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Abstract

Background: Expressed sequences (e.g. ESTs) are a strong source of evidence to improve gene structures and predict
reliable alternative splicing events. When a genome assembly is available, ESTs are suitable to generate gene-oriented
clusters through the well-established EasyCluster software. Nowadays, EST-like sequences can be massively produced
using Next Generation Sequencing (NGS) technologies. In order to handle genome-scale transcriptome data, we
present here EasyCluster2, a reimplementation of EasyCluster able to speed up the creation of gene-oriented clusters
and facilitate downstream analyses as the assembly of full-length transcripts and the detection of splicing isoforms.

Results: EasyCluster2 has been developed to facilitate the genome-based clustering of EST-like sequences generated
through the NGS 454 technology. Reads mapped onto the reference genome can be uploaded using the standard GFF3
file format. Alignment parsing is initially performed to produce a first collection of pseudo-clusters by grouping reads
according to the overlap of their genomic coordinates on the same strand. EasyCluster2 then refines read grouping by
including in each cluster only reads sharing at least one splice site and optionally performs a Smith-Waterman alignment
in the region surrounding splice sites in order to correct for potential alignment errors. In addition, EasyCluster2 can
include unspliced reads, which generally account for >50% of 454 datasets, and collapses overlapping clusters. Finally,
EasyCluster2 can assemble full-length transcripts using a Directed-Acyclic-Graph-based strategy, simplifying the
identification of alternative splicing isoforms, thanks also to the implementation of the widespread AStalavista
methodology. Accuracy and performances have been tested on real as well as simulated datasets.

Conclusions: EasyCluster2 represents a unique tool to cluster and assemble transcriptome reads produced with
454 technology, as well as ESTs and full-length transcripts. The clustering procedure is enhanced with the
employment of genome annotations and unspliced reads. Overall, EasyCluster2 is able to perform an effective
detection of splicing isoforms, since it can refine exon-exon junctions and explore alternative splicing without
known reference transcripts. Results in GFF3 format can be browsed in the UCSC Genome Browser. Therefore,
EasyCluster2 is a powerful tool to generate reliable clusters for gene expression studies, facilitating the analysis also
to researchers not skilled in bioinformatics.

Background
Expressed sequence tags (ESTs) and full-length cDNAs
(FL-cDNAs) are an invaluable source of evidence to infer
reliable gene structures and discover potential alternative
splicing events [1]. Their biological potential can be fully

exploited through the clustering in which expressed
sequences are linked to their specific gene loci of origin.
To generate reliable gene-oriented clusters of ESTs, in
presence of a complete or draft genome assembly, we
developed EasyCluster that resulted the most accurate
when compared to the state of the art software in this field
[2-4]. Nowadays, thanks to technological advances, EST-
like sequences can be produced by pyrosequencing using
the Roche 454 platform. Indeed, this is a technology able
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to generate, through the GS FLX+ Titanium chemistry,
sequence reads up to 1Kb long (http://www.454.com/) [5].
In addition, very long reads (more than 1Kb) can be cur-
rently obtained through the third generation of sequencers
as the PacBio based on single molecule real-time (SMRT)
technology (http://www.pacificbiosciences.com/) [6].
Handling huge amount of EST-like data is extremely

useful to detect alternative isoforms, improve gene
annotations or simply create gene-oriented clusters for
expression studies. Since EST-like data provide a frag-
mented overview of their genomic loci of origin, tran-
script assembly may be an optimal solution to annotate
user-produced sequences.
Since the advent of next generation sequencing technol-

ogies, however, no updated software to employ genome-
based clustering of long transcriptome reads has been
released. Indeed, as a novelty, we found the program [7],
developed to group and assemble ESTs pre-aligned to a
reference genome, and an improved wcd [8,9] release to
cluster ESTs without genomic information. While wcd
implements a new algorithm based on suffix arrays to han-
dle huge amount of reads generated by high-throughput
sequencers [8], RCDA has been conceived only for ESTs
produced by the classical Sanger sequencing and, thus,
never tested on long sequences produced by next genera-
tion technologies as those from Roche 454 [7].
To fill this gap and benefit from both genome assem-

