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Abstract

Background:: Protein O-GlcNAcylation, involving the attachment of single N-acetylglucosamine (GlcNAc) to the
hydroxyl group of serine or threonine residues. Elucidation of O-GlcNAcylation sites on proteins is required in order
to decipher its crucial roles in regulating cellular processes and aid in drug design. With an increasing number of
O-GlcNAcylation sites identified by mass spectrometry (MS)-based proteomics, several methods have been
proposed for the computational identification of O-GlcNAcylation sites. However, no development that focuses on
the investigation of O-GlcNAcylated substrate motifs has existed. Thus, we were motivated to design a new
method for the identification of protein O-GlcNAcylation sites with the consideration of substrate site specificity.

Results:: In this study, 375 experimentally verified O-GlcNAcylation sites were collected from dbOGAP, which is an
integrated resource for protein O-GlcNAcylation. Due to the difficulty in characterizing the substrate motifs by
conventional sequence logo analysis, a recursively statistical method has been applied to obtain significant conserved
motifs. To construct the predictive models learned from the identified substrate motifs, we adopted Support Vector
Machines (SVMs). A five-fold cross validation was used to evaluate the predictive model, achieving sensitivity, specificity,
and accuracy of 0.76, 0.80, and 0.78, respectively. Additionally, an independent testing set, which was really blind to the
training data of predictive model, was used to demonstrate that the proposed method could provide a promising
accuracy (0.94) and outperform three other O-GlcNAcylation site prediction tools.

Conclusion:: This work proposed a computational method to identify informative substrate motifs for O-
GlcNAcylation sites. The evaluation of cross validation and independent testing indicated that the identified motifs
were effective in the identification of O-GlcNAcylation sites. A case study demonstrated that the proposed method
could be a feasible means of conducting preliminary analyses of protein O-GlcNAcylation. We also anticipated that
the revealed substrate motif may facilitate the study of extensive crosstalk between O-GlcNAcylation and
phosphorylation. This method may help unravel their mechanisms and roles in signaling, transcription, chronic
disease, and cancer.

Introduction
Protein O-GlcNAcylation is an O-linked glycosylation
involving the b-attachment of a single N-acetylglucosamine
(GlcNAc) to the serine (Ser)/threonine (Thr) residues, add-
ing 203.07 Da to the modified proteins [1]. Two enzymes,

O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA),
are responsible for the addition and removal of O-GlcNAc,
respectively. O-GlcNAc has been found on a myriad of
cytoplasmic and nuclear proteins and has the ability to
modulate molecular processes such as transcription, trans-
lation, protein stability, and signal transduction, as well as
cellular processes including proliferation, apoptosis and
development [2]. Disregulation of O-GlcNAcylation has
been found in diseases such as diabetes [3] and Alzheimer
disease [4]. O-GlcNAcylation modifies proteins at serine/
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threonine residues and thus has been proposed to poten-
tially play a role in modulating protein function by affecting
protein phosphorylation [5].
Due to its labile, dynamic, and substoichiometric char-

acteristics, the precise identification of O-GlcNAcylation
sites by advanced systematic proteomic approaches
remains challenging [6]. Liquid chromatography mass
spectrometry (LC-MS/MS)-based techniques are most
utilized for detection and site specific identification of
O-GlcNAcylation. As the improvement of mass spectro-
metry technologies and the enrichment methods, many
O-GlcNAcylated proteins in postsynaptic density [7],
murine synapse [8], mouse brain [9], rat brain [10],
mouse embryonic stem cell [11], and hela cells [12],
were identified in recent years. The system-wide inter-
play between O-GlcNAcylation and phosphorylation
were also studied [13,14]. Due to the growing interest in
revealing the O-GlcNAcylation site and attempting to
reduce experimental efforts, computational prediction of
O-GlcNAcylation sites and conserved motifs becomes
important. In 2002, Gupta and Brunak have developed a
prediction program termed YinOYang that was trained
with 40 O-GlcNAccylation sites [15]. In 2011, Wang et al.
have developed OGlcNAcScan that was trained with 373
O-GlcNAcylation sites [16]. In 2013, O-GlcNAcPRED has
been proposed and claimed to have better performance
than these two aforementioned predictors [17].
Although several methods have been proposed for the

computational identification of O-GlcNAcylation sites, so
far, no tools focused on the investigation of O-GlcNAcy-
lated substrate motifs. Thus, we were motivated to charac-
terize the O-GlcNAcylation sites with the consideration
of substrate specificity. Here, we intended to predict
O-GlcNAcylated sites along with their potential substrate
motifs by using a statistical method. The substrate motifs
were further analyzed for the interplay between phosphor-
ylation and O-GlcNAcylation. To facilitate the study of
protein O-GlcNAcylation, the identified substrate motifs
could be exploited to implement a prediction tool for
identifying O-GlcNAcylation sites with potential substrate
motifs.

Materials and methods
Data collection and preprocessing
The experimentally verified O-GlcNAcylation sites were
mainly extracted from dbPTM [18-20] which have inte-
grated several protein glycosylation-associated databases:
dbOGAP [16], UniProtKB [21], O-GlycBase [22], and
PhosphoSitePlus [23]. The dbOGAP database contains
240 and 135 sites for O-GlcNAcylated serine (Ser) and
threonine (Thr) on 168 proteins. O-GlcNAcylation data,
from UniProtKB, that are experimentally verified and
annotated as “by similarity”, “potential”, “probable” were
removed, resulting in 57 and 51 sites for O-GlcNAcylated

