adopted the signed
version of WGCNA and set the parameter b = 12 [22].
The results are listed in Table 1. From Table 1 it can be
seen that, the BMHT method can detected all seven differ-
ential coexpression genes and ranked them at top, while
the other three methods cannot detect them accurate.
Bold shown genes refers to the seven differential coexpres-
sion genes in the simulate datasets. We arranged the gene
in accordance with the BMHT value.

Analyzing a Type 2 Diabetes (T2D) in rats
In this section, we apply the BMHT method to a pair of
type 2 diabetes(T2D) in rats datasets (dataset pair T),
which has been published in study [22]. Dataset pair T
from dataset GSE3068 of Gene Expression Omnibus
(GEO) database, which had been preprocessed by Hui
Yu et.al[22]. Dataset pair T includes 4765 genes in 10
disease samples and 10 normal samples. After applied
BMHT method to dataset pair T, we obtained 334 dif-
ferential coexpression genes of 4765 genes, p-values cut-

off 0.05, FDR<0.6% (see Additional file 1). Based on the
good performance of p-values of most genes, we
selected 7% as the differential coexpression genes. The
false discovery rate (FDR) is estimated from the p-value
of biweight midcorrelation using Benjamini-Hochberg
method [29]. In the differential coexpression genes, Rap-
gef4 [30] and Notch2 [31] are reported T2D-related
genes. We listed all 20 differential coexpression genes
with T2D relevance in table 2. Some reported relevance
in table 2 are obtained from Kyoto Encyclopedia of
Genes and Genomes (KEGG) database, it is a bioinfor-
matics resource for linking genomes to life and the
environment. Although the rest genes are not be pre-
viously reported to be related with T2D, they should
also deserve more attention. It is helpful for researchers
to excavate gene modules and disease genes, establish a
disease-related gene clusters, and further explore the
pathogenesis of the disease and the biological function
of the related-gene.

The maximum clique analysis of real gene expression
data
In applications, the node and edge sets of the graphs we
need to consider are that we interested. In section 3.2,
we selected 334 differential coexpression genes (DCGs)
based on BMHT method. The type 2 diabetes data con-
tains some previously reported TD2-related genes.
DCGs and T2D-related genes in GSE3068 dataset form
a total of 595 gene subset K. Gene subset K1 represents
the gene expression value in normal condition and gene
subset K2 represents the gene expression value in dis-
ease condition. We got two 595 × 595 symmetric bicor
coefficient matrix K1 and K2 after we had computed
bicor values of every pair gene of gene subset with half-
thresholding strategy. K1(i,j) means bicor value of i gene
and j gene in normal sample and K2(i,j) represents bicor
value of i gene and j gene in disease sample. In this
study, we searched gene modules which have high bicor
value in normal samples and low bicor value in disease
samples for exploring the impact of disease on the gene
coexpression. We set two thresholds T1 = 0.76 for K1

and T2 = 0.2 for K2. K1(i,j) set to 1 if absolute value of
K1(i,j) greater than or equal to T1, otherwise, K1(i,j) set
to 0. K2(i,j) set to 1 if absolute value of K2 (i,j) less than
or equal to T2, otherwise, K2(i,j) set to 0. We integrated
K1 and K2 into a matrix K. The K(i,j) set to 1if the
values of K1(i,j) and K2(i,j) both equal to 1, otherwise, K
(i,j) is 0. K is a square and symmetric adjacency matrix
with only two different class elements, i.e., 0 and 1.
We analyzed the matrix as the adjacency matrix of

graph. Each gene corresponds to one node of graph. K
(i,j) = 1 also means node i and j node are connected by
edge in correspond graph. We excavate cliques which
have biological significance from the K adjacency matrix.

Table 1 The twenty yeast genes involved in simulated
dataset pair and the ranking of them by DCEA methods,
signed WGCNA, ASC, and LRC separately.

Gene BMHT Signed-WGCNA ASC LRC

MBP1_SWI6 1 7 1 8

PHO2 2 3 2 5

CLB5 3 14 3 18

TRP4 4 4 7 9

CLB6 5 16 4 19

FLO1 6 1 10 7

FLO10 7 2 6 3

CDC11 8 9 12 17

SWI4 9 5 5 16

ACE2 10 18 15 1

SWI4_SWI6 11 6 8 10

CDC10 12 10 13 12

ACT1 13 17 14 6

HTB1 14 8 11 15

LEU2 15 11 9 13

CTS1 16 12 17 14

SPT16 17 15 18 11

HO 18 13 16 2

CAF4 19 19 19 4

SNF6 20 20 20 20

Bold shown genes refers to the seven differential coexpression genes in the
simulate datasets. We arranged the gene in accordance with the BMHT value.
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and calculate the sum of each row or column of the K
matrix. Which represents the number of edges that a
gene connected to other genes. In order to improve the
efficiency of search, we delete those isolated points
whose numbers are 0 and set the minimum number of
clique genes as 4. We mined 7 cliques all include 4
genes. The 7 cliques are combined into a gene module
which includes 8 genes and 19 edges. The complete
graph edge number of the gene function module is c2