blies and long transcriptome reads, we developed Easy-
Cluster2 [10], a reimplementation of EasyCluster, that can
now manage genome scale transcriptome data and pro-
duce reliable gene-oriented clusters from 454 reads,
enabling the assembly of full-length transcripts and facili-
tating downstream analyses.
EasyCluster2 accepts read alignments in the standard

GFF3 format (http://www.sequenceontology.org/gff3.
shtml) generated by various mappers such as GMAP
[11], refines the read clustering using information of
shared splice sites, and resolves potential mapping errors
at exon-exon junctions using dynamic programming.
The novel EasyCluster2 software can now handle

unspliced reads (prominent in classical 454 data) and
optimize the cluster definition with known gene annota-
tions. A graph-based approach is used to assemble full-
length transcripts belonging to a specific cluster, thus
simplifying the investigation of post-transcriptional
events as alternative splicing. Indeed, the AStalavista
[12] program has been integrated in our tool allowing a
quick way to explore alternative splicing without known
reference transcripts.
In absence of large curated benchmarks in which the

relationship between reads and genomic loci of origin is
perfectly known, the reliability of EasyCluster2 has been
assessed by simulated reads generated taking into account
the Titanium Roche 454 chemistry. Same simulated

datasets have been used to compare EasyCluster2 results
to those obtained using other recent programs as RCDA
[7] or clustering software not genome-based as wcd [8,9].
EasyCluster2 has been written in Java programming

language and its graphical interface has the aim to sim-
plify genome-level analyses to researchers not fully
skilled in bioinformatics. The main executable and doc-
umentation is freely available at the Google code page:
https://code.google.com/p/easycluster2.

Methods
Overview of EasyCluster2
The EasyCluster2 workflow is summarized in the follow-
ing steps:

1 An individual alignment file in GFF3 format is
provided as input and parsed in memory exploiting
JAVA classes of a custom library. Then reads are
grouped according to their ‘exon’ features included
in the GFF3 file;
2 Initial clusters are generated by overlapping geno-
mic coordinates;
3 Refined Clusters are then produced using to the
biological criterion of splice site sharing;
4 Potential mapping errors are corrected by an ad-
hoc re-alignment strategy;
5 Unspliced (intronless) and Mixed (multi-mapping)
reads are included in relevant clusters using proper
criteria;
6 Clusters can be merged to take into account the
fragmented locus sequencing;
7 Known annotations (if available) can be exploited
to improve clusters correctness;
8 Full-length transcripts are assembled from gener-
ated clusters by a graph-based procedure;
9 Alternative splicing events can be predicted using
the embedded AStalavista module.

The software has been developed in Java programming
language and tested on unix based machine equipped
with 2 quadcore CPUs and 16GB of RAM.

Cluster refinement in EasyCluster2
EasyCluster2 implements a novel strategy to refine the
clustering procedure in order to mitigate the effect of
alignment errors in regions surrounding splice sites.
The relative pseudocode is described in Algorithm 1.

Transcript Assembly
A novelty of EasyCluster2 is the procedure to assemble
full-length transcripts from reads allocated to specific
clusters. The algorithm is based on the building of
directed acyclic graphs and the pseudocode is described
Algorithm 2.
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Algorithm 1 Cluster refinement
1: function REFINECLUSTER()
2: for all exon ∈ EST do
3: if i-exon is not the final exon of the EST then
4: take the donor site of exoni (donori)
5: take the acceptor site of exoni+1 (acceptori+1)
6: get the nucF asta of the FASTA in an interval

of 10 coordinates on the left of donori and 10 coordi-
nates on the right of acceptori+1
7: create new nbDonor[ ] and nbAcceptor[ ]

