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Abstract

Cancer is a complex disease that has proven to be difficult to understand on the single-gene level. For this reason
a functional elucidation needs to take interactions among genes on a systems-level into account. In this study, we
infer a colon cancer network from a large-scale gene expression data set by using the method BC3Net. We provide
a structural and a functional analysis of this network and also connect its molecular interaction structure with the
chromosomal locations of the genes enabling the definition of cis- and trans-interactions. Furthermore, we
investigate the interaction of genes that can be found in close neighborhoods on the chromosomes to gain
insight into regulatory mechanisms. To our knowledge this is the first study analyzing the genome-scale colon
cancer network.

Background
Colon cancer is one of the leading causes of cancer related
mortality in the western world [1]. It is a complex disease
that is thought to mainly arise from polypoid lesions in
the intestines as a result of inherited or somatic genetic
alterations. These precursor lesions acquire further aberra-
tions as they progress from adenoma to adenocarcinoma
to metastatic disease, which in a simplified view can be
described as a successive cascade of genetic changes [2,3].
The most common gene mutations occurring in colorectal
cancer effect APC (tumor supressor), MLH1, TP53,
SMAD4, KRAS and BRAF [4]. While significant progress
has recently been made in characterizing the heterogeneity
of the resulting disease subtypes and the effects of different
combinations of these common mutations, a better under-
standing of the underlying gene networks is required, par-
ticularly, since the identification of general biomarkers has
been unsuccessful as the disease stages and forms are
highly specific to individuals. One reason for this observa-
tion is that genes are organized in non-linear overlapping
pathways and act in a complex cellular network. Such an

organizational structure allows alternative regulatory
mechanisms to differentially control similar biological pro-
cesses. Hence, multiple combinations of genes can result
in similar phenotypic outcomes. As a result, cancer can be
considered a pathway disease, which cannot be well char-
acterized by individual marker genes [5,6]. For example, in
colorectal cancer, activation of Wnt signaling is observed
in nearly all tumors. However this can be mediated by
inactivating mutation of the APC gene or hyper-activation
of beta-catenin, or through mutation of genes with func-
tions analogous to APC [7].
Due to experimental limitations, our knowledge of the

underlying network in the cancer specific context is lim-
ited. Rather gene regulatory networks are inferred from
large-scale gene expression data and provide a descrip-
tion of the mutual dependency structure between indivi-
dual genes. The relationships represent different
interaction types within the gene network that involve
transcriptional regulatory interactions, (e.g. transcription
factor target gene interactions); protein-protein interac-
tions (e.g. between units of a protein complex) or more
transient protein modifying interactions (e.g. phosphory-
lation events).
There are many factors that are thought to influence

the regulation and explain changes of gene expression
or signaling pathways that govern growth and differen-
tiation processes. In sporadic colon cancer chromosomal
instability [8] and microsatellite instability have been
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well described as phenotypes associated with subclasses
of tumor types. In addition, epigenetic alterations such
as methylation that affect gene expression of genes
responsible for processes related to cancer progression
have been shown to play important roles in disease
development and progression [9]. Consequently, genetic
and epigenetic events can lead to deregulation of multi-
ple adjacent genes. For example, overexpression of mul-
tiple genes on Chromosome 13q is frequently observed
in colorectal cancer [10-14].
In our study, we perform a systems analysis of the

colon cancer gene regulatory network with respect to
functional properties of the network structure and
known cancer genes. To this end, we infer a BC3Net
[15] gene regulatory network from a large-scale colon
cancer gene expression data set (GSE2109) provided by
the International Genomics Consortium (IGC). Further-
more, we explore the role of interactions between genes
co-located on the same or on different chromosomes.
We call these different interaction types cis- and trans-
interactions. Finally, we study close neighborhoods on
the chromosomes with respect to the connectivity of
genes they contain as well as their biological function.
The goal of our study is to identify and analyze co-regu-
lated subnetworks that may allow to identify regions
under major regulatory programs on the chromosome
level that could help to understand the general princi-
ples of colon cancer.
This paper is organized as follows: In the next section,

we describe all methods and data we are using for our
analysis. In the ‘Results’ section, we present our findings
and in the section ‘Discussion’ we interpret our results.
The paper finishes with the section ‘Conclusions’ with a
summary.

Methods
Gene expression data set
For our study, we use gene expression data from colon
cancer tissue samples from the Expression Project for
Oncology (expO) (http://www.intgen.org/expo/) micro-
array database maintained by the International Geno-
mics Consortium (IGC). The data are obtained from the
GEO NCBI repository (GSE2109 ) [16] containing a
total of 289 Affymetrix samples in CEL format from the
platform hgu133plus2. The 289 samples correspond to a
number of different histologies, as shown in Table 1,
and 149 samples are from female and 139 are from
male patients.

Preprocessing and normalization of the data
We normalize the microarray samples for the selected
tissue types using RMA and quantile normalization [17]
using log2 expression intensities for each probe set.
Because a gene can be represented by more than one

probe set, we use the median expression value as sum-
mary statistic for different probe sets. Entrez gene ID to
Affymetrix probe set annotation is obtained from the
“hgu133plus2.db” R package. If a probe set is unmapped,
we exclude it from our analysis. After these preproces-
sing steps, we have 19, 738 genes and 289 samples we
use for our analysis.

Inference of the colon cancer gene regulatory network
In recent years many network inference methods have
been introduced [18-21]. In this paper, for inferring the
colon cancer network from gene expression data, we use
the BC3Net algorithm [15], because it has been demon-
strated that BC3Net does not only lead to meaningful bio-
logical results but it possess also a favorable computational
complexity making a large-scale analysis feasible [15,22].
Briefly, BC3Net is a bagging version of C3Net [23,24]

that generates from one dataset, D, an ensemble of B inde-
pendent bootstrap datasets, {Db

k}Bk=1 , by sampling from D
with replacement by using a non-parametric bootstrap with
B = 100. Then, for each generated data set Db

k in the
ensemble, a network Gb

k is inferred by using C3Net [23,24].
From the ensemble of networks {Gb

k}Bk=1 we construct one
aggregate network, Gb

w , which is used to determine the
statistical significance of the connection between gene
pairs. Then we test the significance of each edge using
a binomial test. This results in the final network BC3Net.

Census cancer and colon cancer specific genes
The Cancer Gene Census (CGC) [25] (Version 2011 − 03
− 22) (http://www.sanger.ac.uk/genetics/CGP/Census/)

Table 1 Overview of the histologies of the 289 colon
cancer samples provided by Expression Project for
Oncology (expO).

Histology Number of
Samples

Adenocarcinoma 218

Mucinous Adenocarcinoma 36

Adenocarcinoma arising in a villous adenoma 15

Metastatic Papillary Serous Adenocarcinoma 3

Carcinoma in situ arising in a villous adenoma 2

Metastatic Mucinous Adenocarcinoma 2

Adenocarcinoma In situ 1

Clear cell adenocarcinoma 1

Colloid Carcinoma 1

Medullary Carcinoma 1

Metastatic Adenocarcinoma 1

Metastatic Papillary Serous Carcinoma 1

Metastatic Serous adenocarcinoma (papillary
serous)

1

Signet Ring Cell Carcinoma 1

Undifferentiated Carcinoma 1

Missing 4
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provides information about genes that are frequently
observed within tumors of different types of cancer. The
CGC list comprises a total of 457 cancer genes, from these
457 genes, 440 are present in the colon cancer gene
expression data set.

CSPNN: Connected shortest path neighbor network
In order to analyze subnetworks of the whole colon can-
cer gene regulatory network, we extract a connected
shortest path neighbor network (CSPNN) in the following
way. First, we define a set of genes, L1, e.g., by using can-
cer genes. Then we determine all shortest paths between
these genes using the Dijkstra distance [26]. This results
in a second set of genes that contains all genes on these
shortest paths, including the genes in L1, we call L2. Map-
ping L2 onto the network BC3Net gives us a connected
subnetwork. To thissubnetwork we add all next neigh-
bors of the genes in L1 resulting in the CSPNN.

