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Abstract

Measuring protein structural similarity attempts to establish a relationship of equivalence between polymer
structures based on their conformations. In several recent studies, researchers have explored protein-graph
remodeling, instead of looking a minimum superimposition for pairwise proteins. When graphs are used to
represent structured objects, the problem of measuring object similarity become one of computing the similarity
between graphs. Graph theory provides an alternative perspective as well as efficiency. Once a protein graph has
been created, its structural stability must be verified. Therefore, a criterion is needed to determine if a protein
graph can be used for structural comparison. In this paper, we propose a measurement for protein graph
remodeling based on graph entropy. We extend the concept of graph entropy to determine whether a graph is
suitable for representing a protein. The experimental results suggest that when applied, graph entropy helps a
conformational on protein graph modeling. Furthermore, it indirectly contributes to protein structural comparison
if a protein graph is solid.

Background
Graph theory is now widely used in information theory,
combinatorial optimization, structural biology, chemical
molecule, and many other fields. Graph similarity measur-
ing is a practical approach in various fields. When graphs
are used to represent of structured objects, the problem of
measuring similarities between objects becomes one of
computing similarities between graphs [1]. Protein remo-
deling is another field wherein multiple-domains within
structures are considerably complicated.
It is believed that proteins are important molecules for

living organisms. In fact, they are essential parts of
organisms and participate in almost every process within
cells. A protein contains at least one linear chain of
amino acid residues called a polypeptide. By various
synthesis, e.g., biosynthesis and chemical synthesis, a
polypeptide is folded into a unique 3-dimensional struc-
ture. Usually, the structure of a protein determines its
biological function performed in organisms. Knowledge
of a protein structure can help us understand biological
functions and evolution. Measuring protein similarities
according to 3-dimensional structures of proteins

provides a valuable tool for evaluating proteins with low
sequence similarities when evolutionary relations among
proteins cannot be detected by sequence alignment
techniques. To perform a structural comparison of
molecules, accurate information of two superimposed
protein structures must be obtained. However, optimiz-
ing these two quantities simultaneously is difficult.
Unlike the sequence alignment problem, the structural
alignment problem has not even been classified as
solvable.
For decades, studies have attempted to define topolo-

gical relations and notations on protein structures, a
schematic description is essentially expected to describe
its topology. Mathematical formulations of structural
patterns can facilitate the composition in a polypeptide
chain. A schematic description has the advantage of
simplicity, making the implementation of graph theory
as an alternative approach possible [2]. By selectively
ignoring protein structural features, it has the potential
to detect further homologous relationships based on
various geometric methods and motivations.
The structure of a protein can be regarded as a confor-

mation with various local elements (e.g., helixes, sheets)
and forces (e.g., Van der Waal’s forces, hydrogen bonds),
folding into its specific characteristic and functional
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structure. With the help of graph transformation, folded
polypeptide chains can be represented as a graph using
several mapping rules. Proteins contain complex relation-
ships in its polymer: residual reactions, covalent interac-
tions, peptide bonding, and hydrophobic packing are
essential parts in structural determination. The intention
is to transform a protein structure into a graph. Formally,
a graph transforming system consists of a set of graph
rewrite rules: L ® R, which L is called pattern graph and
R is called replacement graph [3]. It is the key operation
in graph transformation.

Protein Remodeling
As mentioned to the protein remodeling, a study
reviewed in detail of protein graph (abbreviated as
P-graph) description can be found in [4]. Usually, the
vertex set of a P-graph can be defined by Ca atoms,
residues, side chains, DSSP (the dictionary of protein
secondary structures), and SSE (secondary structure ele-
ments). For the edge set, it is usually defined by the dis-
tance of two vertices with some labels, e.g., chemical
properties. Figure 1 shows an overview of protein graph
remodeling. Table 1 shown an outline of some cate-
gories of the protein graph approach to a set of graphs,
representing each specific graph rewriting and graph
measuring skills. Therefore, it is useful to begin with the
summarized common research into the following mat-
ters: geometric relation and chemical relation.
Proteins have been represented in various ways using