which are classes composed by a coordinate, score and
occurrence of that splicing site in the P rof ileCluster
8: for all j ∈ [−5, 4] do
9: nbDonor[j + 5].coord ← donori + j ▷ j + 5 is

used for having array index from 0 to 9
10: nbAcceptor[j + 5].coord ← acceptori+1 + j
11: end for
12: for all j ∈ [0, 9] do
13: if nbDonor[j].coord ∈ ProfileCluster: then
14: get the nucGenomeInDonor of the Geno-

mic Sequence in an interval of 15 bases on the left of
nbDonor[j].coord and 15 bases on the right of nbDonor
[j].coord
15: nbDonor[j].score ← SMITH-WATERMAN

(nucFasta, nucGenomeInDonor) 16: nbDonor[j].
occ ← ProfileCluster(nbDonor[j].coord).occ
17: if nbAcceptor[j].coord ∈ ProfileCluster

then
18: get the nucGenomeInAcceptor of the

Genomic Sequence in an interval of 15 bases on the left
of nbAcceptor[j].coord and 15 bases on the right of
nbAcceptor[j].coord
19: nbAcceptor[j].score ← SMITH-WATER-

MAN(nucFasta, nucGenomeInAcceptor)
20: nbAcceptor[j].occ ← ProfileCluster(nbAc-

ceptor[j].coord).occ
21: get maxScoreDonor from nbDonor[. . . ].

score saving its index in the array nbDonor[. . . ]
22: get maxScoreAcceptor from nbAcceptor[. . . ].

score saving its index in the array nbAcceptor[. . . ]
23: if maxScoreDonor > maxScoreAcceptor

then
24: shift the end part of the exoni on the

start part of the exoni+1 with a displacement that
depends on the coordinate in nbDonor which has the
maximum score
25: end if
26: if maxScoreDonor < maxScoreAcceptor

then
27: shift the start part of the exoni+1 on the

end part of the exoni with a displacement that depends
on the coordinate in nbAcceptor which has the maxi-
mum score
28: end if

29: if maxScoreDonor = maxScoreAcceptor
then
30: get occDonor from nbDonor[. . . ].occ

using the saved index of the max donor score in the
array nbDonor[. . . ]
31: get occAcceptor from nbAcceptor[. . . ].

occ using the saved index of the max acceptor score in
the array nbAcceptor[. . . ]
32: if occDonor > occAcceptor then
33: shift the end part of the exoni on the

start part of the exoni+1 with a displacement that
depends on the coordinate in nbDonor which has the
maximum score
34: end if
35: if occDonor < occAcceptor then
36: shift the start part of the exoni+1on the

end part of the exoni with a displacement that depends
on the coordinate in nbAcceptor which has the maxi-
mum score
37: end if
38: if occDonor = occAcceptor then
39: No shifting
40: end if
41: end if
42: end if
43: end if ▷"coord” stands

for “coordinate”
44: end for ▷"occ” stands

for “occurrence”
45: end if ▷"nuc” stands

for “nucleotides”
46: end for ▷"nb” in nbDonor and nbAcceptor

stands for “neighbourhood”
47: end function
Algorithm 2 Transcript Assembly
1: function ASSEMBLETRANSCRIPTS()
2: generate StartList[ ] ▷if colj

∈ matGraph = 0
3: generate EndList[ ] ▷if rowi ∈

matGraph = 0
4: for all startNodei ∈ StartList[. . . ] do
5: create pathList[ ]
6: add startNodei in pathList[ ]
7: if startNodei ∈ EndList[. . . ] then
8: save pathList[StartNodei]
9: else
10: for all a(j) ∈ row(startNodei) do
11: if a(j) = 1 then
12: add a(j) IN pathList[startNodei]
13: RECURSIVEPATH(a(j), pathList[. . .