Ser and Thr on 51 proteins. In O-GlycBase version 6.0,
there are 24 sites for O-GlcNAcylated Ser and Thr from
17 proteins. In particular, the protein phosphorylation
database, PhosphoSitePlus, also manually curated the
experimental data of other PTM types such as acetyla-
tion, glycosylation, ubiquitylation, sumoylation, and so
on. Totally 779 and 582 experimentally verified sites for
O-GlcNAcylated Ser and Thr on 542 proteins were
obtained from PhosphoSitePlus.
In this work, the experimental data of 375 O-GlcNAcyla-

tion sites from dbOGAP was defined as the positive train-
ing data. Referring to KinasePhos [24,25], a window of
11 amino acids with O-GlcNAcylated Ser or Thr residues
at the center was used to investigate the surrounding resi-
dues. The same sequence window size centered on non-O-
GlcNAcylated Ser and Thr residues were used as negative
training data. A total of 16740 and 10079 negative
sequence fragments for Ser and Thr residues were obtained
on 168 proteins from dbOGAP (Table 1). Balancing the
negative and positive training data, a biased prediction per-
formance for a binary classification between positive and
negative data was avoided. Among previous methods pre-
dicting phosphorylation [26-31], a K-means clustering
method [32,33] was used to generate a negative data set.
The value of K representing the number of subsequent
positive data, indicated the number of samples obtained
from the negative set. As shown in Table 1 positive and
negative sequence fragments were in the training data.
In the prediction of O-GlcNAcylation sites, the perfor-

mance of the predictive models may be overestimated
owing to the over-fitting of a training set. To estimate
the real predictive performance, the experimental data
obtained from UniProtKB, O-GlycBase, and PhosphoSite-
Plus was considered as the independent testing set. Data
from one database was compared to that from the other
databases using their O-GlcNAc modified position and
the UniProtKB accession number. Overlapped data set
was removed to prevent redundancy. After the removal
of redundant data, we have obtained 578 and 470 positive
sequence fragments as well as 41075 and 23920 negative
sequence fragments of Ser and Thr residues for indepen-
dent testing.

Detection of O-GlcNAcylated site specificities
In order to obtain substrate motif signatures of O-GlcNA-
cylation sites, the positive training data was analyzed by a
motif analysis tool, MDDLogo [33]. The MDDLogo clus-
tered a set of aligned O-GlcNAcylated sequences to divide
a large group into subgroups that contain statistically sig-
nificant substrate motifs. It has been suggested that the
grouping of protein sequences into smaller groups is prior
to computationally identifying PTM sites [24-26,29,34-38].
To calculate the frequency of amino acid occurrence
between two positions, Ai and Aj, that were proximal to

Wu et al. BMC Bioinformatics 2014, 15(Suppl 16):S1
http://www.biomedcentral.com/bmcbioinformatics/supplements/15/S16/S1

Page 2 of 12



the O-GlcNAcylated site, MDDLogo using chi-square test
was applied. As listed in Supplementary Table S1 (Addi-
tional File 1), twenty amino acids were categorized into
five groups according to their chemical properties (acidic,
polar, basic, aromatic, and hydrophobic groups) to facili-
tate extracting motifs presenting conserved biochemical
properties. Then, a contingency table of the amino acids
occurrence between two positions was constructed. The
chi-square test was defined as:

χ2(Ai,Aj) =
5∑

m=1

5∑

n=1

(Xmn − Emn)
2

Emn
(1)

where Xmn represented the number of sequences that
had the amino acids of group m in position Ai and had
the amino acids of group n in position Aj, for each pair

(Ai , Aj) with i≠j. Emn was calculated as
XmR · XCn

X
, where

XmR (the total number of sequences) = Xm1+ ... +Xm5,
XCn = X1n+ ... +X5n, and X. Once X2 was estimated lar-
ger than 34.3, which suggests p<0.005 with 16 degrees
of freedom between two positions and considered as
strong dependence, the process was carried on as
described in a previous work [39]. Figure 1 shows an
example of this process. Maximal dependence occurred
on position +4 which represents the occurrence of polar
group. According to that, two subgroups were generated
illustrating the occurrence and absence of polar amino

acids on position +4. The positive data was divided into
tree-like subgroups based on a recursive clustering pro-
cess. While applying MDDLogo method to the positive
training data, the minimum cluster size needed to be
determined to cluster the sequences fragments. The
clustering of the subgroup will be suspended once the
data size of a subgroup was less than the user-deter-
mined minimum cluster size. An optimal minimum
cluster size can be yielded from performing MDDLogo
using various values. Subgroup derived from MDDLogo
was depicted by using WebLogo [40] which help verify
whether conserved motifs of O-GlcNAc modified sites
were existed or not.

Features extraction and encoding
Aside from the component of flanking amino acids
(AA), the evolutionary information and accessible sur-
face area (ASA) surrounded the O-GlcNAcylation sites
were also studied. Fragments of amino acids were
extracted from positive and negative training sets using
a window of length 2n+1 centered on substrate sites,
where n was set to five in this study. An orthogonal bin-
ary coding scheme was adopted to transform amino
acids into numeric vectors, in the so-called 20-dimen-
sional binary coding. For example, glycine was encoded
as “10000000000000000000;” alanine was encoded as
“01000000000000000000,” and so on. The number of
feature vectors that represented the flanking amino

Table 1 Number of sites of training and independent testing set.