GPEA: Gene pair enrichment analysis
It has been shown that genes that cluster together in a
co-expression network share a common biological func-
tion [27]. We extend this analysis to take the connectiv-
ity structure of a gene regulatory network into more
detailed account. Specifically, for testing the statistical
enrichment of GO-terms in the inferred colon cancer
network, we are applying a hypergeometric test that is
based on ‘interactions’ (edges). Due to the fact that
‘interactions’ always involve a ‘pair of genes’ this test is
called gene pair enrichment analysis (GPEA) [15,28].
For our analysis, we obtain information from the Gene
Ontology database for entrez IDs of genes from the Bio-
conductor [29] annotation packages org.Hs.eg.db (v2.9.0)
and GO.db (v2.9.0).
In the following, we briefly describe a GPEA. In this

description, we use the terms ‘interaction’, ‘edge’ and
‘gene pair’ synonymously. For p genes there is a total of
N = p(p − 1)/2 different gene pairs. If there are pGO genes
for a particular GO-term then the total number of gene
pairs for this GO-term is mGO = pGO (pGO − 1)/2.
Furthermore, if we suppose that the inferred colon can-
cer network BC3Net contains n interactions, of which k
interactions are among genes from the given GO-term,
then a p-value for the enrichment of gene pairs of this
GO-term can be calculated from the following hypergeo-
metric distribution

p(k—GO - term) =
mGO∑
i=k

P(X = i—GO - term) =
mGO∑
i=k

(
mGO

i

)(
N − mGO

n − i

)
(
N
n

) (1)

This p-value gives an estimate for the probability to
observe k or more interactions between genes from the
given GO-term.

Chromosome cooperativity analysis
For analyzing the ‘cooperativity’ among chromosomes,
we define a statistical test that estimates if there are
chromosome pairs that contain a statistically significant
number of interactions between them [30]. For instance,
for chromosome i and j we calculate the number of
interactions, si,j, from the colon cancer network BC3Net
and apply a statistical hypothesis test to see if this num-
ber is larger than expected by chance, i.e., srand|i,j
We obtain the sampling distribution for the null

hypothesis

H0 : si,j = srand—i,j for i, j ∈ {1, 2, · · · ,X,Y} (2)

from gene label randomizations in the colon cancer
network. For our analysis we used E = 100, 000.
For each randomization, e ∈ E, we calculate the num-

ber of interactions sei,j between each chromosome pair

(i, j ∈ {1, 2, · · · , 22,X,Y} from which we estimate the
p-values by

pi,j =

∑E
e=1 I(s

e
i,j > si,j)

E
(3)

Here, I(), is the indicator function that gives a value of
‘1’ if its argument is true and ‘0’ otherwise. We would
like to emphasize that by utilizing the connectivity
structure of the colon cancer network BC3Net in com-
bination with a gene label resampling will conserve not
only the total number of interactions among genes, but
also the structural properties of the network. Also the
uneven number of genes on the 24 chromosomes is
accommodated by our resampling procedure. In total,
we perform 300 = (242 − 24)/2 + 24 tests and adjust for
multiple testing by applying a Benjamini & Hochberg
[31] correction controlling the FDR for a significance
level of a = 0.05. This guarantees a false discovery rate
of FDR ≤ a [32].

Results
Colon cancer gene regulatory network
Using the gene expression data set from expO and the
BC3Nnet algorithm, we infer a colon cancer gene regu-
latory network (GRN), briefly denoted as BC3Net.This
regulatory network consists of 19, 738 genes and con-
tains 135, 194 interactions (edges) among these genes.
With the exception of 14 genes the overall colon cancer
network is connected. Technically, this means that the
giant connected component (GCC) [33] of our colon
cancer network has a size of 19, 724 genes. For this net-
work, we find an average shortest path length of 4.52
(measured with the Dijkstra distance [34]) and an edge
density of ∈= 6.9 · 10−4 . The degree distribution of the
colon cancer network follows a power law distribution
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with an exponent of a = 3.22 indicating that the result-
ing network is scale-free [35], as has been previously
found for many different types of biological networks
[36-38], including GRNs [30,39].

Functional GPEA of biological processes
We evaluate our colon cancer GRN network based on
functional knowledge about genes that are involved in
similar biological processes as defined in the Gene
Ontology (GO) database [40]. On the assumption that
functionally related genes are likely to interact with each
other, we sought to identify the functional modules that
are most prominently represented in our inferred colon
cancer GRN network. For this reason, we perform a
GPEA analysis for GO-terms with a term size larger
than 2 and less than 1000 genes and a significance level
ofa = 0.001 with a Bonferroni multiple testing correc-
tion. Furthermore, in order to study the relevance of the
identified functional modules for cancer hallmarks, we
test for the enrichment of cancer census genes [25].
In total, we test 7, 989 GO-terms from the category

Biological Process and find 430 (5.38%) statistically sig-
nificant terms. The 50 most significant terms of the
GPEA analysis are shown in Table 2. The significant
GO-terms describe a variety of biological processes such
as cell cycle phase (938 edges), translational initiation
(155 edges), elongation (156 edges) and termination
(130 edges), organelle fission (318 edges), viral transcrip-
tion (137 edges), cellular respiration (122 edges), type I
interferon-mediated signaling pathway (62 edges) and
regulation of immune system process (609 edges).
From the 457 defined cancer census genes 440 are pre-

sent in our colon cancer GRN. In Table 2, we show for
each GO-term the number of cancer census genes (col-
umn seven - CG). For these, we perform a cancer census
gene enrichment analysis using a hypergeometric test with
a significance level of a = 0.05 and a Benjamini & Hoch-
berg correction. Overall, from the 50 most significant GO-
terms in Table 2, we find 23 to be enriched with cancer
genes (indicated in Table 2 by “+”). Overall, the 50 most
significant GO-terms comprise in total 4, 197 genes, of
which 228 are cancer genes (51.81% = 228/440 of all cen-
sus genes present in the colon cancer network).
In Additional file 1, we show a table with all 458 sig-

nificant GO-terms.

Core subnetwork of colon cancer genes
In order to learn about the immediate interactions
between well known colon cancer genes, we extract a con-
nected shortest path neighbor network (CSPNN - see
‘Methods’ section) from our colon cancer network in the
following way. For the 6 known colon cancer genes L1 =
{APC, MLH1, TP53, SMAD4, KRAS and BRAF}, we deter-
mine all shortest paths between these genes in BC3Net.

This results in the gene set L2 containing all genes on
these shortest paths. Mapping L2 back onto BC3Net gives
us a connected subnetwork to which we add the next
neighbor genes of L1. This results in the CSPNN contain-
ing in total 107 genes and 184 interactions. Among the
107 genes are 7 known cancer genes (in addition to the
6 colon cancer genes it contains PRDM16 from the cancer
census gene list).
Figure 1 shows a graphical visualization of this network.

Its average shortest path length is 4.6 and from a func-
tional GPEA, we find as most significant biological process
‘macromolecular complex assembly’ (GO:0071363), with
a nominal p-value of pnominal = 4.3e − 5. It is interesting to
observe the interaction between the tumor supressor APC
and the motor protein KIF3B. KIF3B belongs to a micro-
tuble dependent motor protein complex (KIF3A-KIF3B
-KAP3 ) that is a suggested transport mechanism of the
APC protein along microtubles [41]. The interaction
between the tumor supressor TP53 and the SUMO-speci-
fic protease SENP3 was reported in [42]. SENP3 is sug-
gested as a regulator of the p53-Mdm2 pathway. We also
observe an interaction between SMAD2 and SMAD4.
SMAD2 and SMAD4 are both members of the SMAD
protein complex [43]. Further, SMAD4 shows a direct
connection to CEACAM8. CEACAM8 belongs to the CEA
gene family and is involved in cell adhesion and migration.
The measurement of CEA levels in serum is used in
the clinic for monitoring the recurrence of colorectal
cancer [44].