], coverMatGraph)
14: remove LAST ELEMENT of pathList

[. . . ]
15: end if
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16: end for
17: end if
18: end for
19: end function
20:
21: function RECURSIVEPATH(Nodej, pathList[. . . ],

coverM atGraph)
22: if Nodej ∈ EndList[. . . ] then
23: save pathList[. . . ]
24: else
25: for a(i) ∈ row(Nodej) do
26: if a(i) = 1 then
27: for index ∈ pathList[. . . ]-lastIndex do
28: if coverMatGraph[index, i] = 1 then
29: coverMatGraph[index, i] ← 0
30: end if
31: end for
32: add a(i) IN pathList[. . . ]
33: RECURSIVEPATH(a(i), pathList[. . . ],

coverMatGraph)
34: remove LAST ELEMENT of pathList[. . . ]
35: end if
36: end for
37: end if
38: end function

Datasets
EasyCluster2 has been tested on two real datasets and
simulated reads. As real dataset we used our human
benchmark including 111 genes spread over almost all
human chromosomes and 17,733 ESTs. Relationships
between genes and ESTs were perfectly known. In addi-
tion, we used also the RCDA human dataset of 21,599
ESTs from chromosome 21, downloadable from http://
140.226.190.96/iddrc/chr21/HSA21qGenesoftware.php.
Simulated Roche 454 reads were generated using the

454sim software [13] that allows the production of data-
sets under the 454 error model and different chemistries
(GS20, GS-FLX, Titanium). For our purpose, we simu-
lated 100,000 reads with the Titanium chemistry from
404 human transcripts (belonging to 213 genes) map-
ping on chromosome 21. The final dataset in FASTQ
format was cleaned from adapters and low-quality
sequences before any downstream use. The max read
length was of 600 bp with a modal value in the range
between 480 bp and 500 bp.
Tracing the origin of each simulated read, we created

the benchmark to calculate accuracy metrics. In order
to compare EasyCluster2 performances with those from
RCDA and the oldest EasyCluster version working only
on spliced reads, we generated a second simulated data-
set including only interrupted reads.
Real and simulated datasets were mapped against the

human genome (assembly hg19) by GMAP software,

using the “-f 2” flag to get the output in gff3 format, sui-
table for EasyCluster2, and the “-Z” flag to produce a
second output in compressed format needed for RCDA
and the oldest EasyCluster version.
According to GMAP results, 46% of all reads appeared

spliced, while 51% were unspliced with indeterminate
orientation and 1% showed multiple mappings (mixed).
Remaining reads (2%) were discarded by GMAP since
too short for reliable alignments.
All datasets as well as clustering results are available

at http://150.145.82.212/ernesto/easycluster2/easyclus-
ter2 datasets results.zip.

Clustering software
RCDA program was downloaded from http://
140.226.190.96/iddrc/chr21/HSA21qGenesoftware.php
and run using default options as indicated in the pro-
vided documentation. Wcd program, version 0.6.3, was
obtained from the following google code page http://
code.google.com/p/wcdest/ and run using options -l 80
-T 60 -H 36 as recommended for 454 reads. The pre-
vious EasyCluster version was downloaded from http://
150.145.82.212/ernesto/easycluster1/ and launched using
default parameters.
In EasyCluster2 we set minimum read identity to 90%

and minimum read coverage to 80%.

Comparative evaluation of EasyCluster
Evaluation on benchmark and simulated datasets has
been conducted calculating sensitivity and Jaccard index
for each program outcome. Sensitivity is defined as Tp

Tp+Fn
(Tp = true positives, Fn = false negatives, hence Tp +
Fn = all positives) and gives us an indication of the pro-
portion of true ESTs that has been correctly placed in
the correct reference clusters. The Jaccard index instead
is defined as Tp

Tp+Fn+Fp (Fp = false positives) and measures
the similarity between predicted and reference clusters.
Type I and Type II error rates have been calculated
according to Wang et al. [14]. For each program out-
come we calculated also the specificity that in combina-
tion with sensitivity, can provide a more concrete idea
of clustering accuracy. All metrics were obtained using a
custom python script [2].