different levels of detail. The conformation of protein
structure has been shown to be determined geometri-
cally by various constraints [5]. Therefore, the most
common method for protein modeling is to reserve its
topological relationship in graphs. From the perspective
of graph theory, a simplified representation of protein
structure aims attention at connectivity patterns. It
helps to go into details on interacted relation within a

polypeptide folding. In brief, the geometric-based pro-
tein modeling is to refine its edges (relations) among
vertices (objects), adapting the information from inter-
object distances for all pairs of objects.
Comparing with geometric relationship, chemical

properties provides a more complicated description in
the protein graph model. Amino acid contain various
chemical properties, including electrostatic charge,
hydrophobicity, bonding type, size and specific func-
tional groups [6]. By giving values to edges and nodes in
graph, each different labeled component that varies
between the various types of chemical relation.

Entropy
Entropy defines a quantitative equilibrium property within
a system and it implies the principle of disorder from the
second law of thermodynamics [7]. It is particularly
important in describing how energy is applied and trans-
ferred in an isolated system. The higher the disorder, the
greater the entropy of the system [8]. Similarly, this con-
cept is presented in life. As we known, life is composed of
many cells, tissues, and organs from the vital element of
protein. Since proteins are biochemical compounds, con-
sisting of one or more polypeptide chains, the arrange-
ment of protein polymers are assumed to be in a compact
state, according to its backbone dihedral angles and side
chain rotamers. This is called conformational entropy.
There is considerable evidence to prove that the same

Figure 1 An overview of protein graph remodeling.

Table 1 Recent studies for constructing protein graphs.

Ref. Vertex Set Edge Set

[20] Ca atoms labeled edges

[21] DSSP attributed edges

[22] side chains defined by interacted energy

[23] residues defined by geometrical constraints

[24] SSE labeled edges
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observation can be applied to a protein graph model. In
such a case, a graph model should also follow the second
law of thermodynamics.
For an n-object system G, assume that each object i is

associated with a probability pi. Then the entropy of the
system G is defined as in Formula 1 [9].

I(G) =
n∑
i=1

−pi × log2pi (1)

In graph theory, the entropy of a graph is usually defined
by its degree sequence. For example, we consider the cycle
with 4 vertices, i.e., C4. The degree sequence is (2, 2, 2, 2).

Thus, the pi for each vertex vi is 2
8 = 0.25 . By definition,

I(C4) = −4 × 0.25 × log2(0.25) = 2.

Methods
In this section, we extend the concept of graph entropy
to measuring protein graphs. To demonstrate the calcu-
lation of graph entropy exemplarily, peptide chains of
MHC (Major Histocompatibility Complex) are selected
as the materials for examining the utilities of graph
entropy.

Graph entropy
For a given graph G = (V, E) and two vertices u and v in
V , let d(u, v) denote the length of the shortest path
between u and v. Let Nk (u) = {v | d(u, v) = k}. In graph
theory, Nk(u) is called the k-distance neighborhood of u
and is also called the k-sphere of u [10]. By counting k-
distance neighbors of vi, it gives a good account of
nodes mutual connectivity in G. We define the following
formula.

f (u) =
k∑
i=1

|Ni(u)|
n − i + 1

(2)

In Formula 2, k is the longest length for u to reach to
a vertex, (i.e., Nk (u) ≠ ∅ but Nk+1(u) = ∅). The idea of
our formula makes that every other vertex v contributes
an impact to the current vertex u. In particular, the clo-
ser distance between v and u, the greater the impact of
v. For simplicity, we let f(V) = ∑v∈V f(v). Assume that
V = {v1, v2, . . . , v }. We define qi for each vi as follows.

qi =
f (vi)
f (V)

(3)

Finally, our modified entropy formula for a graph G =
(V, E) is as follows.