Linking interactions in the colon cancer network with
their genetic origin
Next, we study the relation between the genetic context
and the structural connectivity of our colon cancer net-
work BC3Net in the following way. Interactions between
genes on separate or the same chromosome can be seen as
trans-interactions and cis-interactions, analogous to the
trans- and cis-regulation of genes [45]. However, we would
like to emphasize that there is a crucial difference between
both types of connections. For ‘regulation’, the transcrip-
tion of a gene is controlled by a cis- or trans-acting tran-
scription factor, whereas an ‘interaction’ means any type of
biochemical binding, not limited to transcription regula-
tion, but also including protein-protein interaction, phos-
phorylation, ubiquitination or others. For our colon cancer
network, we find that in total 27, 345(21.01%) interactions
are cis-interactions and 102, 806(78.99%) edges correspond
to trans-interactions.
In the following, we study three questions that address

different chromosomal levels. First, we study the coop-
erativity of chromosomes in form of the enhancement of
their interactions. This identifies pairs of chromosomes
that are more cooperative with each other. Second, we
study the inferrability of interactions in the colon cancer

Emmert-Streib et al. BMC Bioinformatics 2014, 15(Suppl 6):S6
http://www.biomedcentral.com/1471-2105/15/S6/S6

Page 4 of 15



Table 2 Biological Process GPEA analysis showing the 50 most significant terms.

GOID GO-term #Genes #Interactions p-value GCC CG

GO:0022403 cell cycle phase 853 938 5.8e-238 349 60/+

GO:0000278 mitotic cell cycle 776 818 7.1e-221 343 54/+

GO:0006414 translational elongation 108 156 3.0e-181 72 1

GO:0006415 translational termination 91 130 9.0e-160 67 1

GO:0006614 SRP-dependent cotranslational protein targeting to membrane 105 136 4.6e-153 67 2

GO:0045047 protein targeting to ER 107 137 2.1e-152 67 2

GO:0072599 establishment of protein localization to endoplasmic reticulum 108 137 2.6e-151 67 2

GO:0006613 cotranslational protein targeting to membrane 107 136 7.4e-151 67 2

GO:0000279 M phase 537 462 4.1e-149 196 33/+

GO:0000087 M phase of mitotic cell cycle 374 321 3.6e-144 159 20/+

GO:0070972 protein localization to endoplasmic reticulum 121 140 2.2e-142 67 2

GO:0000184 nuclear-transcribed mRNA catabolic process, nonsense-mediated decay 118 137 6.0e-141 70 2

GO:0000280 nuclear division 363 305 7.2e-138 155 20/+

GO:0007067 mitosis 363 305 7.2e-138 155 20/+

GO:0006413 translational initiation 153 155 7.4e-134 78 4

GO:0048285 organelle fission 388 318 4.0e-133 161 20/+

GO:0006412 translation 469 355 5.2e-115 183 16

GO:0000956 nuclear-transcribed mRNA catabolic process 171 150 1.1e-113 73 7

GO:0006612 protein targeting to membrane 154 139 7.9e-113 67 4

GO:0019080 viral genome expression 152 137 7.7e-112 70 10/+

GO:0019083 viral transcription 152 137 7.7e-112 70 10/+

GO:0016071 mRNA metabolic process 614 463 4.2e-109 301 21

GO:0006402 mRNA catabolic process 183 152 1.2e-107 73 7

GO:0043624 cellular protein complex disassembly 157 131 5.9e-101 67 2

GO:0043241 protein complex disassembly 162 132 9.1e-99 67 2

GO:0006401 RNA catabolic process 210 157 5.1e-96 74 7

GO:0072594 establishment of protein localization to organelle 212 156 7.8e-94 74 4

GO:0022904 respiratory electron transport chain 111 97 4.0e-90 62 5

GO:0019058 viral infectious cycle 228 158 7.2e-87 81 14/+

GO:0032984 macromolecular complex disassembly 183 133 7.8e-87 67 7

GO:0045333 cellular respiration 163 122 1.3e-86 80 9/+

GO:0006259 DNA metabolic process 880 655 2.9e-85 334 75/+

GO:0051301 cell division 480 310 2.2e-81 126 35/+

GO:0022900 electron transport chain 151 105 2.0e-74 66 5

GO:0006396 RNA processing 656 428 1.1e-73 249 18

GO:0060337 type I interferon-mediated signaling pathway 73 62 3.2e-67 29 5

GO:0071357 cellular response to type I interferon 73 62 3.2e-67 29 5

GO:0034340 response to type I interferon 74 62 1.7e-66 29 5

GO:0002682 regulation of immune system process 893 609 1.2e-63 265 83/+

GO:0051320 S phase 148 89 2.7e-58 40 8

GO:0045087 innate immune response 544 308 1.8e-56 151 25/+

GO:0051325 interphase 405 218 8.8e-56 116 34/+

GO:0022411 cellular component disassembly 295 156 3.7e-55 69 12

GO:0016032 viral reproduction 701 419 1.5e-54 150 46/+

GO:0044764 multi-organism cellular process 703 420 2.5e-54 150 46/+

GO:0022415 viral reproductive process 547 305 4.6e-54 107 44/+

GO:0051329 interphase of mitotic cell cycle 399 210 3.8e-53 114 34/+

GO:0050776 regulation of immune response 564 313 2.2e-52 146 43/+

GO:0030198 extracellular matrix organization 209 110 5.5e-52 54 11/+

GO:0043062 extracellular structure organization 210 110 1.4e-51 54 11/+

Significant enrichment of cancer census genes is indicated by a ‘+’ (column seven). GCC denotes the size of the giant connected component corresponding to
the genes of a GO-term; CG number of census cancer genes in the GCC.
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network with respect to their cis- or trans-acting role.
This allows to us to learn about the heterogeneity of
these interaction types. Third, we investigate chromoso-
mal neighborhoods with respect to their functional
enrichment of GO-terms of the structural connectivity in
the colon cancer network.

Chromosome cooperativity
To enhance insight about the chromosome cooperativ-
ity, we conduct a statistical test as described in the

Methods section ‘Chromosome cooperativity analysis’.
As a result, we find that 4 of the 300 chromosome pairs
are statistically significant, shown in the table in Figure
2B. It is interesting to note that chromosome 22 is
involved in two of these four connections. This is high-
lighted in Figure 2A by the link color green for Chr 22.
Our analysis also sheds light on the cooperation of

genes as measured by the prevalence of significant inter-
actions between chromosome pairs. From this perspec-
tive, visualized in Figure 2A, one sees that only a rather

Figure 1 CSPNN for the 6 colon cancer genes APC, MLH1, TP53, SMAD4, KRAS and BRAF (red). Genes on shortest paths and next neighbor
genes are shown in gray besides if they are present in the census cancer gene list (PRDM16 (blue)). In total, this network contains 107 genes,
including 7 census cancer genes, and 184 interactions.
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limited number of chromosomes contribute to this coop-
eration on the chromosome level.
Heterogeneity of cis- and trans-interactions
To investigate the heterogeneity of cis- and trans-inter-
actions in the colon cancer network, we utilize a mea-
sure called the ensemble consensus rate (ECR).
Specifically, the colon cancer network inferred by
BC3Net is aggregated from a bootstrap ensemble of
individual networks {Gb

k}Bk=1 ; see Figure 3A. This aggre-
gation step is based on the ensemble consensus rate
(ECR) that measures how often an interaction is
observed in the individual networks in the bootstrap
ensemble. Formally, the ensemble consensus rate, ecr
(i, j), is estimated for each potential interaction between
gene i and gene j, as the following probability,

ecr(i, j) = Pr
(
finding an interaction between genes i and j in {Gb

k}Bk=1
)
. (4)