Implementation
EasyCluster is implemented in Java programming lan-
guage and, thus, platform independent.

Results
General features of EasyCluster2
The EasyCluster2 algorithm has been completely rebuilt
and redesigned implementing new and unique features to
improve the clustering process and facilitate the analysis
to researchers without advanced skills in bioinformatics.
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The main Easy-Cluster2 procedure is depicted in Figure 1
and 1described below point by point.
GFF3 parsing and first clustering
In contrast with the previous version, EasyCluster2
accepts as input alignment files in thestandard GFF3 for-
mat and parse them in memory exploiting JAVA classes
of a custom library. Along the parsing, read alignments
are classified in Unique (occurring in only one genome
location) and Mixed (mapping on multiple genome loca-
tions). In addition, reads are further divided into Spliced
(including at least 1 intron) and Unspliced (intronless).
After the file traversing and read classification, Unique

and Spliced sequences are grouped according to their
‘exon’ features leading to the creation of appropriated
and dedicated data structures. Initial clusters are finally

generated using overlapping genomic coordinates. The
sorting of all read alignment coordinates is performed in
advance to speed up the clustering procedure.
Second clustering and refinement
Initial clusters, defined also pseudo-Clusters, are then
improved using the biological criterion of splice site shar-
ing and, thus, only reads with at least one splice site in
common are maintained in the same grouping (Figure 2a).
Since the alignment of spliced reads onto the reference
may not be optimal in regions surrounding splice sites, we
introduce a refinement strategy based on an ad-hoc re-
alignment procedure using the classical Smith-Waterman
[15] algorithm.
From a computational point of view, for each cluster, we

check the shift of a read substring (or rather a portion of

Figure 1 Overview of EasyCluster2 workflow. See main text for details.
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its exons) considering all splicing sites as annotated in the
cluster. In particular, the algorithm verifies a potential cor-
respondence for all couples of donor (i-th exon) and
acceptor (i+1-th exon) sites of each read (or exon); in
other words, it checks if a specific coordinate of each read
exon under analysis is already present in the cluster. This
check is performed in a region of 10 nucleotides surround-
ing the splicing site, 5 upstream and 5 downstream,
respectively. In case of a correspondence, the Smith-
Waterman algorithm is used to verify the quality of the
alignment onto the corresponding genomic region. The
two exons under investigation are cut according to Smith-
Waterman results and ready to be shifted to the previous
or next exon as shown in Figure 2b.
Inclusion of Unspliced and Mixed reads
Unspliced reads are prominent in transcriptome sequencing
experiments carried out by Roche 454 machines. For this
reason, we implemented in EasyCluster2 a specific proce-
dure to include Unspliced reads. In practice, these reads, for

which the orientation is indeterminate, are included in
already generated clusters if completely comprised in exonic
regions. Alternatively, Smith-Waterman is applied to facili-
tate their allocation. Indeed, several Unspliced reads may be
treated as Spliced reads due to misalignments of exon-exon
junctions near the ends. All Unspliced reads not included in
existent groupings, are released as independent clusters.
Mixed reads, instead, mapping on multiple genome

locations, are optionally inserted in pre-constituted clus-
ters according to a membership coefficient, calculated
by the following formula:

mc =
nESTmapSS
totSScluster

Where totSScluster is the number of splice sites in the
examined Cluster and nESTmapSS is the number of
examined Cluster reads that have the same Mixed read
splice sites. Mixed reads are assigned to the cluster with
the highest membership coefficient.