I′(G) =
n∑
i=1

−qi × log2qi (4)

For convenience, we consider the graph depicted in
Figure 1 as an example which is a P-graph based on
small proteins of the plant crambin. This graph is an
unlabeled graph corresponding to the protein. The fol-
lowing equations are easy to obtain:

f (v1) = f (v3) =
3
5
+
1
4

f (v2) =
2
5
+
2
4

f (v3) = f (v5) =
1
5
+
2
4
+
1
3

So the entropy of graph depicted in Figure 1 is:

I′(G) = −q(v1)log2q(v1) − q(v2)log2q(v2)
−q(v3)log2q(v3) − · · · − q(v5)log2q(v5)

= −2q(v1)log2(q(v1)) − q(v2)log2(q(v2))
−2q(v4)log2(q(v4))

= −2 × 0.3188 × log2(0.3188) − 0.2455 × log2(0.2455)
−2 × 0.2214 × log2(0.2214)

= 2.4835

(5)

Let us consider the four graphs depicted in Figure 2.
They are C4, a cycle of four vertices, K4, a clique of four
vertices, P4, a path of four vertices, and S4, a star of four
vertices. For C4 and K4, since the four vertices are in
the same situation, they have the same probability. Thus
I(C4) = I′(C4) = I(K4) = I′(K4) = log2(4) = 2. However,
for P4 and S4, we have I(P4) = 1.918 and I(S4) = 1.793.
By Formula 4, we have I′(P4) = 1.894 and I′(S4) = 1.995.
The densities of P4 and S4 are the same, (i.e., 0.5). However,
the diameter of P4 is greater than that of S4. According to
traditional graph entropy, I(S4) < I(P4) < I(K4) = I(C4).
However, in our formula, I′(P4) < I′(S4) < I′(K4) = I′(C4).
Intuitively, S4 is more compact than P4. Thus, our formula

Figure 2 The four graphs, C4, K4, P4, and S4.

Peng and Tsay BMC Bioinformatics 2014, 15(Suppl 15):S6
http://www.biomedcentral.com/1471-2105/15/S15/S6

Page 3 of 8



makes a better decision. Note that in graph entropy, the
higher entropy of a graph indicates that the graph structure
is more stable.

Edge adjustment
By the definition of I′(G), its value is not increased mono-
tonously if the density of G is increased. Thus, we have
the following cases to determine how to adjust the graph.
Assume that G is the current graph and I′(G) = x. Let I′
(G − e) = y and I′(G + e) = z where G − e means that we
remove the longest edge from G and G + e means that
we add a shortest non-edge to G.

• Case 1: y = 0 It means that after this edge is
removed, G is no longer a connected graph.
• Case 2: z > × > y It means that by adding a new
edge, G will become more stable.
• Case 3: x > z > y It means that G is stable enough.
• Case 4: y > × > z It means that by removing an
old edge, G will become more stable.

As illustrated in Figure 3, it shows when edges are
added or removed from a graph, their entropy values
will be changed. A set of connected 5-node graphs is
shown in Figure 4.

Graph spectra
Given two graphs GA = (VA, EA) and GB = (VB, EB), the
graph matching problem is to find a one-one mapping f
: VA ® VB such that if (u, v) ∈ EA, then the possibility
of (f(u), f (v)) ∈ EB is as higher as possible. Therefore,
numerous attempts have been made on graph similarity
to show its efficiency in recent years. In [11], it revealed
that the problem of graph matching may be divided into
different types depended on their levels. According to
the graph scoring, it qualitatively measures a mutual

dependence of two objects [12]. Generally, a value of
similarity ranges between 0 and 1, from dissimilar to
identical.
Occasionally, topologies of graphs are complicated;

therefore, one practical way is to symbolize it as matrix,
turning graph into numbers and vectors. Since it is hard
to determine graph isomorphism, graph spectra gives an
alternative solution for graph matching. By definition, a
spectrum of a finite graph G is the spectrum of its adja-
cency matrix AG and diagonal degree matrix DG, whose
entries ai,j and di,j can be written as in Formula (6) and
Formula (7), respectively. That is, its connected neigh-
bors of eigenvalues together with their multiplicities [13].

ai,j =
{
1, if (i, j) ∈ E,
0, otherwise.

(6)

di,j =
{
deg(vi), if i = j,
0, if i �= j.

(7)

The Laplacian spectrum of G is the matrix, LG = DG −
AG, indicating a topological properties and connected-
ness of the graph. In brief, a graph spectra of G can be
regarded as a set of eigenvectors– l [14]. Apparently,
comparing with the binary relation of graph G, the spec-
trum of G tends to improve its information on adjacent
relation. We give some examples to describe a graph
spectrum transformation. Let X be the resulting graph
by removing one edge from K4. Let Y be the graph
depicted in Figure 1.

