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Abstract

Background: Under a Markov model of evolution, recoding, or lumping, of the four nucleotides into fewer groups
may permit analysis under simpler conditions but may unfortunately yield misleading results unless the
evolutionary process of the recoded groups remains Markovian. If a Markov process is lumpable, then the
evolutionary process of the recoded groups is Markovian.

Results: We consider stationary, reversible, and homogeneous Markov processes on two taxa and compare three
tests for lumpability: one using an ad hoc test statistic, which is based on an index that is evaluated using a
bootstrap approximation of its distribution; one that is based on a test proposed specifically for Markov chains; and
one using a likelihood-ratio test. We show that the likelihood-ratio test is more powerful than the index test, which
is more powerful than that based on the Markov chain test statistic. We also show that for stationary processes on
binary trees with more than two taxa, the tests can be applied to all pairs. Finally, we show that if the process is
lumpable, then estimates obtained under the recoded model agree with estimates obtained under the original
model, whereas, if the process is not lumpable, then these estimates can differ substantially. We apply the new
likelihood-ratio test for lumpability to two primate data sets, one with a mitochondrial origin and one with a
nuclear origin.

Conclusions: Recoding may result in biased phylogenetic estimates because the original evolutionary process is
not lumpable. Accordingly, testing for lumpability should be done prior to phylogenetic analysis of recoded data.

Phylogeny Markov model, stationarity, homogeneity,reversibility, recoding, lumping, nucleotides, primates

Introduction
When nucleotides intentionally are recoded to a 3- or 2-
state alphabet in order to focus on a subset of the possi-
ble types of substitutions (e.g., transversions [1-3]) or
reduce compositional heterogeneity [4], it is no longer
appropriate to use model-based phylogenetic methods
that rely solely on time-reversible, 4-state Markov models.
Instead, one needs to use a 3- or 2-state Markov model
to approximate the evolutionary processes for the
recoded sequence data. This requirement was first rea-
lised by Phillips and Penny [5], who used a time-

reversible 2-state Markov model [6] to analyse RY-
recoded nucleotide sequences, and Gibson et al. [7], who
developed a time-reversible 3-state Markov model to ana-
lyse Y-recoded nucleotide sequences. Before these studies,
other investigators had used RY-recoded nucleotide
sequences to infer the evolutionary relationships among
mammals [1-3] and among bacteria [4].
Recoding of nucleotides and/or amino acids has been

used repeatedly in recent phylogenetic studies [8-31].
However, the mathematical principles underpinning the
recoding of nucleotides or amino acids have not yet been
adequately examined. For example, it is not yet known
whether the Markovian property is maintained after
recoding and how this should be tested [32]. Without

* Correspondence: Lars.Jermiin@csiro.au
4CSIRO Ecosystem Sciences, Canberra, ACT 2601, Australia
Full list of author information is available at the end of the article

Vera-Ruiz et al. BMC Bioinformatics 2014, 15(Suppl 2):S8
http://www.biomedcentral.com/1471-2105/15/S2/S8

© 2014 Vera-Ruiz et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

mailto:Lars.Jermiin@csiro.au
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/


this knowledge, we may run the risk of using a promising
procedure in a manner that turns out to be inappropriate
for the data.
In this paper, we take a first step by considering tests

for lumpability in a Markov model of evolution for pairs
of homologous nucleotide sequences (we are aware of
only one paper in the phylogenetic literature where the
term lumpability is used [33], but there it was used in a
different context). We only consider nucleotides but
believe our tests could be generalized to encompass
amino acids as well. We then illustrate the performance
of our tests for lumpability using simulated and real
data, and show that recoding of nucleotides should be
used with caution when analysing DNA phylogenetically.