Data resource O-GlcNAcylated sites (Positive
data)

Non-O-GlcNAcylated sites (Negative
data)

Training set dbOGAP Serine 240 16740

Threonine 135 10079

Ser and
Thr

375 26819

Independent testing
set

UniProtKB Serine 57 4488

Threonine 51 2978

Ser and
Thr

108 7466

OGlycBase Serine 24 1013

Threonine 24 694

Ser and
Thr

48 1707

PhosphoSitePlus Serine 779 58082

Threonine 582 34217

Ser and
Thr

1361 92299

Non-redundant
dataset

Serine 578 41075

Threonine 470 23920

Ser and
Thr

1048 64995
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acids surrounding the O-GlcNAcylation site was (2n+1)
× 20. A total of p vectors {xi, i = 1, ..., p} were used, to
represent all p sequence fragments in the training data.
Each vector was labeled with the class of its correspond-
ing protein (e.g. positive or negative). For the composi-
tion of 20 amino acids surrounding the O-GlcNAcylation
sites, the vector xi included 20 elements for the amino
acid composition (AAC) and 400 elements for the amino
acid pair composition (AAPC). The 20 elements specified
the numbers of occurrences of 20 amino acids normal-
ized with the total number of residues in a sequence frag-
ment, and the 400 elements specified the numbers of
occurrences of 400 amino acid pairs normalized with the
total number of residue pairs in a sequence fragment.
To determine the positional weighted matrix (PWM)

of amino acids close to the O-GlcNAcylated sites, non-

homologous training data and SulfoSite method [41]
was used. The relative frequency of amino acids that
surrounded the O-GlcNAc sites and fragment sequence
were denoted and encoded by PWM, respectively. A
matrix, containing (2n+1) × w elements, profiled the dis-
tribution of amino acids of the training dataset. Here,
2n+1 denoted the window size while w was composed
of 20 amino acids and 1 terminal signal.
From the viewpoint of structural environment, several

amino acid residues of a protein can be mutated without
changing its structure, and two proteins may have similar
structures with different amino acid compositions. Position
Specific Scoring Matrix (PSSM) profiles, which have been
extensively utilized in protein secondary structure predic-
tion, subcellular localization and other bioinformatics pro-
blems [42-45], were adopted herein with significant

Figure 1 The tree-like visualization of the identified substrate motifs by applying MDDLogo.
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improvement. The PSSM profiles were obtained by PSI-
BLAST [46] against non-redundant sequences of O-
GlcNAcylated sites. Supplementary Figure S1 (Additional
File 1) displayed in detail how to generate the 400D PSSM
features for each sequence fragment. The matrix of (2n+1)
× 20 elements had rows centered on substrate site,
extracted from the PSSM profile, where 2n+1 represented
the window size and 20 represents the position specific
scores for each type of amino acid. Then, the (2n+1) × 20
matrix was transformed into a 20 × 20 matrix by summing
up the rows that were associated with the same type of
amino acid. Finally, every element in 20 × 20 matrix was
divided by the window length 2n+1 and then was normal-

ized using the formula:
1

1 + e−x
.

It has been reported by Pang et al. [47] that proteins
that had post-translational modifications made the modi-
fied amino acids more accessible on the protein surface.
To investigate if this character can be used to discriminate
the O-GlcNAc modified sites from other residues, the sol-
vent-accessible surface area (ASA) was employed. Due to
the lack of protein tertiary structures for most O-GlcNA-
cylated proteins in PDB [48], with reference to a previous
method [32], an effective tool, RVP-Net [49,50], was
applied to compute the ASA value from protein sequence,
showing the proportion of the solvent-accessible area for
each amino acid on proteins. Briefly, ASA value of all resi-
dues came from RVP-Net utilizing full-length protein
sequences annotated with experimentally verified O-
GlcNAcylation sites as input data. Finally, the ASA values
were normalized to be 0~1 for every amino acids close to
the O-GlcNAcylation sites.

Model construction and cross-validation
In this work, the predictive model was learned from the
data of the training set by Support Vector Machine
(SVM) whose concept was based on binary classification.
The kernel function then projected the input samples
into a higher dimensional space to locate a hyper-plane
that can distinguish the two classes with maximal mar-
gin and minimal error. Predictive models that has been
trained with various features were obtained by using
LIBSVM [51], a public SVM library. The kernel function
of the SVMs was the radial basis function (RBF), defined
as K(Si, Sj) = exp(−γ

∥∥Si − Sj
∥∥2). LIBSVM library

yielded a value of probability ranging from 0 to 1 for
each prediction, among which, the probability came
from the classifier trained with the best feature were
used as an input vector for second-layered SVM.
To construct a final model, five-fold cross validation

was performed to evaluate the predictive performance
of each model using different features. In order to
achieve this, each dataset was divided into five approxi-
mately equal sized subgroups, of which, 1 and other

4 subgroups functioned as the test and training dataset,
respectively, during cross-validation. Cross-validation
process was performed five times so that each sub-
group can be used as the test set. The five validation
results were then combined to produce a single result.
The advantage of cross-validation evaluation was that
all original data was tested only once, but distributed
into the test and training sets [52]. Here, we adopted
four measures to evaluate the predictive performance
of the trained models: Sensitivity (Sn) = TP/(TP+FN),
Specificity (Sp) = TN/(TN+FP), Accuracy = (TP +
TN)/(TP+FP+TN+FN) [53], and Matthews Correlation

Coefficient (MCC) =
(TP × TN) − (FN × FP)√

(TP + FN)× (TN + FP)× (TP + FP)× (TN + FN)
,

where TP, TN, FP and FN represent the numbers of
true positives, true negatives, false positives, and false
negatives, respectively. Once the selection of the pre-
dictive model with best performance has been accom-
plished, the predictive performance of the best model
was further estimated by an independent testing.