LX =

⎛
⎜⎜⎜⎜⎝

3 −1 −1 −1 0
−1 2 −1 0 0
−1 −1 3 −1 0
−1 0 −1 2 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ (8)

Figure 3 The effects for increasing and decreasing edges from a graph.
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LY =

⎛
⎜⎜⎜⎜⎝

3 −1 −1 −1 0
−1 2 −1 0 0
−1 −1 3 0 −1
−1 0 0 1 0
0 0 −1 0 1

⎞
⎟⎟⎟⎟⎠ (9)

Obviously, |VX| = 4 < |VY| = 5. Therefore, when spec-
tra are different sizes, the smaller one may be padded
with zero values to equalize the size of GX and GY . By
definition, the spectra lX and lY can be obtained, i.e.,
lX = [ 4, 4, 2, 0, 0 ] and lY = [ 4, 4, 1, 1, 0 ]. The simi-
larity between GX and GY can be simply measured by
the Euclidean distance of lX and lY . In this case, the
similarity of GX and GY is 1.414.

Results and discussion
In this experiment, we validated the remodeling function
of the P-graph by using extended graph entropy to verify
the stability of a given P-graph. For the P-graph construc-
tion, please refer to [15]. Thus, we were interested in only
the impact of connectivity on protein structural similari-
ties. Various types of MHC were chosen as the material to
verify the verification of proposed method: 1HDM, 1K5N,
2ENG, 1VCA, 1ZXQ, 1UXW, 1A2Y, 3ARD, 2Q3Z, and
2CRY. MHC, as an immune system in most vertebrates,
encodes for a small complex cell surface protein. It is also
known for HLA (Human Leukocyte Antigen), one of the
most intensively studied genes in human [16]. Due to a
great diversity of microbes in the environment, MHC
genes vary widely its peptide through several mechanisms

[17]; this is also the major reason why MHC proteins were
selected as materials for this studies.

P-graph comparison
Let G = (V, E) be the P-graph after remodeling from the
construction proposed by [15]. Vertices of V in G are
created according to the DSSP. Under this metric, a
protein secondary structure is represented by a single
letter code, H-helix (containing G, H, and I), T-hydro-
gen turn (containing T, E, and B), or C-coiled (contain-
ing only C). For controlling one variable in this
experiment, let the edge set E of G be changed from a
specific range.
A comparison of MHC proteins is shown in Table 2.

In the table, PID is the protein identification number in
PDB [18]. Since MHC proteins are composed of multi-
ple polypeptide chains, they are multimeric Domain.
Furthermore, Dens means the density in the graph. It is
defined as 2|E|

|V|(|V|−1) ranging from 0 to 1. AVG indicates
the average distance within DSSP vertices. If the dis-
tance of vi and vj is no greater than AVG, then there is
an edge between them. In the table, +ke (−ke) means
that we add (remove) the k shortest (longest) possible
edges. For example, +1e means that we add the edge
with the shortest length that is greater than AVG. In
the table, NaC indicates that the resulting graph is not a
connected graph.
The relationship between |E| and I′(G) is as follows.

First, when the density in G increases, the graph G appears
to go from sparse to dense. However, its extended entropy

Figure 4 A set of connected 5-node graphs.
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does not increase completely with its density. It seems a
little anomalous in this appearance. Second, the edge set
in protein remodeling issue can be determined from its
extended entropy. By definition, the P-graph G should be
a connected graph. Once the G becomes a disconnected
graph, we cannot decide its entropy. For example, 1A2Y is
not a connected graph when the density is lower than
0.400. Third, E appears to be considerably related to V in
graph entropy. Consider the P-graph 2CRY as another
example. If a protein remodeling function adapts a specific
value on the basis of its geometrical edge, then it might be
an error to assume a fixed value as a criterion. This is an

essential fact to stress. It is worth pointing out that the
construction of a P-graph is limited by V .