Due to the symmetry of the mutual information values
utilized by C3Net, each of the bootstrap ensemble net-
works in {Gb

k}Bk=1 is undirected and it holds, ecr(i, j) =
ecr(j, i).
In the following, we want to zoom-in potential effects of

the chromosomal position of interacting genes on the
structure of the colon cancer network. In order to accom-
plish this, we utilize the ECR from which this network is
inferred. Specifically, for each chromosome, we determine

the ECR of cis-interactions, between co-located genes on
the same chromosome, and trans-interactions, between
genes located on different chromosomes. This means, for
each pair of chromosomes, m,n ∈ {1, 2, · · ·X,Y} , we
determine the following set,

ECSmn = {ecr(i, j)—gene i is on chromosome m, and gene j is on chromosome n}. (5)

We call the set ECSmn the ensemble consensus set for
chromosome m and n, because it contains all ECR
values of the corresponding interacting genes that are
located on chromosome m and n. As a consequence of
symmetry of the ECR also the ensemble consensus sets
are symmetric,

ECSmn = ECSnm. (6)

For m = n these sets correspond to cis-interactions
and for m ≠ n to trans-interactions. This means, in
total, we have 24 ensemble consensus sets for cis-
interactions, {ECS1,1, ECS2,2, · · ·ECSY ,Y}, and 276
ensemble consensus sets for trans-interactions,
{ECS1,2, ECS1,3, · · ·ECSY ,22, ECSY ,X} .
The above separation in cis- and trans-interaction types

allows a basic understanding of the wiring of the colon
cancer network, conditioned on the chromosomes. We
start our analysis by presenting results for integrated

Figure 2 A: Statistically significant chromosome cooperations are highlighted by a link. B: The table shows the Benjamini & Hochberg
(BH) adjusted p-values for these links.
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ensemble consensus sets, for a simplified overview. Here
by integrated we mean an union over chromosomes. For
the cis- and trans-interactions that means

ECScis =
⋃

m∈{1,···Y}

{
ECSm,m}

(7)

ECStrans(n) =
⋃

m∈{1,···Y}

{
ECSn,m

}
for n ∈ {1, · · ·Y} (8)

In Figure 3B, we show a boxplot of the distributions of
the average ECR rates for the 25 ensemble census sets;
ECScis in red and the ECStrans(n) in blue. We observe

Figure 3 A: Connection between the ensemble consensus rate and BC3Net. B: Integrated ensemble consensus rate (ECR) for cis-interactions
(red) and trans-interactions (blue). C: Median values of the individual ensemble consensus sets ECSmn for m,n ∈ {1, · · ·X,Y} .
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almost a two-fold higher ECR for cis-interactions (median
of means value is 0.1695) compared to trans-interactions
(median of means value is 0.0993).
For the distribution of the trans-interactions (blue -

Figure 3B) the chromosomes exhibit subtle variations.
Chromosome 13 shows the largest and chromosome Y
shows the smallest median ECR. In order to test,
whether this observation is influenced by genes with a
large degree, we compared the distribution of the aver-
age degree of trans gene pairs between the chromo-
somes and investigated the location of hub genes. As a
result, we found that chromosome 13 has an increased
average node degree, compared to all other chromo-
somes (not shown).
Table 3 shows the 10 major hub genes of the colon

cancer network. For each hub gene, we extracted the
subnetwork including its direct neighbors. The molecu-
lar function of the subnetworks for each hub gene are
described by the most significant GO term identified by
a Gene Ontology enrichment analysis (FDR = 0.1 and a
Benjamini & Hochberg correction). The identified terms
for the hub gene subnetworks have functional annota-
tions related to cell adhesion and signaling such as
synaptic transmission, detection of stimulus, sensory
perception and receptor activity (Table 3).
The major hub gene OR7E104P is located on chromo-

some 13 with a degree of 458 (Table 3). The ECStrans

median of means for chromosome 13 is 0.1108 (Figure
3B) and drops to 0.0953 (not shown) similar to the
other chromosomes upon removal of the major hub
OR7E104P. Hence, the subtle increase of the ECR for
chromosome 13 is a result of the largest hub gene of
the colon cancer network.
In Figure 3C, we show results for the 300 individual

ensemble consensus sets ECSmn. For reasons of simpli-
city, we show only the median ensemble consensus rates
instead of box plots, to obtain a compressed visualization.
Overall, we observe also for the individual ECS higher

cis- than trans- consensus rates. Furthermore, chro-
mosome 13 and chromosome Y appear elevated and
demeaned (see column colors).
Chromosomal neighborhood-induced GPEA analysis
Finally, we study the connection between chromosomal
neighborhoods and interactions between genes, as given
by the colon cancer network. Specifically, we want to
identify genomic regions with enriched subnet- works of
interacting genes that are adjacent, i.e., co-located, on the
chromosomes. This analysis is based on a GPEA where
the gene sets are defined from a sliding window along the
human chromosome, comprising co-located genes within
such a window. See Figure 4A for a schematic visualiza-
tion and the definition of our gene sets. For our analysis,
we use a window length of 1 Mb (mega bases) and slide
this window in steps of 500 Kb (Kilo bases) along the
chromosomes. That means consecutive windows have an
overlap of 500 Kb. We perform a GPEA for a total of 3,
987 chromosome window gene sets, whenever a window
contains at least 2 genes that are present in the colon
cancer GRN.
From our analysis, we find 260 (6.52%) of the 3, 987

gene sets with a significant enrichment of interactions (a
= 0.001 and Bonferroni correction). The 35 most signifi-
cant genomic regions from this GPEA are shown in
Table 4. In this table, each row corresponds to one win-
dow gene set and the first column indicates the chromo-
some, the second the locus and the third the start base
pair. Column four and five give the number of genes in
the window gene set and the number of edges (interac-
tions) between these genes in the colon cancer network.
The p-value in column six corresponds to the result from
the GPEA.
Column seven shows the number of genes in the giant

connected component (GCC). For these genes we perform
a (conventional) Gene Ontology enrichment analysis to
characterize the biological function for each window gene
set. In column nine, we show the most significant GO

Table 3 The 10 major hub genes of the colon cancer network.

entrez symbol Description degree locus most significant GO-term

81137 OR7E104P olfactory receptor 458 chr13q21.31 GO:0007268 synaptic transmission

2623 GATA1 transcription factor 321 chrXp11.23 GO:0007601 visual perception

348808 NPHP3-AS1 antisense RNA 262 chr3q22.1 GO:0050906 detection of stimulus involved in sensory perception

285877 POM121L12 transmembrane protein 247 chr7p12.1 GO:0007606 sensory perception of chemical stimulus

283933 ZNF843 zinc finger protein 231 chr16p11.2 GO:0030534 adult behavior

60506 NYX extracellular matrix 217 chrXp11.4 GO:0042749 regulation of circadian sleep/wake cycle

387601 SLC22A25 anion transporter 216 chr11q12.3 GO:0048511 rhythmic process

284805 C20orf203 ORF 212 chr20q11.21 GO:0006813 potassium ion transport

6521 SLC4A1 anion transporter 208 chr17q21.31 GO:0072529 pyrimidine-containing compound catabolic process

163778 SPRR4 envelope precursor 207 chr1q21.3 GO:0007608 sensory perception of smell

The hub genes are described by their entrez gene id, gene symbol, short description, node degree, chromosomal location and the most significant GO-term
based on a Gene Ontology enrichment analysis based on the direct interactions for each hub gene.
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term (a = 0.05 and Benjamini & Hochberg FDR correc-
tion) as a result from this analysis. Furthermore, we find
that 44/260 of the chromosome window subnetworks
have a GCC with more than ≥ 10 genes. The genomic
locations of these 44 gene sets are visualized in Figure 4B.