Methods
The theoretical basis for recoding nucleotides
Let S = {A,C,G,T} be the set of nucleotides, and let S ′
be a partition of S such that S ′ = {S1, ..., Sq}, where q
<4. Then S is reduced by grouping, or lumping, some of
the original states (i.e., A, C, G, and T) into one or two
new states (i.e., R, Y, S, W, M, K, B, D, H, and V )–in
molecular phylogenetics, this procedure has been called
recoding [34]. Table 1 presents the 13 possible recoding
schemes and partitions of S ′ using notation established
by the NC-IUB [35]. The 13 recoding schemes fall into
three major grouping categories, as shown in Table 1.

The evolutionary process for two homologous nucleotide
sequences
Consider two nucleotide sequences, A and B, each with
n independently evolving sites, which have diverged
under Markovian conditions from their common ances-
tor on a rooted, 2-tipped tree. Let π0 denote the initial
probability vector of the nucleotide frequencies, such
that πT

0 = (π01 ,π02 ,π03 ,π04) , where, for convenience of

notation, we will use the subscripts 1, 2, 3, 4 to denote
A, G, C, T . Over each edge of this tree, there is a sub-
stitution process, X(t) and Y(t), respectively, described
by the transition probabilities

PX
ij (t) = P

[
X(t) = j|X(0) = i

]

and

PY
ij (t) = P

[
Y(t) = j|Y(0) = i

]
.

Let fij(t) denote the theoretical joint probability of a
site being in state i in A and state j in B at time t:

fij(t) = P[X(t) = i,Y(t) = j|X(0) = Y(0)]. (1)

Now, let F(t) = {fij(t)} denote the joint probability
matrix and let PX(t) and PY(t) denote the transition prob-
ability matrices of X(t) and Y(t). In practice, the two
matrices cannot be identified from F(t) without some
assumptions about the evolutionary processes of the
sequences A and B. We assume that the processes are
globally stationary, reversible, and homogeneous (SRH)
(for definitions, see [36-39], and, in more detail, [40]).
Given these assumptions, take PX(t) = PY(t) = P(t) and, if
πX and πY denote the equilibrium probability distribu-
tions of the processes X(t) and Y(t), take πX = πY = π0 =
π and write Π = diag(π). Then, from (1), we get F(t) = P
(t)TΠP(t). The transition probability matrix can be
expressed by an instantaneous rate matrix R, such that P

(t) = eRt, where Rij ≥ 0 for i ≠ j, Rii = −
∑4

i�=j Rij, and

πTR = 0T, where πT is the equilibrium distribution of
R [40]. Furthermore, the instantaneous rate matrix can
take the form R = SΠ, where S is a symmetric matrix

with sij ≥ 0 for i ≠ j, and sii = −
∑4

i�=j sijπj/πi [40]. The

matrices R and P(t) can be written in terms of the

Table 1 The 13 ways of reducing a 4-letter state space (S ) to a 3- or 2-letter state space S ′ .
Nucleotide-grouping Subsets Recoding notation Resulting S ′ Major grouping category

{{A, G}, C, T} R {R, C, T} {2 : 1 : 1}

{A, G, {C, T}} Y {A, G, Y}

{A, {C, G}, T} S {A, S, T}

{C, G, {A, T}} W {C, G, W}

{A, C, {G, T}} M {M, G, T}

{C, {A, G, T}} K {A, C, K}

{A, {C, G, T}} B {A, B} {3 : 1}

{C, {A, G, T}} D {C, D}

{G, {A, C, T}} H {G, H}

{T, {A, C, G}} V {T, V}

{{A, G}, {C, T}} RY {R, Y} {2 : 2}

{{A, T}, {C, G}} SW {S, W}

{{A, C}, {G, T}} KM {K, M}
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eigenvector decomposition of Π1/2SΠ1/2 = LΛLT. In other
words

R = �−1/2L�LT�1/2 (2)

and

P(t) = �−1/2Le�tLT�1/2, (3)

where Λ is a diagonal matrix with columns containing
the eigenvalues of Π1/2SΠ1/2 and L is a matrix with col-
umns containing its right eigenvectors. The joint prob-
ability matrix is then symmetric and

F(t) = �1/2Le2�tLT�1/2. (4)