Figure 2 Second Clustering and refinement. a. Example of an initial cluster splits in two groups (red and green) by the splice site sharing
criterion. b. Exon shifting after the refinement by Smith and Waterman algorithm in the region surrounding splicing sites. Squares are exons
whereas lines are introns.
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Cluster merging
EasyCluster2 implements now a procedure to merge
adjacent clusters based on overlapping coordinates and
strand orientation. In addition, if known annotations are
available, they are exploited to link and merge groupings
sharing splice sites, overlap of coordinates and strand
orientation, improving the clusters correctness.
Transcript assembly
As a novelty, EasyCluster2 is able to assembly clustered
reads in full-length transcripts using a graph-based algo-
rithm [16]. The main procedure is accomplished by sol-
ving the inclusion and/or extension between pairwise
reads, verifying the sharing of splice sites (Figure 3a-c).
Indeed, given an ordered pair of reads, we may have at
least three scenarios:

1 Inclusion, if both reads share all splice sites and
the size of the second read is smaller than the size
of the first one;
2 Extension, if both reads share splice sites and the
size of the second reads is greater than the size of
the first one;

3 No relationship, if both reads have discordant
splice sites.

According to above rules, EasyCluster2 builds a directed
acyclic graph and performs transcript assembly (Figure 3d ).
Alternative splicing
The prediction of alternative splicing is a basic step
once full-transcripts have been generated per each clus-
ter. Although many programs tend to predict alternative
splicing events defining a reference transcript and then
valuating differences in the pattern of splice sites, Easy-
Cluster2 takes a different approach. Indeed, it imple-
ments the AStalavista [12] program in which splice site
inconsistencies and, thus, alternative splicing events are
detected by looking at genomic coordinates without any
reference transcript. This is an optimal solution in the
case of gene annotations are not well known and no
reference transcripts can be defined unambiguously.

Assessment of EasyCluster2 performance
EasyCluster2 accuracy was initially checked on our stan-
dard benchmark dataset comprising 111 human genes

Figure 3 Read assembly. Inclusion and/or extension rules implemented in EasyCluster2: a. Inclusion; b. Extension; c. No relationship; d. Resulting
full-length transcript.
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spread over almost all human chromosomes and 17,733
ESTs (including RefSeqs and alternative transcripts) [2].
This benchmark also includes cases of overlapping and
nested genes and the relationship between each gene
locus and corresponding ESTs of origin is perfectly
known. In this limited dataset, Easycluster2 correctly
predicted all 111 clusters outperforming the previous
Easy-cluster implementation in which only 109 were
exactly detected [2].
We also tested our software on a second human dataset

including 21,599 transcripts from chromosome 21. This
dataset was used to compare the performance of a recently
released program named RCDA with the first version of
EasyCluster [7]. RCDA predicted 379 clusters while Easy-
Cluster produced 389 groupings in 90 min. In contrast,
Easycluster2 generated 354 clusters compatibles with cur-
rent annotations in UCSC in less than 10 min using
default parameter or less than 30 min activating the exon
refinement on a laptop computer. Full-length transcripts
were reconstructed in minutes and appeared consistent
with RefSeq annotations included in the dataset. The con-
sistency was estimated looking at shared introns since
upstream and downstream transcript regions may differ.
Finally we assessed the performance of EasyCluster2

using a dataset of human reads simulated according to
the Roche 454 error model and Titanium chemistry.
Simulated reads were generated using known human
chromosome 21 RefSeq annotations from the UCSC gen-
ome browser. The overall performance was evaluated in
terms of sensitivity, specificity and Jaccard Index (see
Materials and Methods for further details). In addition,
we generated also a dataset including only spliced reads
to compare results to those from RCDA and the oldest
release of EasyCluster. Both datasets were also used to
assess the read clustering by the novel wcd program that
does not take into account the human genome assembly.

In case of RCDA, the previous EasyCluster release and
EasyCluster2, simulated reads were aligned onto the
reference human genome (assembly hg19) using GMAP
software [11].
Main results on both datasets are reported in Table 1.