The 260 chromosome windows comprise a total of
4,292/18,307 (23.44%) genes with 93/425 (21.88%) cancer
census genes. The identified chromosomal locations
describe a variety of biological processes that are involved
in regulation transcription, nucleosome assembly, cell

Figure 4 A: Analysis procedure for a GPEA. B: Shown are the locations of the largest 146 network components corresponding to gene sets of
1 Mb windows (red dots) along the chromosomes. Blue dots indicate the location of cancer census genes. C: The top ranked largest network
component corresponding to the positional gene set on chromosome 8 with 29 genes (red).
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Table 4 Chromosomal neighborhood-induced GPEA and GO analysis.

chr locus start Size edges pvalue gcc census term

chr8 q24.3 145000001 35 52 3.6e-86 29 RECQL4

chr8 q24.3 145500001 31 37 3.3e-59 24 RECQL4

chr6 p22.2/p22.1 26000001 45 40 3.5e-52 23 nucleosome assembly (9)

chr6 p22.2 25500001 46 40 2.1e-51 24 nucleosome assembly (9)

chrX q28 153000001 37 33 1.2e-45 18

chr19 q13.31 44000001 35 31 1.8e-43 15 regulation of transcription, DNA-

dependent (15)

chr7 p15.1/.2 27000001 17 21 4.4e-39 12 HOXA9,
HOXA11,
HOXA13,
JAZF1

anterior/posterior pattern specification (9)

chr7 p15.2 26500001 18 21 6e-38 12 HOXA9,
HOXA11,
HOXA13

anterior/posterior pattern specification (9)

chr8 q24.3 144500001 30 26 1e-37 14

chr6 p21.1 42500001 32 26 3.3e-36 18 meiosis (3)

chr19 q13.31/q13.32 44500001 28 24 2.7e-35 12 BCL3, CBLC regulation of transcription, DNA- dependent (12)

chr17 q12/q21.1/.2 37500001 26 22 8.4e-33 13 ERBB2,

RARA

chr17 p13.1 7000001 56 32 3.3e-32 22 TP53

chrX q28 153500001 30 22 5.6e-30 14 MTCP1

chr1 q22 155000001 33 23 6.4e-30 20 MUC1

chr17 q11.2 26500001 34 23 2.6e-29 17

chr8 p11.21 42000001 16 16 3.3e-28 11 HOOK3

chr6 p21.31/.32 32500001 34 22 1.6e-27 7 DAXX antigen processing and presentation of
exogenous peptide antigen via MHC class II (6)
proteasomal ubiquitin-dependent protein
catabolic process (3)

chr9 q34.3 139500001 53 27 3.4e-26 15

chrX p11.23 48500001 28 19 1.5e-25 14 WAS,
GATA1,
TFE3

chr17 q21.32 46000001 26 18 7.2e-25 7 embryonic skeletal system development (5)

chr16 p13.3 1500001 47 24 2.5e-24 15 TSC2 protein ubiquitination (4)

chr17 q21.32/.33 46500001 27 18 3e-24 7 embryonic skeletal system development (5)

chr17 p13.1 6500001 51 25 4e-24 20

chr8 q24.3 144000001 29 18 4e-23 7 heterocycle metabolic process (6)

chr6 p21.33 31000001 54 25 6.8e-23 13

chr6 p21.32/.33 31500001 54 25 6.8e-23 14

chr19 q13.43 58000001 40 21 9.2e-23 14 transcription, DNA-dependent (14) regulation of
type I interferon- mediated signaling pathway (8)
homophilic cell adhesion (8) cellular biosynthetic
process (9)

chr9 p21.3 20500001 20 15 1e-22 8 MLLT3

chr5 q31.3 140000001 52 24 3e-22 8

chr17 q12 37000001 21 15 4.4e-22 13 LASP1,
ERBB2

chr8 p11.22/.23 37500001 18 14 5.2e-22 8 WHSC1L1,
FGFR1

chr19 q13.43 57500001 35 19 8.4e-22 10 regulation of transcription, DNA-dependent (10)

chr17 q25.3 79500001 46 22 1e-21 20 ASPSCR1 proteasomal ubiquitin-dependent protein
catabolic process (3)

chrX p11.23 48000001 28 16 5.6e-20 10 SSX1, WAS,
GATA1,
TFE3

Each row corresponds to a window gene set. These windows are indexed by the chromosome, locus and base start. The number of genes in these windows and
the edges between them are given in column four and five. Column six gives the p-value of the GPEA analysis (p-val) and column nine shows the most
significant GO term for the genes in the GCC.
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adhesion, signaling (e.g., TOR signaling, type-I inter-
feron-mediated signaling pathway), cell cycle and antigen
processing and presentation (Table 4).
The most significant chromosome window is located

on chromosome 8 at 145-146 Mb, which corresponds to
the chromosome band 8q24.3. In the literature genomic
aberration in the locus 8q24 are frequently observed in
colon cancer e.g., [46-48]. Figure 4C shows the corre-
sponding largest connected component on chromosome
8 146-147 Mb with 29 genes including the census can-
cer gene RECQL4.

Discussion
In this study, we inferred a colon cancer gene regulatory
network and investigated its functional and structural
meaning. Overall, we found our colon cancer regulatory
network consists of 19, 718 genes interconnected by
135, 194 interactions. Within this network, approxi-
mately 5% of the gene ontology (GO) terms we studied
were enriched and functional annotations for the 50
most significant GO terms (see Table 2) included 11
that denote gene clusters involved in engagement with
cellular and molecular inflammatory mediators or infec-
tive agents. Thirteen terms are involved in gene tran-
scription, translation and mRNA degradation implicated
in generic signaling processes while 10 had clear asso-
ciation with cell cycle regulation or progression. Five
terms had functions in processing of subcellular protein
complexes and organelles while a further 7 are asso-
ciated with protein targeting to membranes or other
spatial domains. These 12 terms have key functional
annotations required for compartmentalized signaling
for control of cytoskeletal dynamics in simultaneous
subcellular and cellular processes, including vesicle traf-
ficking, endocytosis, cytokinesis, cell migration and mor-
phogenesis [49,50]. By integration of complex biological
information with widely adopted GO terms for major
human cancer, this study will enhance the quality and
accuracy of functional annotations within emerging
GRNs that may be used in predictive cancer science.
The analysis of chromosome cooperativity revealed

that there are only very few chromosome pairs (1.3% =
4/300) that have an enhanced number of interactions
among the genes located on these chromosomes (see
Figure 2) and chromosomes 22 is involved in 2 of the 4
significant connections. An increase for trans-interac-
tions between two chromosomes may result from a spa-
tial proximity of the genes in the nucleus leading to an
increased co-regulation of gene expression because the
spatial organization of chromosomes and the intermin-
gling between chromosomes (chromosome kissing) in the
nucleus is crucial for the regulation of gene activation,
gene silencing and the process of genomic translocations
[51,52].