Note that under these assumptions, there are only
nine free parameters to be estimated: six free parameters
for the off-diagonal elements of S (define sT = (s12, s13,
s14, s23, s24, s34)) and three free parameters for π

(because π4 = 1 −
∑3

i=1
πi ). The time t can be fixed at

1 since modifying it is equivalent to modifying the s-
parameters.
Let N denote the 4 × 4 divergence matrix for A and B,

such that N = {nij}, where nij represents the number of
homologous sites that are in state i in A and state j in
B. Under the model, the vector of elements of N has a
multinomial distribution with parameters n and F(t); its
expected value is thus E(N) = nF(t). Because the para-
meters s and π are in a one-to-one relation with the ele-
ments of F, the maximum-likelihood estimates of s and
π can be obtained from the eigenvector decomposition

of F̂ (t) =
1
2n

(
N +NT), then

�̂ = diag(F̂(1)1) (5)

and

Ŝ = �̂
−1/2L̂�̂L̂

T
�̂

−1/2, (6)

where L̂ and �̂ are obtained from

�̂
−1/2F̂(1)�̂

−1/2 = L̂e2�̂L̂
T .

Lumpable Markov chains
The following probabilities can be defined for any given
S ′ = {S1, · · ·,Sq}, where q <4, such that a lumped pro-

cess, X′(t) , with a smaller number of states, is generated
with transition probabilities

P′
kl(t) = P[X′(t) = l|X′(0) = k]

= P[X(t) ∈ Sl|X(0) ∈ Sk],
(7)

and initial probabilities π ′ = P[X′(0) = k] = P[X(0) ∈ Sk] .
By definition [41,42], a Markov process is lumpable if,

for every starting vector π, the lumped process, defined

in (7), is a Markov chain whose transition probabilities
do not depend on the choice of π. A necessary and suf-
ficient condition for X’(t) to be lumpable with respect
to a partition S ′ is that for every pair of subsets, Sk

and Sl ,
∑

j∈Sl
Pij(t) , has the same value for every state

i in Sk [41,42]. Accordingly, if X’(t) is lumpable, then the
transition probabilities for X’(t) for any given pair of
subsets in S ′ are

P′
kl(t) =

∑
j∈Sl

Pij(t), for any i ∈ Sk.

If the Markov chain is lumpable, the lumped transi-
tion matrix P’(t) can be expressed as a matrix function
of P(t) as follows:

P’(t) = UP(t)V,

where V is a 4 × q matrix, where q is the number of
states in the lumped process, such that the l-th column
of V is a vector with 1’s in the components correspond-
ing to states in Sl and 0’s otherwise, and

U =
(
VT�V

)−1
VT�,

is a q × 4 matrix whose k-th row is a probability vec-
tor with non-zero elements corresponding to the states
in Sk . A useful necessary and sufficient condition for
lumpability [41,42] is

VUP(t)V = P(t)V. (8)

In the case of nucleotides, the second column of Table 2
gives the conditions required for lumpability of four
nucleotides.
We note that under certain conditions, such as those

considered by the JC [43] and F81 [44] models, all
recodings are lumpable. Conditions under which recod-
ing of nucleotides are possible for the K2P [45] and
HKY [46] models are given in Table 3.2 of [32].

Tests for lumpability
We consider three possible tests: An ad hoc test based on
a parametric bootstrap for an index of departure from the
lumpability condition [32]; a test based on a test for lump-
ability in Markov chains [47]; and a likelihood-ratio test.
Index test
From (8), if a Markov process is lumpable, then

M = VUP(t)V − P(t)V

should have all elements zero. Consider the index pro-
posed in [32]:

η =

⎛
⎝∑

i,j

m2
ij

⎞
⎠

1/2

, where mij = M. (9)
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It is clear that h ≥ 0, with h being 0 only under lump-
able Markovian processes. Then, the hypothesis that the
Markov process is lumpable is equivalent to the hypoth-
esis H0 : h = 0. From the observed divergence matrix, N
of two homologous sequences, assuming a SRH Marko-
vian model of evolution, an estimate η̂ can be used as a
test statistic for H0, where