When only spliced reads are taken into account, Easy-
Cluster2 outperforms other programs in terms of sensi-
tivity and specificity. Very low values of type I (mis-
separation error) and type II (mis-joining error) errors
have also been registered for EasyCluster2. Concerning
the full dataset including spliced as well as unspliced
reads, EasyCluster2 performs better than wcd, even
though this comparison is a bit biased because wcd is
an ab initio clustering tool and, thus, does not require
any genomic information during the grouping of reads.
Using the full dataset, we registered a high type I error
for EasyCluster2 (Table 1 ), meaning that several clus-
ters should be grouped together. This is an expected
behaviour for Roche 454 datasets in which the relatively
low throughput (as well as the heterogeneous read
length) prevents the complete coverage of expressed
genomic loci. In contrast, type II error for EasyCluster2
is very low suggesting that only a few reads are incor-
rectly assigned to the right cluster.
Roche 454 tends to produce many unspliced reads

(sometimes more than 50% of all reads as other next
generation sequencing technologies) that are generally
discarded during the genome-based clustering. Easy-
Cluster2 provides now the opportunity to employ all
categories (spliced, unspliced and mixed) of reads from
a 454 experiment and this feature represents the most
desirable scenario for a researcher.
As shown in Table 1 (see row EasyCluster2+Ann),

EasyCluster2 type I error sensibly decreases providing
known annotations. Indeed, gene annotations are extre-
mely useful to link compatible clusters in terms of

Table 1 Software assessment. For each program we report the sensitivity (Sn), the specificity (Sp), the Jaccard Index
[22], the type I error (EI) and the type II (EII) error. EasyCluster1 refers to the oldest EasyCluster version, whereas
EasyCluster2+Ann is the new implementation in which final clusters are refined by known annotations.

Dataset including only spliced reads

Program Sn Sp JI EI EII

EasyCluster1 0,732 0,975 0,732 0,214 0

RCDA 0,783 0,969 0,770 0,147 0,006

wcd 0,754 0,913 0,708 0,178 0,030

EasyCluster2 0,825 0,950 0,805 0,122 0,024

Full Dataset (spliced + unspliced reads)

Program Sn Sp JI EI EII

wcd 0,520 0,850 0,377 0,335 0,037

EasyCluster2 0,675 0,930 0,637 0,490 0,047

EasyCluster2+Ann 0,828 0,905 0,807 0,019 0,037
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overlapping coordinates or splice sites sharing, improv-
ing the overall clustering procedure.

Discussion
While DNA microarray data are used to identify genes
which could be considered prognostic markers [17], to
predict protein interactions [18] and to discover molecu-
lar pattern [19], ESTs are essential for gene discovery,
gene mapping, genome annotation, SNP discovery, alter-
native splicing detection and RNA editing prediction.
ESTs are essential for gene discovery, gene mapping,

genome annotation, Single Nucleotide Polymorphism
(SNP) discovery, alternative splicing detection and RNA
editing prediction. With the advent of next generation
sequencing technologies, huge amount of EST-like
sequences can be produced at relatively low cost,
enabling more detailed transcriptomic as well as genomic
investigations. Although several programs have been
developed to analyse short reads from complete tran-
scriptomes [20], very few tools are available to handle
long reads produced by sequencers as the Roche 454 or
PacBio. Thanks to the Titanium chemistry, the Roche
454 sequencer is able to generate reads longer than 600
bp (and in theory up to 1Kb) that are in the same range
of ESTs produced by the standard Sanger methodology.
Although Roche 454 has not a very high-throughput,
generating up to one million reads per run, the analysis
of resulting data is yet a challenging task. Indeed, at least
the 50% of transcriptomic reads by Roche 454 experi-
ments are unspliced and not strand oriented. Therefore,
after the mapping onto the corresponding reference gen-
ome, they have an indeterminate orientation.
Existing programs to cluster EST-like sequences using