Results and discussion
Substrate site investigation
This study intended to study substrate specificity for
O-GlcNAcylation based on the sequence-based analysis.
In order to explore the amino acid composition neigh-
boring the O-GlcNAcylated Ser/Thr residues, TwoSam-
pleLogo, a web-based tool using multiple sequence
alignments, that detected and displayed significant differ-
ences for compositions of sequence between two sets,
was applied [54]. O-GlcNAcylated Ser/Thr (positive data)
residues and unmodified ones (negative data) were cen-
tered on position 0, and the neighboring residues (-5~+5)
were visualized by graphical sequence logos. Figure 2
presented the specific difference of amino acid positions
and compositions between O-GlcNAcylation sites (375
sequences) and non-O-GlcNAcylation sites (26819
sequences). We observed that the most distinct feature of
O-GlcNAcylation sites was hydrophobic amino acids,
Proline (P), Valine (V), and Alanine (A), locating
centrally around position -2 and +3. Supplementary Fig-
ure S2 (Additional File 1) indicated that the O-GlcNAcy-
lation sites had a lower percentage of solvent-accessible
surface area than non-O-GlcNAcylation sites, which was
feasible to the abundance of hydrophobic amino acids
surrounding substrate sites. Besides, the polar amino
acids, Threonine (T) and Serine (S), also located centrally
at position -1 and +1. Additionally, the positively charged
Lysine (K) and Arginine (R) were dominant at position
-2, -4 and -5, suggesting that the distant amino acids in
sequence, which may be close to O-GlcNAcylation sites
in three-dimensional structure, showed prominent differ-
ence between modified and unmodified sites. Another
characteristic was the depletion of P and L at +1 and +2,

Wu et al. BMC Bioinformatics 2014, 15(Suppl 16):S1
http://www.biomedcentral.com/bmcbioinformatics/supplements/15/S16/S1

Page 5 of 12



respectively which was immediately adjacent to the O-
GlcNAcylation sites. Absence of S, T, and Glutamate (E)
were also found around position -2, -3, and +5. The over-
all motif extracted in this study is consistent with that
consensus sequence previously suggested as P-P-T-[ST]-
T-A [16].
To further improve the detection of the conserved motifs

in large-scale O-GlcNAcylation data set, the MDDLogo
was applied to cluster all 375 identified O-GlcNAcylatied
peptide sequences, achieving the most significant difference
of amino acid composition between positions. With a mini-
mum cluster size of 150 for the O-GlcNAcylated data, we

obtained four subgroups shown in Figure 3. The number
of positive data in each subgroup was also provided in the
last column. With a minimum cluster size >150, no new
clusters were obtained, while a minimum cluster size of
<150 only generated several similar clusters. Two out of all
MDD-clustered subgroups depicted the conserved motifs
of polar amino acids (S, T, and G) at position +1 and +4.
The third subgroup illustrated the hydrophobic amino
acids (P, V, and A) on conserved motifs at specific position
-3. However, the fourth subgroup, that contains the
remaining 69 O-GlcNAcylation sites, did not have a con-
served motif.

Figure 2 TwoSampleLogo between O-GlcNAcylated and non-O-GlcNAcylated sites.

Figure 3 MDDLogo-identified motifs of O-GlcNAcylation data.
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Cross-validation performance
Several related works regarding PTM prediction, Kinase-
Phos [24,25], SNOSite [36], Carboxylator [52], ViralPhos
[35], have adopted 20D Binary code Amino, Acid Com-
position (AAC), Amino Acid Pair Composition (AAPC),
Accessible Surface Area (ASA), Position Weight Matrix
(PWM), Position-specific scoring matrix (PSSM) to train
their predictive models. Here, in order to determine
what features had the best performance to classify O-
GlcNAcylation from non-O-GlcNAcylation sites, the
predictive models were trained with the six features
mentioned above. Their predictive power, including sen-
sitivity (Sn), specificity (Sp), accuracy (Acc), and Matthews
correlation coefficient (MCC), were then evaluated by
using cross-validation. As given in Table 2 The SVM
trained with AAC provided predictive sensitivity, specifi-
city, accuracy, and MCC at 0.64, 0.65, 0.65, and 0.17,
respectively. As for the model trained with AAPC, the
power was 0.66, 0.67, 0.67, and 0.20. Besides, the SVM
models trained with ASA or PWM generated the lower
discriminating power while the feature of PSSM yielded
the best sensitivity of 0.68 and the greatest MCC of 0.22.
The specificity and predictive accuracy of the model
trained with PSSM was equal to that with binary code and
slightly superior to that with other 4 features. Given that
PSSM was considered as the best feature for training a
model for discrimination of 375 O-GlcNAcylation sites,
the predictive sensitivity, specificity, accuracy, and MCC of
the best model were 0.68, 0.69, 0.69, and 0.22, respectively.
Thus, PSSM was selected as the training feature for the
construction of SVM models.
Furthermore, the predictive power for identifying O-

GlcNAcylation sites of all four MDD-clustered models
was evaluated following five-fold cross-validation. In each
SVM model, parameters (Cost and Gamma values) were
optimized to achieve high but balanced specificity and
sensitivity. The prediction accuracy of all SVM models
clustered by MDDLogo is available in Table 3. MDDLogo
clusters containing conserved motifs have high predictive
accuracies. Subgroup OG1, which contained a conserved
S, T, or G residue at position +4, generated an accuracy
of 0.81. Subgroup OG2 and OG3, having a conserved

S, T, or G residue at position +1, and P, V, or A residue
at position -3, both reached the accuracy of 0.79. Besides,
the subgroup that did not provide an apparent conserved
motif achieved a worse predictive performance. For
example, subgroup OG4 had slightly lower accuracy
(0.71) than others. Following five-fold cross-validation,
MDDLogo-clustered SVMs showed better predictive per-
formance than those lacking MDDLogo. Table 3 shows
that the combined MDDLogo-clustered motif SVM
model showed higher accuracy with a sensitivity, specifi-
city, accuracy, and a MCC of 0.76, 0.80, 0.78, and 0.37,
respectively then the SVM with all O-GlcNAcylation site
data which yielded 0.68, 0.69, 0.69, and 0.22, respectively.