η̂ =

⎛
⎝∑

i,j

m2
ij

⎞
⎠

1/2

,

and M̂ = VUP̂ (1)V − P̂ (1)V for P̂ (1) = exp(Ŝ�̂) .
The distribution of η̂ is unknown, so we propose an

approximation to it that is based on the parametric boot-
strap. The estimated vectors π̂ and ŝ do not necessarily
satisfy the conditions for lumpability, so we obtain π̃ and

s̃ using the relevant equations from the third column of
Table 2 as estimates that do satisfy the lumpability condi-
tion. Once the π̃ and s̃ vectors are calculated, a proce-
dure similar to that shown in (2), (3) and (4) is carried out

such that the matrices R̃ , P̃ (1), and F̃(1) are generated
under the lumpability conditions. Now B matrices can be
generated by simulation under conditions of lumpability,
where we take N∗

b , with b ∈ {1, ..., B}, to be independent

and multinomial with parameters n and F̃(1) . From
each of these simulated samples, we calculate
�∗

b , �∗
b and S∗

b from F∗
b , as in (5) and (6), and then

P∗
b (1) = exp

(
S∗
b�

∗
b

)
,M∗

b = VUP∗
b (1)V − P∗

b (1)V , and

η∗
b =

⎛
⎝∑

i,j

m̂∗2
bij

⎞
⎠

1/2

.

Table 2 Conditions required for a 4-state Markovian process to be lumpable (in terms of s and π), and transformations
to obtain π̃ and s̃ such that the lumpability holds.

S ′ Lumpability conditions ( π̃ , s̃ )

{{A, G}, C, T} s12 = s23
s14 = s34

s̃13 = s̃23 = (ŝ13 + ŝ23)/2
s̃14 = s̃34 = (ŝ14 + ŝ34)/2

{A, G, {C, T}} s12 = s14
s23 = s34

s̃12 = s̃14 = (ŝ12 + ŝ14)/2
s̃23 = s̃34 = (ŝ23 + ŝ34)/2

{A, {C, G}, T} s12 = s13
s24 = s34

s̃12 = s̃13 = (ŝ12 + ŝ13)/2
s̃24 = s̃34 = (ŝ24 + ŝ34)/2

{C, G, {A, T}} s12 = s24
s13 = s34

s̃12 = s̃24 = (ŝ12 + ŝ24)/2
s̃13 = s̃34 = (ŝ13 + ŝ34)/2

{{A, C}, G, T} s13 = s23
s14 = s24

s̃13 = s̃23 = (ŝ13 + ŝ23)/2
s̃14 = s̃24 = (ŝ14 + ŝ24)/2

{A, C, {G, T}} s13 = s14
s12 = s13

s̃13 = s̃14 = (ŝ13 + ŝ14)/2
s̃23 = s̃24 = (ŝ23 + ŝ24)/2

{A, {C, G, T}} s12 = s13
s13 = s14

s̃12 = s̃13 = s̃14 = (ŝ12 + ŝ13 + ŝ14)/3

{C, {A, G, T}} s12 = s23
s23 = s24

s̃12 = s̃23 = s̃24 = (ŝ12 + ŝ23 + ŝ24)/3

{G, {A, C, T}} s13 = s23
s23 = s34

s̃13 = s̃23 = s̃34 = (ŝ13 + ŝ23 + ŝ34)/3

{T, {A, C, G}} s14 = s24
s24 = s34

s̃14 = s̃24 = s̃34 = (ŝ14 + ŝ24 + ŝ34)/3

{{A, G}, {C, T}} s12π2 + s14π4 = s23π2+ s34π4
s12π1 + s23π3 = s14π1+ s34π3

s̃23 = s̃12(π̂2π̂3−π̂1π̂4) + s̃14π̂4(π̂1+π̂3)
π̂3(π̂2+π̂4)