Only by connecting the interaction structure of the colon
cancer network with the chromosomal locations of the
genes enabled the definition of cis- and trans-interactions.
This allowed the analysis of structural properties of the
genes in the gene regulatory network with respect to their
chromosomal positions. Along these lines, we found that
interacting genes that are co-located on the same chromo-
some were observed to have an almost two-fold higher
ensemble consensus rate (ECR) compared to trans-located
gene pairs, where the corresponding genes reside on differ-
ent chromosomes. This result holds for the integrated as
well as individual ECRs.
A possible explanation for this observation may be

related to the underlying structure of the ‘true’ gene regu-
latory network of colon cancer. Specifically, in [53], we
found that interactions connecting peripheral genes, i.e.,
genes with only one or two interactions, are more easy to
infer than highly connected genes from the center of a
network, e.g., hub genes. Hence, cis-interactions may cor-
respond to interactions between genes in the periphery of
the ‘true’ colon cancer network and trans-interactions
connect more densely connected genes. Furthermore, in
[53] it was shown that peripheral regions of ‘true’ gene
regulatory networks are enriched for membrane proteins
and membrane signaling. Hence, the observed heterogene-
ity of cis- and trans-interactions in our study may also be
related to the known inferential heterogeneity [53] of gene
regulatory networks.
From studying the connectivity of chromosomal neigh-

borhoods, we found 260 of such neighborhoods to be sta-
tistically significant from a GPEA. Furthermore, we found
44 of these to have ≥ 10 genes. An additional GO enrich-
ment analysis of genes in the GCC of these subnetworks
showed that several of these subnetworks are involved in
‘DNA dependent transcriptional regulation’ (see Table 4).
Moreover, 8 significant subnetworks are located on chro-
mosome 17, which had been also identified from our
chromosome cooperativity analysis.
A general explanation for the presence of ‘DNA depen-

dent transcriptional regulation’ among the significant
chromosomal neighborhoods is certainly related to the
basic coordination of transcription of a cell, because in
order to allow the transcription of genes chromatin modi-
fications such as histone acetylations are required to allow
the unwinding of DNA and make it accessible for tran-
scriptional activity. Given the complexity of these pro-
cesses and the energy expended, it is not unsurprising that
genes are not randomly distributed on the chromosomes.
Instead, it is believed that in a mammalian organism genes
involved in regulatory programs can be co-ordinately con-
trolled. For instance, transcriptional analysis of the cell
cycle [54] suggests that a quartile of cell cycle regulatory
genes are adjacent on the chromosome. Similar results
have been found for a cardiac transcriptome [55]. These
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observations suggest a global regulatory organization of
gene expression at the chromosomal level and the location
of the chromosome in the nucleus has been shown to
exert a major effect on transcriptional activity [56]. Cer-
tainly, the simplest form of such co-regulation is that of
proximally located genes, typically located within the scale
of a few Mb [57].
Co-regulated expression of proximal genes was known

for a long time, however, it was assumed that genes are
regulated locally, at the level of transcription factors.
The first large-scale study of genes expression along
chromosomes (Human Transcriptome Map) shed light
on the global expression patterns: along human chromo-
somes, highly expressed genes tend to cluster in large
domains, interspersed with domains of weakly expressed
genes [58]. Similar spatial patterns of genes expression
were found in mouse genome [59] and other model
organisms (reviewed in [60]). In the nucleus, clusters of
actively transcribed genes tend to co-localize, indicating
long-range intrachromosomal interactions [61]. Thus,
clustering of highly-expressed genes does not reflect
individual gene regulation, but microenviroment of
chromosomal domain, defined by chromatin structure
and subnuclear localization [62]. Our finding that sub-
networks of interacting genes are indeed co-located on
the chromosomes indicates that, generally, subnetworks
in biological networks have many interesting functional
properties, some of them are yet to be discovered.

Conclusions
An interesting future extension would be a comparative
analysis of more than one cancer network to learn
about commonalities, and differences, of different cancer
types with respect to the hallmarks of cancer. For
instance, a comparative analysis of these networks could
employ similarity or distance measures based on topolo-
gical indices [63,64] rather than using classical graph
similarity measures [65].
Unfortunately, currently, there are severe practically

limitations for such an approach, most notably the lack
of a database making such cancer networks available. In
this respect, the colon cancer network we inferred in
this study can also contribute to such a comparative
network analysis, extending its usage significantly
beyond a single study.

Additional material

Additional file 1: Supplementary file

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
FES conceived the study. RDMS and FES analyzed the data. FES, RDMS, GG,
SMD, BHK, AH, MD and FCC interpreted the results and wrote the paper. All
authors read and approved the final manuscript.

Acknowledgements
We would like to thank the International Genomics Consortium (IGC) for
making the expO data set available. Furthermore, we would like to thank
Shailesh Tripathi for fruitful discussions. For our numerical simulations we
used R [66] and for the visualization of networks igraph [67]. Finally, we
thank the administrators of the DELL computer cluster at the Queen’s
University Belfast.

Declarations
MD thanks the Austrian Science Funds for supporting this work (project P26142).
This article has been published as part of BMC Bioinformatics Volume 15
Supplement 6, 2014: Knowledge Discovery and Interactive Data Mining in
Bioinformatics. The full contents of the supplement are available online at
http://www.biomedcentral.com/bmcbioinformatics/supplements/15/S6.

Authors’ details
1Computational Biology and Machine Learning Laboratory, Center for Cancer
Research and Cell Biology, School of Medicine, Dentistry and Biomedical
Sciences, Faculty of Medicine, Health and Life Sciences, Queen’s University
Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK. 2Division of Biomedical
Informatics, University of Arkansas for Medical Sciences, Little Rock, AR
72205, USA. 3Center for Cancer Research and Cell Biology, School of
Medicine, Dentistry and Biomedical Sciences, Faculty of Medicine, Health
and Life Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9
7BL, UK. 4Bioinformatics and Computational Genomics Laboratory, Princess
Margaret Cancer Centre, University of Toronto, Department of Medical
Biophysics, Canada. 5Institute for Medical Informatics, Statistics and
Documentation, Medical University Graz, Auenbruggerplatz 2, 8036 Graz,
Austria. 6Institute for Bioinformatics and Translational Research, UMIT, Eduard
Wallnoefer Zentrum 1, 6060, Hall in Tyrol, Austria.

Published: 16 May 2014

References
1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM: Estimates of

worldwide burden of cancer in 2008: GLOBOCAN 2008. International
Journal of Cancer 2010, 127(12):2893-2917.

2. Fearon E, Vogelstein B: A genetic model for colorectal tumorigenesis. Cell
1990, 61:759-67.

3. Bellacosa A: Genetic hits and mutation rate in colorectal tumorigenesis:
versatility of Knudson’s theory and implications for cancer prevention.
Genes Chromosomes Cancer 2003, 38:382-8.

4. Tejpar S, Bertagnolli M, Bosman F, Lenz H, Garraway L, Waldman F,
Warren R, Bild A, Collins-Brennan D, Hahn H, Harkin D, Kennedy R,
Ilyas M, Morreau H, Proutski V, Swanton C, Tomlinson I, Delorenzi M,
Fiocca R, Van Cutsem E, Roth A: Prognostic and predictive biomarkers
in resected colon cancer: current status and future perspectives for
integrating genomics into biomarker discovery. Oncologist 2010,
15:390-404.

5. Hanahan D, Weinberg R: The hallmarks of cancer. Cell 2000, 100:57-70.
6. Hanahan D, Weinberg R: Hallmarks of cancer: the next generation. Cell

2011, 144:646-74.
7. Najdi R, Holcombe R, Waterman M: Wnt signaling and colon

carcinogenesis: beyond APC. J Carcinog 2011, 10:5.
8. Pino M, Chung D: The chromosomal instability pathway in colon cancer.

Gastroenterology; 2010:138:2059-72.
9. van Engeland M, Derks S, Smits K, Meijer G, Herman J: Colorectal cancer

epigenetics: complex simplicity. J Clin Oncol 2011, 29:1382-91.
10. Tsafrir D, Bacolod M, Selvanayagam Z, Tsafrir I, Shia J, Zeng Z, Liu H, Krier C,

Stengel R, Barany F, Gerald W, Paty P, Domany E, Notterman D:
Relationship of gene expression and chromosomal abnormalities in
colorectal cancer. Cancer Res 2006, 66:2129-37.

11. Platzer P, Upender M, Wilson K, Willis J, Lutterbaugh J, Nosrati A, Willson J,
Mack D, Ried T, Markowitz S: Silence of chromosomal amplifications in
colon cancer. Cancer Res 2002, 62:1134-8.