Independent testing and comparison with other
prediction tools
A non-redundant independent test set consisting of
1048 positive and 64995 negative sites was used to eval-
uate the MDDLogo-clustered SVMs. The single SVM
model achieved a sensitivity of 0.65, a specificity of 0.67,
an accuracy of 0.67, and the MCC of 0.08 (shown in
Figure 4). Moreover, the integrated SVM models using
all the MDDLogo-clustered substrate motifs accom-
plished a sensitivity of 0.80, a specificity of 0.94, an
accuracy of 0.94, and the MCC of 0.36. We concluded
that greater prediction power can be obtained by using
MDDLogo-clustered SVM models than that by single
SVM model. The independent testing demonstrated that
the proposed method could provide a promising accu-
racy for 459 experimentally verified O-GlcNAcylated
proteins, which were not considered within the con-
struction of predictive model.
To further demonstrate the effectiveness of our

method, the independent testing set was used to com-
pare the MDDLogo-clustered SVMs with three popular
O-GlcNAcylation site prediction tools, YinOYang [15],
O-GlcNAcScan [16], and O-GlcNAcPRED [17]. Figure 5
indicated that the prediction power yielded by our
method (0.80 for sensitivity, 0.94 for specificity, 0.94 for
accuracy, and 0.36 for MCC) was superior to that by
other three prediction tools, especially in sensitivity
and MCC, which was almost twice the value of the

Table 2 Five-fold cross validation results on single SVM model trained with various features.

Training features Number of positive data Number of negative data Sn Sp Acc MCC

20D Binary code 375 375 0.66 0.69 0.69 0.21

Amino Acid Composition (AAC) 375 375 0.64 0.65 0.65 0.17

Amino Acid Pair Composition (AAPC) 375 375 0.66 0.67 0.67 0.20

Accessible Surface Area (ASA) 375 375 0.57 0.59 0.59 0.10

Position Weight Matrix (PWM) 375 375 0.62 0.63 0.63 0.14

Position-specific scoring matrix (PSSM) 375 375 0.68 0.69 0.69 0.22
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lowest one. Besides, the proposed method provided
comparable specificity and accuracy with that analyzed
by O-GlcNAcScan. Overall, the proposed method out-
performed the three prediction tools. The detailed

independent testing results were presented in Supple-
mentary Table S2 (Additional File 1). Take calcium/
calmodulin-dependent protein kinase type IV (CAMK4,
Q16566, KCC4_HUMAN) as an example (Figure 6),

Table 3 Performance of MDDLogo-clustered SVM models evaluated by five-fold cross validation.

SVM model Number of positive data Number of negative data Sn Sp Acc MCC

All data (Single SVM) 375 375 0.68 0.69 0.69 0.22

Subgroup OG1 150 150 0.80 0.81 0.81 0.41

Subgroup OG2 92 92 0.78 0.79 0.79 0.37

Subgroup OG3 64 64 0.76 0.80 0.79 0.37

Subgroup OG4 69 69 0.70 0.71 0.71 0.25

Combined performance (MDDLogo-clustered SVMs) 375 375 0.76 0.80 0.78 0.37

Figure 4 Comparison of independent testing performance between Single SVM model and MDDLogo-clustered SVM models.

Figure 5 Comparison of independent testing performance between our method and three available online O-GlcNAcylation site
prediction tools.
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Figure 6 A case study of O-GlcNAcylation sites prediction on Calcium/calmodulin-dependent protein kinase type IV (CAMK4).
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nine sites including T5, T57, S58, T68, S137, S189,
S344, S345, and S356 has been predicted as potential
O-GlcNAcylation sites by our model. Among them,
T57 S137, S189, S344, and S356 have been confirmed
as O-GlcNAcylation sites [55], suggesting the feasibility
of this model to sieve out the S/T residues that can be
modified by O-GlcNAc moiety.

Interplay between glycosylation and phosphorylation
Considering the regulatory importance of O-GlcNAcyla-
tion of cytosolic and nuclear proteins, there is relatively
little understanding of the signature of O-GlcNAcylated
proteins and its biological interplay with O-phosphate.
To address this issue, we tried to collect the known phos-
phorylation sites adjacent to the O-GlcNAcylation sites.
Within the 375 sequence fragments (starting from
upstream -5 to downstream +5) of O-GlcNAcylation
sites, there were 207 experimentally verified phosphoryla-
tion sites, suggesting the candidate crosstalk between
these two modifications. Among the 207 phosphorylation
sites, corresponding catalytic kinases of 35 sites has been
annotated. Besides, we also found that 80 O-GlcNAcyla-
tion sites located nearly with each other (within 10
amino residues). The phosphorylation and O-GlcNAcyla-
tion sites that located in the consensus sequence of sub-
group OG1 and OG2, with S/T residues at +4 and +1,
respectively, were listed in Supplementary Table S3 and
S4 (Additional File 1). Take c-myc (MYC_HUMAN) as
an example, c-myc has been known to regulate gene
transcription in cell proliferation, apoptosis, and metabo-
lism [56]. S62 on c-myc has been known to be a phos-
phorylation sites while the O-GlcNAcylation of T58 was
also reported. Mutagenesis of S62 to Ala showed a
marked increase of T58 O-GlcNAcylation. The media-
tion of O-GlcNAcylation and phosphorylation of T58
and S62 has been demonstrated to regulate the myriad
functions of c-Myc in cells [57]. We proposed that the
identified substrate motifs in this study may shed light to
the study of the site-specific interplay between these two
modifications.