s̃34 = s̃12π̂1+s̃23π̂3−s̃14π̂1
π̂3

{{A, T}, {C, G}} s12π2 + s13π3 = s24π2+ s34π3
s12π1 + s24π4 = s13π1+ s34π4

s̃13 = s̃12(π̂1π̂3−π̂2π̂4) + s̃24π̂4(π̂2+π̂3)
π̂3(π̂1+π̂4)

s̃34 = s̃12π̂2+s̃13π̂3−s̃24π̂2
π̂3

{{A, C}, {G, T}} s13π3 + s14π4 = s23π3 + s24π4
s13π1 + s23π2 = s14π1 + s24π4

s̃23 = s̃13(π̂2π̂3−π̂1π̂4) + s̃14π̂4(π̂1+π̂2)
π̂2(π̂3+π̂4)

s̃24 = s̃13π̂1+s̃23π̂2−s̃14π̂1
π̂2

Vera-Ruiz et al. BMC Bioinformatics 2014, 15(Suppl 2):S8
http://www.biomedcentral.com/1471-2105/15/S2/S8

Page 4 of 11



The true P-value is then the probability that we obtain
a value as large as or larger than the observed η̂ , so a
bootstrap approximation to this P-value is the propor-
tion of η∗

i , ..., η
∗
B exceeding η̂ .

Markov chain test
A c2 test to determine whether a Markov chain is lump-
able with respect to a partition S ′ is available [47]. The
test is based on the comparison of observed transition
frequencies to their respective theoretical counterparts
under the null hypothesis that the chain is lumpable.
The approach does not make any assumption about
reversibility or stationarity of the process. The authors
used a matrix of transition counts, {nij}, to estimate the
transition probabilities pij, where nij represents the num-
ber of transitions into state j from state i in one step, so
the number of steps in the Markov chain is n••, where
the subscript • indicates summation. Now, if we start
from our divergence matrix N, where nij represents the
number of sites that are in state i for sequence A and
state j in sequence B, and the SRH assumptions are
kept, either A or B can be assumed to be the original
sequence at time 0, whereas the other one can be
assumed to be the observed sequence at time 2 (since
we took the edge lengths to be 1). Take A as the ances-
tral sequence, then the divergence matrix N has the
same properties as a transition count matrix, and we
can proceed as described in [47]. A transition probabil-
ity from i to Sl is

gil =
∑
j∈Sl

Pij(2),

where l = 1, ..., q. From the definition of a lumpable
process (7), if the Markovian process is lumpable with
respect to S ′ , then

gil =
∑
i∈Sk

∑
j∈Sl

Pij(2)/γk,

where gk is the number of states that are part of the
subset Sk , and k = 1, ..., q. Therefore, gil = P′

kl (2) if the

process is lumpable and the null hypothesis of lumpabil-
ity can be expressed as H0 : gil = P′

kl (2) for all i ∈ Sk .
Given the divergence matrix, N, estimates gil and
P′
kl (2) are

ĝil =
∑
j∈Sl

nij
ni•

and

P̂′
kl(2) =

n′
kl

n′
k•

=

∑
i∈Sk

∑
j∈Sl

nij∑
i∈Sk

ni•
,

where N′ = {n′
kl} is the divergence matrix of the

recoded nucleotide sequences. Jernigan and Baran [47]
obtained the test statistic

T =
4∑
i=1

q∑
l=1

(oil − eil)2

eil
,

where

oil =
∑
j∈Sl

nij

and

eil =
ni•n′

kl

n′
k•

,

and showed (by pointing out that oil − eil are a stack
of q tables of size 4 × gl of mean-corrected multinomials
with row and column sums equal to zero) that the test
statistic is distributed under H0 as a c2 variable with

(q − 1)
∑q

k=1
(γk − 1) degrees of freedom, if all cells

are non-zero. In the case considered here, the degrees
of freedom for any of the recoding schemes is 2.
Likelihood-ratio test
Consider estimates (π̂ , ŝ) whose values maximize a log-
likelihood function

L(π , s) =
∑
i,j

nijlnfij(π , s),

where {nij} = N, the observed divergence matrix, F(π,s)
(1) = exp(SΠ) and {fij(π, s)} = F(π,s)(1). These matrices
are obtained as shown in (5) and (6). We also want to
estimate (π, s) under the constraints imposed by the
null hypothesis of lumpablity, H0. The constraints are
given in the second column of Table 2. Then we can
define the constrained estimates ( π̃ , s̃ ) to satisfy

L(π̃ , s̃) = max
π ,s∈H0

L(π , s).