genome alignments, as EasyCluster or RCDA, tends to
exclude unspliced reads, leaving precious biological infor-
mation. On the other hand, clustering programs based on
EST sequences only, as wcd, can employ all reads even
though resulting clusters are quite questionable. In
absence of additional genomic evidence, similarity-based
methods suffer from notable limitations. Indeed, ESTs/
reads from paralogous genes or from nested and overlap-
ping genes may not be correctly clustered. Few years ago,
we developed EasyCluster, a genome-based EST clustering
tool able to employ EST to genome alignments to recon-
struct reliable gene-oriented clusters. Although it appeared
more accurate than state of the art software, EasyCluster
cannot handle long reads from next generation sequencing
technologies and benefit from biological evidence of
unspliced reads [2]. For this reason we developed Easy-
Cluster2 [10] in which the algorithm implemented in
EasyCluster has been completely redesigned to take into
account an increased number of reads and dedicated pro-
cedures to improve the clustering process including also
unspliced and mixed reads. Since EasyCluster2 employs

progressive read alignments onto the reference genome,
potential errors in regions surrounding splice sites may
alter the quality of subsequent clusters. To solve this issue,
EasyCluster2 implements an ad hoc procedure to refine
alignments near splice sites using dynamic programming.
To demonstrate the reliability of EasyCluster2 we com-

pared our software with two recently released programs
to cluster ESTs, RCDA [7] based on EST to genome
alignments and wcd [8], an improved similarity-based
tool. In order to make unbiased the comparison, we gen-
erated simulated Roche 454 reads in which the relation-
ship between reads and genomic locus of origin is
perfectly known. Limiting the analyses to spliced reads,
EasyCluster2 resulted more accurate than RCDA and
wcd in terms of sensitivity and Jaccard index (Table 1 ).
When all reads were taken into account, EasyCluster2
outperformed wcd (Table 1 ). Very interestingly we
obtained a very low type II error due to mis-joining,
meaning that only a reduced fraction of reads was allo-
cated to wrong clusters. In absence of gene annotations,
we registered a high type I error due to mis-separation
because many genomic loci appeared not completely cov-
ered by reads leaving to more than one expected cluster.
However, this type of error can be mitigated including
additional biological evidence (more reads) or reliable
annotations (Table 1).
As a novelty, EasyCluster2 can assemble cluster of

reads in full-length transcripts and predict alternative
splicing events thanks to the embedded AStalavista tool.
On the whole, EasyCluster2 is a novel tool ready to

handle long reads from next generation sequencing, pro-
viding reliable clusters that can be used as strong evi-
dence sources to improve gene-finding procedures or
explore complex transcriptomes as well as post-tran-
scriptional events herein as alternative splicing and RNA
editing. In addition, genome-based clusters can be
employed for gene expression studies or identify tissue
specific transcript variants.

Conclusions
EasyCluster2 is a reimplementation of EasyCluster soft-
ware devoted to the generation of gene-oriented clusters
by massive transcriptome reads. Our software is written
in Java language and implements different novelties
including a procedure to mitigate mapping errors at
splice sites and an ad hoc solution to assemble full-
length transcripts per cluster. In addition, EasyCluster2
can now predict alternative splicing events thanks to the
embedded AStalavista module.
Given the explosion of next generation sequencing

and the concomitant increment of read lengths, we
think that a tool as EasyCluster2 may be extremely use-
ful for large-scale transcriptome experiments from 454
Roche or PacBio sequencers enabling complex genomic

Bevilacqua et al. BMC Bioinformatics 2014, 15(Suppl 15):S7
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analyses to researchers not fully skilled in bioinfor-
matics. Indeed, results demonstrate the high accuracy of
EasyCluster2 in producing effective clusters as well as
reliable full-length transcripts.
As future plans, we are working to extend EasyClus-

ter2 to datasets from the Illumina platform in order to
take into account paired-end reads and huge amount of
reads. In addition, we are also planning to include in
EasyCluster2 a procedure to accept in input alignments
in the standard SAM/BAM format [21].
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