Conclusion
In this study, the substrate motifs of O-GlcNAcylation
sites were elucidated by means of identifying the poten-
tial substrate specificity of O-GlcNAc transferases. The
investigation was done using experimentally verified O-
GlcNAcylation sites obtained from dbOGAP. This study
explored the use of short linear motifs to further iden-
tify O-GlcNAcylated sites. An iteratively statistical
method (MDDLogo) was employed to detect substrate
motifs on O-GlcNAcylation sites. Based on the MDDLogo-
detected substrate motifs, potential O-GlcNAcylation sites
were identified according to the corresponding motif

signatures. Interestingly, the identified substrate motifs
indicated interplay between phosphorylation and O-
GlcNAcylation sites. The data may facilitate the study of
the cross-talk between these two modifications which can
be use to reveal the biological coordination in signaling,
transcription, and chronic disease. In the evaluation of pre-
dictive power for each single feature, the SVM model
trained with PSSM could outperform that trained with
other features. Five-fold cross validation further supports
our method’s ability to identify O-GlcNAcylation sites con-
taining the MDDLogo-identified substrate motifs. Further-
more, an independent test done by using data not
included in the model training confirmed the ability of
MDDLogo-clustered SVMs.
In addition to the consideration of linear sequence

motifs, structural recruitment is very important in the
investigation of O-GlcNAcylated substrate specificity.
However, with limited information regarding O-GlcNA-
cylated sites on protein three-dimensional (3D) struc-
tures, the structural environment of O-GlcNAcylation
sites could not be investigated with sufficient experi-
mental data [58]. This was the main reason why this
work developed a method to characterize the potential
substrate motifs for O-GlcNAcylation sites. The
approach offered the clues regarding the specificity of
site information of O-GlcNAcylation. It would be
noticed, however, that the further acquisition of experi-
mentally verified O-GlcNAcylation sites is required to
identify more meaningful substrate motifs. Also, a more
abundant set of experimentally verified O-GlcNAcyla-
tion sites on protein 3D structures could be used to
study the substrate recruitment of O-GlcNAc transfer-
ase. These developments could benefit from our
method by obtaining a more accurate identification of
O-GlcNAcylation sites.

Additional material

Additional file 1: Supplementary Tables and Figures. Contains
additional Tables and Figures showing further results in this study

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
TYL and YJC conceived and supervised the project. CTL and HJK carried out
the design, computational analyses, implemented the web-based tool, and
write the manuscript, with inputs from HYW, YJC, and TYL. All authors read
and approved the final manuscript.

Acknowledgements
The authors sincerely appreciate the Academia Sinica (AS-102-TP-A03) and
Ministry of Science and Technology, Taiwan (MOST 103-2221-E-155-020-MY3
to TYL and 100-2628-M-001-003-MY4 to YJC) for financially supporting this
research.

Wu et al. BMC Bioinformatics 2014, 15(Suppl 16):S1
http://www.biomedcentral.com/bmcbioinformatics/supplements/15/S16/S1

Page 10 of 12

http://www.biomedcentral.com/content/supplementary/1471-2105-15-S16-S1-S1.pdf


Declarations
Publication charge for this work was funded by MOST grant 100-2628-M-
001-003-MY4 to YJC.
This article has been published as part of BMC Bioinformatics Volume 15
Supplement 16, 2014: Thirteenth International Conference on Bioinformatics
(InCoB2014): Bioinformatics. The full contents of the supplement are
available online at http://www.biomedcentral.com/bmcbioinformatics/
supplements/15/S16.

Authors’ details
1Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan. 2Department of
Computer Science and Engineering, Yuan Ze University, Taoyuan 320,
Taiwan. 3Innovation Center for Big Data and Digital Convergence, Yuan Ze
University, Taoyuan 320, Taiwan.

Published: 8 December 2014

References
1. Hart GW, Housley MP, Slawson C: Cycling of O-linked beta-N-

acetylglucosamine on nucleocytoplasmic proteins. Nature 2007,
446(7139):1017-1022.

2. Comer FI, Hart GW: O-GlcNAc and the control of gene expression.
Biochim Biophys Acta 1999, 1473(1):161-171.

3. McClain DA, Crook ED: Hexosamines and insulin resistance. Diabetes 1996,
45(8):1003-1009.

4. Liu F, Iqbal K, Grundke-Iqbal I, Hart GW, Gong CX: O-GlcNAcylation
regulates phosphorylation of tau: a mechanism involved in Alzheimer’s
disease. Proc Natl Acad Sci USA 2004, 101(29):10804-10809.

5. Wells L, Vosseller K, Hart GW: Glycosylation of nucleocytoplasmic proteins:
signal transduction and O-GlcNAc. Science 2001, 291(5512):2376-2378.

6. Wang Z, Udeshi ND, O’Malley M, Shabanowitz J, Hunt DF, Hart GW:
Enrichment and site mapping of O-linked N-acetylglucosamine by a
combination of chemical/enzymatic tagging, photochemical cleavage,
and electron transfer dissociation mass spectrometry. Mol Cell Proteomics
2010, 9(1):153-160.

7. Vosseller K, Trinidad JC, Chalkley RJ, Specht CG, Thalhammer A, Lynn AJ,
Snedecor JO, Guan S, Medzihradszky KF, Maltby DA, et al: O-linked N-
acetylglucosamine proteomics of postsynaptic density preparations
using lectin weak affinity chromatography and mass spectrometry. Mol
Cell Proteomics 2006, 5(5):923-934.

8. Trinidad JC, Barkan DT, Gulledge BF, Thalhammer A, Sali A, Schoepfer R,
Burlingame AL: Global identification and characterization of both O-
GlcNAcylation and phosphorylation at the murine synapse. Mol Cell
Proteomics 2012, 11(8):215-229.

9. Alfaro JF, Gong CX, Monroe ME, Aldrich JT, Clauss TR, Purvine SO, Wang Z,
Camp DG, Shabanowitz J, Stanley P, et al: Tandem mass spectrometry
identifies many mouse brain O-GlcNAcylated proteins including EGF
domain-specific O-GlcNAc transferase targets. Proc Natl Acad Sci USA
2012, 109(19):7280-7285.

10. Khidekel N, Ficarro SB, Clark PM, Bryan MC, Swaney DL, Rexach JE, Sun YE,
Coon JJ, Peters EC, Hsieh-Wilson LC: Probing the dynamics of O-GlcNAc
glycosylation in the brain using quantitative proteomics. Nat Chem Biol
2007, 3(6):339-348.

11. Myers SA, Panning B, Burlingame AL: Polycomb repressive complex 2 is
necessary for the normal site-specific O-GlcNAc distribution in mouse
embryonic stem cells. Proc Natl Acad Sci USA 2011, 108(23):9490-9495.