This maximization needs a new approach. We con-
struct an orthogonal matrix, A, such that

As = y,

where y is the response constraint vector, defined such
that two values of y are zero corresponding to the two con-
straints. The matrix A will, in the case of partitions into
two groups of two, contain π, so to emphasise this possible
dependence, write y = g(s|π). Also write s = A−1y = g−1(y|π).
Then

L(π̃ , s̃) = max
π ,y

L(π , g−1(y|π)).
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The optimization process is done in two steps: the
values of s, if dependent of π, are optimized given the
original π set, then the π vector is optimized given the
optimized values of s. This process is repeated until con-
vergence is achieved.
From these two log-likelihood values, a log likelihood-

ratio, LR, can be calculated with

LR = L
(
π̂ , ŝ

) − L
(
π̃ , s̃

)

Under the null hypothesis of lumpability, 2 × LR is
distributed as a c2 variable with 2 degrees of freedom.

Results
Assessment of accuracy
In order to check the accuracy of the tests under the
null hypothesis, Monte Carlo simulations were done
from a set of parameters that meets the assumption of
lumpability. The parameter vectors in this case were

πT = (0.1, 0.2, 0.3, 0.4)

and

sT = (0.2, 0.25, 0.2, 0.2, 0.15, 0.2) .

The joint probability distribution was calculated by the
steps given in (2), (3), and (4); then, assuming a nucleotide
sequence of length n = 1500, 5000 divergence matrices were
calculated by Monte Carlo simulations assuming that Ni is
multinomial with parameters (n, F(1)) for i = 1, . . . , 5000.
The accuracy of each test for lumpability was verified

using a PP plot displaying the distribution of observed
P-values, obtained from each test, plotted against the
expected P-values, obtained from the uniform distribu-
tion. The linear relationship between these two sets of
P-values (Figure 1) confirms the accuracy of the tests.

Comparisons of power
The power of each test was compared for each recoding
scheme under non-lumpable conditions. To do this, we
used πT = (0.1, 0.2, 0.3, 0.4) and values of s that yield
increasing values of h, as in (9), generated 3000 diver-
gence matrices using Monte Carlo simulation, and then
calculated the three test statistics and their corresponding
P-values, using the procedures explained above, for each
value of h. The power at the 5% level, is then equal to
the proportion of observed P-values less than 0.05.
Figure 2 shows the power curves for RY recoding–

similar power curves were obtained for the other 12
recoding schemes (results not shown). All of these
results indicate that the likelihood-ratio test is the most
powerful of the tests considered, followed by the Index
test and, finally, by the Markov Chain test.

Cases with more than 2 homologous sequences
For general cases involving more than 2 homologous
sequences, we can test for lumpability in all pairs of
sequences by using the methods described above under
the assumption that the evolutionary process is SRH over
the whole tree (i.e., the process is globally SRH). For exam-
ple, in the case of an alignment with seven sequences,
there will be 21 P-values. A PP-plot with these P-values
should yield a straight line when the data are lumpable,
and deviations from this expectation when the processes
are not lumpable. However, the observed P-values are not
independent, so we need to show that this condition is not
cause for concern for the dots in a PP-plot to be on a
straight line. We give a simplified argument taken from
[48]. Consider a set of observed P-values P1, . . ., Pn,
which, if all the null hypotheses are true, are identically
distributed as uniform random variables on (0, 1). Let p be
any value between 0 and 1, let I(Pj < p) take the value 1 if