Emmert-Streib et al. BMC Bioinformatics 2014, 15(Suppl 6):S6
http://www.biomedcentral.com/1471-2105/15/S6/S6

Page 13 of 15

http://www.biomedcentral.com/content/supplementary/1471-2105-15-S6-S6-S1.PDF
http://www.biomedcentral.com/bmcbioinformatics/supplements/15/S6
http://www.ncbi.nlm.nih.gov/pubmed/21351269?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21351269?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2188735?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14566859?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14566859?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20350999?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20350999?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20350999?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10647931?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21376230?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21483657?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21483657?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21220596?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21220596?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16489013?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16489013?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11861394?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11861394?dopt=Abstract


12. Xiao X, Zhou X, Yan G, Sun M, Du X: Chromosomal alteration in Chinese
sporadic colorectal carci- nomas detected by comparative genomic
hybridization. Diagn Mol Pathol 2007, 16:96-103.

13. Andersen C, Wiuf C, Kruhoffer M, Korsgaard M, Laurberg S, Orntoft T:
Frequent occurrence of uniparental disomy in colorectal cancer.
Carcinogenesis 2007, 28:38-48.

14. Neklason D, Tuohy T, Stevens J, Otterud B, Baird L, Kerber R, Samowitz W,
Kuwada S, Leppert M, Burt R: Colorectal adenomas and cancer link to
chromosome 13q22.1-13q31.3 in a large family with excess colorectal
cancer. J Med Genet 2010, 47:692-9.

15. de Matos Simoes R, Emmert-Streib F: Bagging statistical network inference
from large-scale gene expression data. PLoS ONE; 2012:7(3):e33624.

16. Edgar R, Domrachev M, Lash A: Gene Expression Omnibus: NCBI gene
expression and hybridization array data repository. Nucleic Acids Res 2002,
30:207-10.

17. Irizarry R, Hobbs B, Collin F, Beazer-Barclay Y, Antonellis K, Scherf U,
Speed T: Exploration, normalization, and summaries of high density
oligonucleotide array probe level data. Biostatistics 2003, 4:249-64.

18. Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, et al: Large-Scale
Mapping and Validation of Escherichia coli Transcriptional Regulation
from a Compendium of Expression Profiles. PLoS Biol; 2007, 5.

19. Meyer P, Lafitte F, Bontempi G: minet: A R/Bioconductor Package for
Inferring Large Transcriptional Networks Using Mutual Information. BMC
Bioinformatics 2008, 9:461.

20. Emmert-Streib F, Glazko G, Altay G, de Matos Simoes R: Statistical
inference and reverse engineering of gene regulatory networks from
observational expression data. Frontiers in Genetics 2012, 3:8.

21. Fogelberg C, Palade V: DENSE STRUCTURAL EXPECTATION MAXIMISATION
WITH PAR- ALLELISATION FOR EFFICIENT LARGE-NETWORK STRUCTURAL
INFERENCE. International Journal on Artificial Intelligence Tools 2013,
22(03):1350011.

22. de Matos Simoes R, Dehmer M, Emmert-Streib F: B-cell lymphoma gene
regulatory networks: Biological consistency among inference methods.
Front Genet 2013, 4:281.

23. Altay G, Emmert-Streib F: Inferring the conservative causal core of gene
regulatory networks. BMC Syst Biol 2010, 4:132.

24. Altay G, Emmert-Streib F: Structural Influence of gene networks on their
inference: Analysis of C3NET. Biology Direct 2011, 6:31.

25. Futreal P, Coin L, Marshall M, Down T, Hubbard T, Wooster R, Rahman N,
Stratton M: A census of human cancer genes. Nat Rev Cancer 2004,
4:177-83.

26. Dijkstra EW: A note on two problems in connexion with graphs.
Numerische Mathematik 1959, 1:269-271.

27. Lee H, Hsu A, Sajdak J, Qin J, Pavlidis P: Coexpression analysis of human
genes across many microarray data sets. Genome Res 2004, 14:1085-94.

28. de Matos Simoes R, Dehmer M, Emmert-Streib F: Interfacing cellular
networks of S. cerevisiae and E. coli: Connecting dynamic and genetic
information. BMC Genomics 2013, 14:324.

29. Gentleman R, Carey V, Bates D, Bolstad B, Dettling M, Dudoit S, Ellis B,
Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R,
Leisch F, Li C, Maechler M, Rossini A, Sawitzki G, Smith C, Smyth G,
Tierney L, Yang J, Zhang J: Bioconductor: open software development for
computational biology and bioinformatics. Genome Biol 2004, 5:R80.

30. Emmert-Streib F, de Matos Simoes R, Mullan P, Haibe-Kains B, Dehmer M:
The gene regulatory network for breast cancer: Integrated regulatory
landscape of cancer hallmarks. Front Genet 2014, 5:15.

31. Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical
and powerful approach to multiple testing. Journal of the Royal Statistical
Society, Series B (Methodological) 1995, 57:125-133.

32. Dudoit S, van der Laan M: Multiple Testing Procedures with Applications to
Genomics. New York; London: Springer; 2007.

33. Dorogovtesev S, Mendes J: Evolution of Networks: From Biological Nets to the
Internet and WWW. Oxford University Press; 2003.

34. Dijkstra E: A note on two problems in connection with graphs.
Numerische Math. 1959, 1:269-271.

35. Barabási AL, Albert R: Emergence of scaling in random networks. Science
1999, 206:509-512.

36. Albert R: Scale-free networks in cell biology. Journal of Cell Science 2005,
118(21):4947-4957.

37. Bornholdt S, Schuster H: Handbook of Graphs and Networks: From the
Genome to the Internet. Wiley-VCH; 2003.

38. van Noort V, Snel B, Huymen MA: The yeast coexpression network has a
small-world, scale-free architecture and can be explained by a simple
model. EMBO reports 2004, 5(3):280-284.

39. Basso K, Margolin AA, Stolovitzky G, Klein U, Dalla-Favera R, Califano A:
Reverse Engineering of Regu- latory Networks in Human B Cells. Nature
Genetics 2005, 37(4):382-390.

40. Ashburner M, Ball C, Blake J, Botstein D, Butler H, et al: Gene ontology: tool
for the unification of biology. The Gene Ontology Consortium. Nature
Genetics 2000, 25:25-29.

41. Jimbo T, Kawasaki Y, Koyama R, Sato R, Takada S, Haraguchi K, Akiyama T:
Identification of a link between the tumour suppressor APC and the
kinesin superfamily. Nat Cell Biol 2002, 4(4):323-7.

42. Nishida T, Yamada Y: The nucleolar SUMO-specific protease SMT3IP1/
SENP3 attenuates Mdm2- mediated p53 ubiquitination and degradation.
Biochem Biophys Res Commun 2011, 406(2):285-91.

43. Fleming N, Jorissen R, Mouradov D, Christie M, Sakthianandeswaren A,
Palmieri M, Day F, Li S, Tsui C, Lipton L, Desai J, Jones I, McLaughlin S,
Ward R, Hawkins N, Ruszkiewicz A, Moore J, Zhu H, Mariadason J,
Burgess A, Busam D, Zhao Q, Strausberg R, Gibbs P, Sieber O: SMAD2,
SMAD3 and SMAD4 mutations in colorectal cancer. Cancer Res 2013,
73(2):725-35.

44. Duffy M: Carcinoembryonic antigen as a marker for colorectal cancer: is
it clinically useful? Clin Chem 2001, 47(4):624-30.

45. Cheung VG, Nayak RR, Wang IX, Elwyn S, Cousins SM, Morley M,
Spielman RS: Polymorphic cis- and trans-regulation of human gene
expression. PLoS biology 2010, 8(9).

46. Ghadimi BM, Grade M, Liersch T, Langer C, Siemer A, Füzesi L, Becker H:
Gain of chromosome 8q23-24 is a predictive marker for lymph node
positivity in colorectal cancer. Clin Cancer Res 2003, 9(5):1808-1814.