12. Nandi A, Sprung R, Barma DK, Zhao Y, Kim SC, Falck JR: Global
identification of O-GlcNAc-modified proteins. Anal Chem 2006,
78(2):452-458.

13. Copeland RJ, Bullen JW, Hart GW: Cross-talk between GlcNAcylation and
phosphorylation: roles in insulin resistance and glucose toxicity. Am J
Physiol Endocrinol Metab 2008, 295(1):E17-28.

14. Wang Z, Gucek M, Hart GW: Cross-talk between GlcNAcylation and
phosphorylation: site-specific phosphorylation dynamics in response to
globally elevated O-GlcNAc. Proc Natl Acad Sci USA 2008,
105(37):13793-13798.

15. Gupta R, Brunak S: Prediction of glycosylation across the human
proteome and the correlation to protein function. Pac Symp Biocomput
2002, 310-322.

16. Wang J, Torii M, Liu H, Hart GW, Hu ZZ: dbOGAP - an integrated
bioinformatics resource for protein O-GlcNAcylation. BMC Bioinformatics
2011, 12:91.

17. Jia CZ, Liu T, Wang ZP: O-GlcNAcPRED: a sensitive predictor to capture
protein O-GlcNAcylation sites. Mol Biosyst 2013, 9(11):2909-2913.

18. Lee TY, Huang HD, Hung JH, Huang HY, Yang YS, Wang TH: dbPTM: an
information repository of protein post-translational modification. Nucleic
Acids Res 2006, , 34 Database: D622-627.

19. Lu CT, Huang KY, Su MG, Lee TY, Bretana NA, Chang WC, Chen YJ,
Huang HD: DbPTM 3.0: an informative resource for investigating
substrate site specificity and functional association of protein post-
translational modifications. Nucleic Acids Res 2013, , 41 Database:
D295-305.

20. Su MG, Huang KY, Lu CT, Kao HJ, Chang YH, Lee TY: topPTM: a new
module of dbPTM for identifying functional post-translational
modifications in transmembrane proteins. Nucleic Acids Res 2014, , 42
Database: D537-545.

21. Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S,
Gasteiger E, Huang H, Lopez R, Magrane M, et al: UniProt: the Universal
Protein knowledgebase. Nucleic Acids Res 2004, , 32 Database: D115-119.

22. Gupta R, Birch H, Rapacki K, Brunak S, Hansen JE: O-GLYCBASE version 4.0:
a revised database of O-glycosylated proteins. Nucleic Acids Res 1999,
27(1):370-372.

23. Hornbeck PV, Kornhauser JM, Tkachev S, Zhang B, Skrzypek E, Murray B,
Latham V, Sullivan M: PhosphoSitePlus: a comprehensive resource for
investigating the structure and function of experimentally determined
post-translational modifications in man and mouse. Nucleic Acids Res
2012, , 40: D261-270.

24. Huang HD, Lee TY, Tzeng SW, Wu LC, Horng JT, Tsou AP, Huang KT:
Incorporating hidden Markov models for identifying protein kinase-
specific phosphorylation sites. J Comput Chem 2005, 26(10):1032-1041.

25. Huang HD, Lee TY, Tzeng SW, Horng JT: KinasePhos: a web tool for
identifying protein kinase-specific phosphorylation sites. Nucleic Acids Res
2005, , 33 Web Server: W226-229.

26. Lee TY, Bretana NA, Lu CT: PlantPhos: using maximal dependence
decomposition to identify plant phosphorylation sites with substrate site
specificity. BMC Bioinformatics 2011, 12:261.

27. Lee TY, Bo-Kai Hsu J, Chang WC, Huang HD: RegPhos: a system to explore
the protein kinase-substrate phosphorylation network in humans. Nucleic
Acids Res 2011, , 39 Database: D777-787.

28. Xue Y, Ren J, Gao X, Jin C, Wen L, Yao X: GPS 2.0, a tool to predict kinase-
specific phosphorylation sites in hierarchy. Mol Cell Proteomics 2008,
7(9):1598-1608.

29. Wong YH, Lee TY, Liang HK, Huang CM, Wang TY, Yang YH, Chu CH,
Huang HD, Ko MT, Hwang JK: KinasePhos 2.0: a web server for identifying
protein kinase-specific phosphorylation sites based on sequences and
coupling patterns. Nucleic Acids Res 2007, , 35 Web Server: W588-594.

30. Xue Y, Li A, Wang L, Feng H, Yao X: PPSP: prediction of PK-specific
phosphorylation site with Bayesian decision theory. BMC Bioinformatics
2006, 7:163.

31. Huang KY, Wu HY, Chen YJ, Lu CT, Su MG, Hsieh YC, Tsai CM, Lin KI,
Huang HD, Lee TY: RegPhos 2.0: an updated resource to explore protein
kinase-substrate phosphorylation networks in mammals. Database
(Oxford) 2014, 2014:bau034.

32. Shien DM, Lee TY, Chang WC, Hsu JB, Horng JT, Hsu PC, Wang TY,
Huang HD: Incorporating structural characteristics for identification of
protein methylation sites. J Comput Chem 2009, 30(9):1532-1543.

33. Lee TY, Lin ZQ, Hsieh SJ, Bretana NA, Lu CT: Exploiting maximal
dependence decomposition to identify conserved motifs from a group
of aligned signal sequences. Bioinformatics 2011, 27(13):1780-1787.

34. Lee TY, Chen YJ, Lu CT, Ching WC, Teng YC, Huang HD: dbSNO: a
database of cysteine S-nitrosylation. Bioinformatics 2012, 28(17):2293-2295.

35. Bretana NA, Lu CT, Chiang CY, Su MG, Huang KY, Lee TY, Weng SL:
Identifying protein phosphorylation sites with kinase substrate
specificity on human viruses. PLoS One 2012, 7(7):e40694.