Figure 1 PP-plot for the three tests with respect to S ′ = {R,Y} . The observed P-values were calculated from 5000 Monte Carlo experiments
for each test (i.e., the Index test (a), the Markov chain test (b), and the likelihood-ratio test (c)) and charted against the expected P-values.
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Pj < p and 0 otherwise, and let Np =
∑n

j=1
I
(
Pj < p

)
be

the number of observed P-values less than p. Then E(I(Pj
< p)) = P (Pj < p) = p and so the expected number of
P-values less than p is E(Np) = np. This implies that the

plot of the observed P-values will lie approximately on a
straight line. The dependence will cause some clustering
of the observed P-values but the PP-plot will remain useful
in indicating whether there is evidence against some of the
hypotheses.
The PP-plots shown in Figure 3 were obtained from

alignments of nucleotides generated under lumpable or
non-lumpable conditions, with respect to RY recoding,
on the tree shown in Figure 4 before being analysed
using the likelihood-ratio test. From these two plots, it
is clear that the test is able to identify cases where
sequences have evolved under non-lumpable conditions.

The effect of non-lumpability on phylogenetic estimates
If a process is lumpable with respect to a given recoding
scheme (e.g., RY), then we can obtain Fq(t) = VTP(t)V
and from this, using (2, 3) and (4), we can further obtain
the transition matrix of the process X’(t),

Pq(t) = �
−1/2
q Lqe�q

t
LTq�

1
q /2,

where Πq = VTΠV . If the process is not lumpable with
respect to that recoding scheme, then X’(t) is not a Mar-
kov process and, although we can calculate Pq(t), it is not
the transition matrix of the process X’(t).
In either case, the matrix P’(t) = UP(t)V can be defined

and, if the process X(t) is lumpable, then P’(t) = Pq(t). On
the other hand, if X(t) is not lumpable, the elements of

P’(t) are still given as P′
kl(t) = P(X′(t) = l|X′(0) = k) ,

but P’(t) is no longer a transition matrix of X’(t). Conve-
niently, we can compare P’(1), the true conditional prob-
ability matrix at t = 1, with Pq (1), the false transition

Figure 3 PP-plots for lumpability tests for simulated data. PP-plots for the likelihood-ratio test, with respect to RY recoding, for the
randomly-generated lumpable 7-taxon data (a) and the randomly-generated non-lumpable 7-taxon data (b). Sequences comprising 2000 sites
were generated on the tree shown in Figure 4 under time-reversible conditions with sites evolving under independent and identical conditions
((a): πT = (0.1, 0.2, 0.3, 0.4), and sT = (0.20, 0.25, 0.20, 0.20, 0.15, 0.20); (b): πT = (0.1, 0.2, 0.3, 0.4), and sT = (0.50, 0.25, 0.20, 0.20, 0.15, 0.20)).

Figure 2 Power curve for partition S ′ = {R,Y} . A total of 3000

divergence matrices were generated by Monte Carlo simulation for
each triplet of points, corresponding to the three test statistics, and
500 parametric bootstraps were used during the calculation of P-
values for the h index. The same π-vector (i.e., πT = (0.1, 0.2, 0.3, 0.4))
was used for every triplet of points whereas the values in the s-
vector were allowed to vary slightly for each point.
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matrix at t = 1, thus allowing us to examine the effect of
non-lumpability.
Figure 5 illustrates the effect on phylogenetic estimates.

Figure 5a shows the tree used to simulate alignments of
3000 nucleotides under a time-reversible 4-state Markov
model with πT = (0.2, 0.3, 0.2, 0.3) and sT = (0.2, 0.1, 0.3,
0.3, 1.0, 0.2). As can be seen from the π- and s-vectors,
the lumpable condition is met for RY-recoding but not
for KM-recoding. Figures 5b and 5c display the corre-
sponding tree with the edge lengths adjusted according
to, respectively, the RY- and KM-recoding schemes.
Every edge in the tree obtained from the RY-recoded

data is shorter than the corresponding edge in the tree
obtained from the original data. However, because the
original process was lumpable with respect to RY-recod-
ing, the relative length of each edge in the two trees is
the same, the difference being equal to a scale factor

ρ =

∑4
i=1 πirii∑2

j=1 π2j r2jj
.