47. Tomlinson I, Webb E, Carvajal-Carmona L, Broderick P, Kemp Z, Spain S,
Penegar S, Chandler I, Gorman M, Wood W, Barclay E, Lubbe S, Martin L,
Sellick G, Jaeger E, Hubner R, Wild R, Rowan A, Fielding S, Howarth K,
Silver A, Atkin W, Muir K, Logan R, Kerr D, Johnstone E, Sieber O, Gray R,
Thomas H, Peto J, Cazier JB, Houlston R: A genome-wide association scan
of tag SNPs identifies a susceptibility variant for colorectal cancer at
8q24.21. Nature Genetics 2007, 39(8):984-988.

48. Zanke B, Greenwood C, Rangrej J, Kustra R, Tenesa A, Farrington S,
Prendergast J, Olschwang S, Chiang T, Crowdy E, Ferretti V, Laflamme P,
Sundararajan S, Roumy S, Olivier J, Robidoux F, Sladek R, Montpetit A,
Campbell P, Bezieau S, O’Shea A, Zogopoulos G, Cotterchio M, Newcomb P,
McLaughlin J, Younghusband B, Green R, Green J, Porteous M, Campbell H,
Blanche H, Sahbatou M, Tubacher E, Bonaiti-Pellie C, Buecher B, Riboli E,
Kury S, Chanock S, Potter J, Thomas G, Gallinger S, Hudson T, Dunlop M:
Genome-wide association scan identifies a colorectal cancer
susceptibility locus on chromosome 8q24. Nat Genet 2007, 39:989-94.

49. Gowrishankar K, Ghosh S, Saha S, C R, Mayor S, Rao M: Active Remodeling
of Cortical Actin Regulates Spatiotemporal Organization of Cell Surface
Molecules. Cell 2012, 149(6):1353-1367.

50. Pertz O: Spatio-temporal Rho GTPase signaling - where are we now?
Journal of Cell Science 2010, 123(11):1841-1850.

51. Branco MR, Pombo A: Intermingling of chromosome territories in
interphase suggests role in translocations and transcription-dependent
associations. PLoS Biol 2006, 4(5):e138.

52. Cavalli G: Chromosome kissing. Curr Opin Genet Dev 2007, 17(5):443-450.
53. de Matos Simoes R, Emmert-Streib F: Influence of Statistical Estimators of

Mutual Information and Data Heterogeneity on the Inference of Gene
Regulatory Networks. PLoS ONE 2011, 6(12):e29279.

54. Cho R, Campbell M, Winzeler E, Steinmetz L, Conway A, Wodicka L,
Wolfsberg T, Gabrielian A, Landsman D, Lockhart D, Davis R: A genome-
wide transcriptional analysis of the mitotic cell cycle. Mol Cell 1998,
2:65-73.

55. Vogel J, von Heydebreck A, Purmann A, Sperling S: Chromosomal
clustering of a human transcriptome reveals regulatory background.
BMC Bioinformatics 2005, 6:230.

56. Boyle S, Gilchrist S, Bridger J, Mahy N, Ellis J, Bickmore W: The spatial
organization of human chromosomes within the nuclei of normal and
emerin-mutant cells. Hum Mol Genet; 2001:10:211-9.

57. Hurst L, Pal C, Lercher M: The evolutionary dynamics of eukaryotic gene
order. Nat Rev Genet 2004, 5:299-310.

58. Caron H, Schaik Bv, Mee Mvd, Baas F, Riggins G, Sluis Pv, Hermus MC,
Asperen Rv, Boon K, Voute PA, Heis- terkamp S, Kampen Av, Versteeg R:

Emmert-Streib et al. BMC Bioinformatics 2014, 15(Suppl 6):S6
http://www.biomedcentral.com/1471-2105/15/S6/S6

Page 14 of 15

http://www.ncbi.nlm.nih.gov/pubmed/17525679?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17525679?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17525679?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16774939?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20522424?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20522424?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20522424?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11752295?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11752295?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12925520?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12925520?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17214507?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17214507?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17214507?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18959772?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18959772?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22408642?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22408642?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22408642?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24379827?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24379827?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20920161?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20920161?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21696592?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21696592?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14993899?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15173114?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15173114?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23663484?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23663484?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23663484?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15461798?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15461798?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24550935?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24550935?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16254242?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14968131?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14968131?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14968131?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15778709?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10802651?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10802651?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11912492?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11912492?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21316347?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21316347?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23139211?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23139211?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11274010?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11274010?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20856902?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20856902?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12738738?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12738738?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17618284?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17618284?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17618284?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17618283?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17618283?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22682254?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22682254?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22682254?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20484664?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16623600?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16623600?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16623600?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17933509?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22242113?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22242113?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22242113?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9702192?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9702192?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16171528?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16171528?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15131653?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15131653?dopt=Abstract


The Human Transcriptome Map: Clustering of Highly Expressed Genes in
Chromosomal Domains. Science 2001, 291(5507):1289-1292.

59. Singer GAC, Lloyd AT, Huminiecki LB, Wolfe KH: Clusters of Co-expressed
Genes in Mammalian Genomes Are Conserved by Natural Selection.
Molecular Biology and Evolution 2005, 22(3):767-775.

60. Hurst LD, Pal C, Lercher MJ: The evolutionary dynamics of eukaryotic
gene order. Nature reviews Genetics 2004, 5(4):299-310.

61. Fraser P, Bickmore W: Nuclear organization of the genome and the
potential for gene regulation. Nature 2007, 447(7143):413-417.

62. Hanin L, Awadalla SS, Cox P, Glazko G, Yakovlev A: Chromosome-specific
spatial periodicities in gene expression revealed by spectral analysis.
Journal of Theoretical Biology 2009, 256(3):333-342.

63. Mueller L, Kugler K, Graber A, Emmert-Streib F, Dehmer M: Structural
Measures for Network Biology Using QuACN. BMC Bioinformatics 2011,
12:492.

64. Dehmer M, Grabner M, Mowshowitz A, Emmert-Streib F: An efficient
heuristic approach to detecting graph isomorphism based on
combinations of highly discriminating invariants. Advances in
Computational Mathematics 2013, 39(2):311-325.

65. Bunke H: What is the distance between graphs? Bulletin of the EATCS
1983, 20:35-39.

66. Team R: A Language and Environment for Statistical Computing. R
Development Core [ISBN 3-900051-07-0] R Foundation for Statistical
Computing, Vienna, Austria; 2008.

67. Csardi G, Nepusz T: The igraph software package for complex network
research. InterJournal Complex Systems; 2006, 1695 [http://igraph.sf.net].

doi:10.1186/1471-2105-15-S6-S6
Cite this article as: Emmert-Streib et al.: Functional and genetic analysis
of the colon cancer network. BMC Bioinformatics 2014 15(Suppl 6):S6.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Emmert-Streib et al. BMC Bioinformatics 2014, 15(Suppl 6):S6
http://www.biomedcentral.com/1471-2105/15/S6/S6

Page 15 of 15

http://www.ncbi.nlm.nih.gov/pubmed/11181992?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11181992?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15574806?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15574806?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15131653?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15131653?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17522674?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17522674?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19014953?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19014953?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22195644?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22195644?dopt=Abstract
http://igraph.sf.net

	Abstract
	Background
	Methods
	Gene expression data set
	Preprocessing and normalization of the data
	Inference of the colon cancer gene regulatory network
	Census cancer and colon cancer specific genes
	CSPNN: Connected shortest path neighbor network
	GPEA: Gene pair enrichment analysis
	Chromosome cooperativity analysis

	Results
	Colon cancer gene regulatory network
	Functional GPEA of biological processes
	Core subnetwork of colon cancer genes
	Linking interactions in the colon cancer network with their genetic origin
	Chromosome cooperativity

	Discussion
	Conclusions
	Competing interests
	Authors’ contributions
	Acknowledgements
	Declarations
	Authors’ details
	References