36. Lee TY, Chen YJ, Lu TC, Huang HD: SNOSite: exploiting maximal
dependence decomposition to identify cysteine S-nitrosylation with
substrate site specificity. PLoS One 2011, 6(7):e21849.

37. Chen YJ, Lu CT, Lee TY: dbGSH: a database of S-glutathionylation.
Bioinformatics 2014.

Wu et al. BMC Bioinformatics 2014, 15(Suppl 16):S1
http://www.biomedcentral.com/bmcbioinformatics/supplements/15/S16/S1

Page 11 of 12

http://www.biomedcentral.com/bmcbioinformatics/supplements/15/S16
http://www.biomedcentral.com/bmcbioinformatics/supplements/15/S16


38. Huang KY, Lu CT, Bretana N, Lee TY, Chang TH: ViralPhos: incorporating a
recursively statistical method to predict phosphorylation sites on virus
proteins. BMC Bioinformatics 2013, 14(Suppl 16):S10.

39. Burge C, Karlin S: Prediction of complete gene structures in human
genomic DNA. J Mol Biol 1997, 268(1):78-94.

40. Crooks GE, Hon G, Chandonia JM, Brenner SE: WebLogo: a sequence logo
generator. Genome Res 2004, 14(6):1188-1190.

41. Chang WC, Lee TY, Shien DM, Hsu JB, Horng JT, Hsu PC, Wang TY,
Huang HD, Pan RL: Incorporating support vector machine for identifying
protein tyrosine sulfation sites. J Comput Chem 2009.

42. Lee TY, Chen SA, Hung HY, Ou YY: Incorporating distant sequence
features and radial basis function networks to identify ubiquitin
conjugation sites. PLoS One 2011, 6(3):e17331.

43. Hsu JB, Bretana NA, Lee TY, Huang HD: Incorporating evolutionary
information and functional domains for identifying RNA splicing factors
in humans. PLoS One 2011, 6(11):e27567.

44. Xie D, Li A, Wang M, Fan Z, Feng H: LOCSVMPSI: a web server for
subcellular localization of eukaryotic proteins using SVM and profile of
PSI-BLAST. Nucleic Acids Res 2005, , 33 Web Server: W105-110.

45. Jones DT: Protein secondary structure prediction based on position-
specific scoring matrices. J Mol Biol 1999, 292(2):195-202.

46. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W,
Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic Acids Res 1997, 25(17):3389-3402.

47. Pang CN, Hayen A, Wilkins MR: Surface accessibility of protein post-
translational modifications. J Proteome Res 2007, 6(5):1833-1845.

48. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H,
Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic Acids Res 2000,
28(1):235-242.

49. Ahmad S, Gromiha MM, Sarai A: RVP-net: online prediction of real valued
accessible surface area of proteins from single sequences. Bioinformatics
2003, 19(14):1849-1851.

50. Ahmad S, Gromiha MM, Sarai A: Real value prediction of solvent
accessibility from amino acid sequence. Proteins 2003, 50(4):629-635.

51. Chang C-C, Lin C-J: LIBSVM: a library for support vector machines. ACM
Transactions on Intelligent Systems and Technology 2011, 2(27):1-27.

52. Lu CT, Chen SA, Bretana NA, Cheng TH, Lee TY: Carboxylator:
incorporating solvent-accessible surface area for identifying protein
carboxylation sites. J Comput Aided Mol Des 2011, 25(10):987-995.

53. Chatr-aryamontri A, Ceol A, Peluso D, Nardozza A, Panni S, Sacco F, Tinti M,
Smolyar A, Castagnoli L, Vidal M, et al: VirusMINT: a viral protein
interaction database. Nucleic Acids Res 2009, , 37 Database: D669-673.

54. Vacic V, Iakoucheva LM, Radivojac P: Two Sample Logo: a graphical
representation of the differences between two sets of sequence
alignments. Bioinformatics 2006, 22(12):1536-1537.

55. Dias WB, Cheung WD, Wang Z, Hart GW: Regulation of calcium/
calmodulin-dependent kinase IV by O-GlcNAc modification. J Biol Chem
2009, 284(32):21327-21337.

56. Dang CV: c-Myc target genes involved in cell growth, apoptosis, and
metabolism. Mol Cell Biol 1999, 19(1):1-11.

57. Kamemura K, Hayes BK, Comer FI, Hart GW: Dynamic interplay between
O-glycosylation and O-phosphorylation of nucleocytoplasmic proteins:
alternative glycosylation/phosphorylation of THR-58, a known
mutational hot spot of c-Myc in lymphomas, is regulated by mitogens.
J Biol Chem 2002, 277(21):19229-19235.

58. Su MG, Lee TY: Incorporating substrate sequence motifs and spatial
amino acid composition to identify kinase-specific phosphorylation sites
on protein three-dimensional structures. BMC Bioinformatics 2013,
14(Suppl 16):S2.

doi:10.1186/1471-2105-15-S16-S1
Cite this article as: Wu et al.: Characterization and identification of
protein O-GlcNAcylation sites with substrate specificity. BMC
Bioinformatics 2014 15(Suppl 16):S1.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Wu et al. BMC Bioinformatics 2014, 15(Suppl 16):S1
http://www.biomedcentral.com/bmcbioinformatics/supplements/15/S16/S1

Page 12 of 12


	Abstract
	Background:
	Results:
	Conclusion:

	Introduction
	Materials and methods
	Data collection and preprocessing
	Detection of O-GlcNAcylated site specificities
	Features extraction and encoding
	Model construction and cross-validation

	Results and discussion
	Substrate site investigation
	Cross-validation performance
	Independent testing and comparison with other prediction tools
	Interplay between glycosylation and phosphorylation

	Conclusion
	Competing interests
	Authors’ contributions
	Acknowledgements
	Declarations
	Authors’ details
	References