Figure 5 Effect of recoding on phylogenetic estimates. Panel (a) displays the tree that was used to generate alignments of 3000 nucleotides
under a time-reversible 4-state Markov model. Panel (b) shows the corresponding tree with edge lengths adjusted according to the RY-recoding
scheme. Panel (c) shows the corresponding tree with edge lengths adjusted according to the KM-recoding scheme. Panels (d), (e), and (f)
present the corresponding results obtained by analysis of the data generated on the tree in panel (a). The scale bar corresponds to the expected

number of substitutions (i.e.,−
∑4

i=1
πirii) .

Figure 4 Tree used to generate simulated data. Tree used to
generate the simulated data, which were then analysed to obtain the
results shown in Figure 3. The scale bar corresponds to 1 time unit.
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Every edge in the tree obtained from the KM-recoded
data is also shorter than the corresponding edge in the
tree obtained from the original data, but the relative
length of each edge in the two trees differ, the reason
being that the process generating the original data was
not lumpable with respect to KM-recoding.
Figures 5d, 5e, and 5f show the corresponding results

for the data generated by Monte Carlo simulation. The
three trees display the same characteristics as those
shown in Figures 5a, 5b, and 5c, while also showing
some variation in the edge lengths that is due to the
random nature of the data and the finite sample size.
Hence, although recoding of nucleotides might be useful
for a variety of reasons, using recoded data, without
having tested for lumpability first, might lead to biased
phylogenetic estimates.

Example 1 – Primate mitochondrial DNA
In a previous study [37], a set of mitochondrial nucleo-
tide sequences of hominoid origin were found to to fit
the GTR model [49], implying that the data are consis-
tent with evolution under globally SRH conditions. We
applied the likelihood-ratio test to these data. Figure 6
shows the PP-plots from tests for lumpability for RY
recoding, indicating non-lumpability, and AGY recoding,
indicating lumpability.

Example 2 – Primate nuclear DNA
In a previous study [50], a ~9.3kb fragment of X chromo-
somal DNA was obtained from 26 species of primates
and analysed phylogenetically using the HKY model. In
so doing, the authors implicitly assumed evolution under
globally SRH conditions. We wanted to apply the likeli-
hood-ratio test to these data, so we obtained the same 26

sequences from GenBank [51], aligned them using
MAFFT [52] (with the linsi option invoked), and, using
SeaView [53], removed all columns with gaps and/or
ambiguous characters. The resulting alignment contained
6913 sites from the 26 species. We then applied the
matched-pairs test of symmetry [38] to the data to deter-
mine whether the sequences were consistent with evolu-
tion under globally SRH conditions. The PP-plot in
Figure 7 clearly shows that the data are consistent with
evolution under these conditions. Hence, it is appropriate
to use our likelihood-ratio test to determine whether any

Figure 6 PP-plots for lumpability tests for hominoid mitochondrial data. PP-plots for the likelihood-ratio tests for lumpability for hominoid
data for RY-recoding (a) and for AGY-recoding (b), respectively.

Figure 7 PP-plot for matched-pairs test of symmetry for
primate nuclear data. PP-plot demonstrating consistency with
evolution under globally SRH conditions for the 4-state process.
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of the recoding schemes would retain the Markovian
properties of the original data. Figure 8 presents the PP-
plots from the likelihood-ratio test for lumpability for
RY-recoding, showing strong evidence against lumpability,
and for the SW-recoding, which provided the least evi-
dence against lumpability. It is evident that no recoding
should be applied to these data.

Conclusions
Bias in estimates of phylogenetic parameters can occur
when recoding of nucleotides or amino acids is used to
transform data associated with models of evolution,
which are not lumpable with respect to the recoding
scheme used. A test proposed in this paper, which is
based on a likelihood-ratio test, can yield an indication
of whether the same results for estimable parameters
can be expected from fitting a given model of evolution
and its recoded version to the data.
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