P-graph verification
To validate the previous assumptions, a method for protein
structural comparison is adapted to measure its similarity.
Graph spectra gives an alternative solution to graph match-
ing. It is a set of relational parameters, consisting of a char-
acteristic polynomial and eigenvectors of its adjacency
matrix or Laplacian matrix. Graph spectra quantitatively
provide graph information, e.g., structure, topology, con-
nectivity [19]. In Table 3 we list the results of protein

Table 2 A selected proteins with corresponding extended entropies

PID − 3e − 2e − 1e AVG + 1e + 2e + 3e

1HDM 3.343 3.396 3.563 3.319 3.705 3.845 3.765

Dens 0.357 0.393 0.464 0.524 0.535 0.607 0.643

1K5N 4.305 5.545 5.564 4.537 4.614 4.732 3.787

Dens 0.436 0.457 0.475 0.509 0.527 0.564 0.571

2ENG 4.000 4.091 4.144 4.212 4.294 4.344 4.480

Dens 0.422 0.444 0.467 0.489 0.511 0.533 0.578

1VCA 3.106 3.171 3.254 3.221 3.249 3.467 3.493

Dens 0.381 0.429 0.476 0.524 0.571 0.619 0.667

1ZXQ 3.494 3.551 3.641 3.709 3.774 3.712 3.907

Dens 0.429 0.464 0.500 0.535 0.571 0.607 0.643

1UXW 5.562 5.563 5.646 5.764 5.855 5.950 6.079

Dens 0.456 0.463 0.478 0.500 0.515 0.529 0.551

1A2Y NaC NaC 2.414 2.507 2.581 2.512 2.510

Dens - - 0.400 0.500 0.600 0.700 0.800

3ARD 4.460 4.641 4.698 4.756 4.801 4.860 4.932

Dens 0.424 0.470 0.485 0.500 0.515 0.530 0.554

2Q3Z 6.611 6.730 6.775 6.834 6.885 6.996 7.302

Dens 0.474 0.486 0.493 0.503 0.511 0.525 0.547

2CRY NaC NaC NaC NaN NaN NaN NaN

Dens - - - 0.667 1.000 1.000 1.000

Table 3 A comparison of protein structure remodelings.

PID 1K5N 2CRY 1VCA 2Q3Z 1ZXQ 1A21 2ENG 1UXW 1A2Y 3ARD

1HDM Old 7.93 23.36 15.68 24.01 13.74 6.54 12.57 7.92 5.75 8.27

New 7.75 21.12 13.87 23.67 12.11 5.64 11.03 7.25 5.41 7.79

Result + + + + + + + + + +

1K5N Old · 26.58 19.55 26.91 18.02 14.65 17.69 20.44 18.41 25.72

New · 23.70 17.39 21.13 15.99 12.83 15.84 17.17 16.94 23.64

Result · + + + + + + + + +

2CRY Old · · 14.87 12.33 17.13 14.39 15.62 19.33 6.81 18.42

New · · 12.91 34.10 14.92 12.45 17.54 19.35 5.17 19.63

Result · · + − + + − = + −

1VCA Old · · · 17.71 5.39 4.83 7.75 11.42 5.45 12.80

New · · · 29.68 4.47 3.21 6.82 10.07 4.83 11.67

Result · · · - + + + + + +
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structure remodeling matters. The field Old shows a remo-
deling based on the specific value of edge length, and New
indicates that the edges in G are adjusted by extended
entropy. The value in each entry is the distance of the two
spectra. If our method obtains a better result in the com-
parison, then we simply mark “+” to denote a better result;
otherwise, it is marked “=” (not bad) or “−” (worse). Table
4 shows the CATH codes for the selected macromolecules.
In summary, the extended entropy determines a better
conformational graph from protein structure remodeling.

Program and environment
The procedure for computing the extended entropy for
a P-graph was implemented and has been tested with
the MHC PDB dataset. The environment was running
under 2 Ghz PC with 512 MB of main memory with

Linux-2.6.11-1.1369. The implementation was written
using Bash-3.00.16(1) and Octave-3.0.0.

Conclusion
In this paper, we proposed a measurement to determine
graph stability for protein structure remodeling based
on graph entropy. Our modified entropy validation
shows a positive result for protein structural compari-
son. This graph-based approach offers a practical con-
cept to support protein structural alignment.
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