8,
and the density is 0.68. We listed the genes of each

clique in table 3. The result is shown in Figure 2. Bold
shown genes refers to the four DCG selected in the
GSE3068 dataset based on BMHT method. The other
genes refer to DCG. Figure 2 is the gene module. Rpl9,
Polr2f, Pxmp3 and Ctsd are DCGs. Smarca4, Sirt2 and
Prkaca are T2D-related genes. Tsc2 is DCG and T2D-
related gene.
However, it is not easy to determine the optimal

threshold for each specific study. Too large T1 or too
small T2 will lead to small number edges and low den-
sity of the adjacency matrix K, which corresponding to a
graph, and fail to find clique which meet the require-
ments. On the contrary, too small T1 or too large T2

will lead to overlapping cliques. These two cases have
no sense for the analysis of biological process. So further
investigation on optimizing thresholds procedure is
necessary. In fact, the threshold can be determined
based on the proportion of isolated points or density of
the graph. The density is defined as the ratio of number
of edges to the maximum number of edges. The maxi-
mum number of edges is the edge number of complete
graph.

Conclusion
In this paper, we proposed a new approach for differential
coexpression analysis, which combine Biweight Midcorre-
lation and half-thresholding strategy and also applied max-
imum clique analysis to the specific gene set to further
investigate gene regulatory networks. Biweight Midcorrela-
tion is more robust for outliers and half-thresholding is an
effective preprocess step of the proposed method.

Table 2 Differential coexpression genes with existing
evidence of T2D-relevance.

Gene BMHT value Reported Relevance

Ucp2 0.7423 T2D-related

Rapgef4 0.7375 T2D-related

Nr5a1 0.7256 T2D-related

Inpp5d 0.7222 KEGG rno04910;T2D-related

Pparg 0.7068 T2D-related;T2D-associated

Igf1r 0.6885 KEGG rno04940

Tsc2 0.6706 KEGG rno04930

Jak3 0.6670 KEGG rno04940

Serpine1 0.6628 T2D-relaed

Lipe 0.6589 KEGGrno04910;T2D-related

C3 0.6581 T2D-related

Il6 0.6566 T2D-related

Foxo1 0.6550 KEGG rno04930

Flot2 0.6442 T2D-related

Prkab1 0.6432 KEGGrno04910;T2D-related

Pik3r1 0.6417 T2D-related

Gsk3a 0.6413 KEGG rno04930

Irf8 0.6391 KEGG rno04930

Tagln 0.6358 T2D-related

Slc2a1 0.6327 KEGG rno04930

Trf1 0.6324 KEGG rno04940

Cel 0.6322 T2D-related

Cckar 0.6254 T2D-related

Irs2 0.6220 KEGG rno04930

Notch2 0.6211 T2Dassociated;T2D-related

rno04940: type I diabetes mellitus; rno04930: type II diabetes mellitus;
rno04910: insulin signaling pathway.

Table 3 Genes of each clique.

Clique sequence number Each Gene symbols of clique

1 Tsc2 Smarca4 Sirt2 Prkaca

2 Tsc2 Smarca4 Sirt2 Ctsd

3 Sirt2 Tsc2 Ctsd Prkaca

4 Polr2f Rpl9 Prkaca Tsc2

5 Pxmp3 Rpl9 Prkaca Tsc2

6 Pxmp3 Tsc2 Prkaca Polr2f

7 Polr2f Prkaca Smarca4 Tsc2

Bold shown genes refer to the four DCG selected genes in the GSE3068
dataset based on BMHT method. The other genes are DCG.

Figure 2 Black spots refer to DCGs from GSE3068 dataset
based on BMHT method. Gray spots refer to T2D-related genes.
White spot refer both DCG and T2D-related gene.
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Experimental results on simulate datasets show that our
method had better performance than three previsouly pro-
posed methods. We also applied the proposed BMHT
method to real dataset designed for T2D study, and 334
differential coexpression genes were selected, which may
be a useful resource for T2D study and explore the biolo-
gical function of the related-gene. In the future, we will
focus on how to introduce new measure to scale the simi-
larity of gene pairs.

Additional material

Additional file 1: 334 differental coexpression genes identified by
our approach file format: .doc.
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