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Abstract

performance before large scale prediction work is done.

better for the overall task.

diseases.

Background: The expansion of polyglutamine (poly-Q) repeats in several unrelated proteins is associated with at
least ten neurodegenerative diseases. The length of the poly-Q regions plays an important role in the progression
of the diseases. The number of glutamines (Q) is inversely related to the onset age of these polyglutamine
diseases, and the expansion of poly-Q repeats has been associated with protein misfolding. However, very little is
known about the structural changes induced by the expansion of the repeats. Computational methods can
provide an alternative to determine the structure of these poly-Q proteins, but it is important to evaluate their

Results: In this paper, two popular protein structure prediction programs, I-TASSER and Rosetta, have been used to
predict the structure of the N-terminal fragment of a protein associated with Huntington’s disease with 17
glutamines. Results show that both programs have the ability to find the native structures, but I-TASSER performs

Conclusions: Both |-TASSER and Rosetta can be used for structure prediction of proteins with poly-Q repeats.
Knowledge of poly-Q structure may significantly contribute to development of therapeutic strategies for poly-Q

Background

Knowledge of protein structure can be critical for devising
therapeutic strategies for diseases in which protein dys-
function contributes to pathogenesis. For the polygluta-
mine (poly-Q) diseases, pathogenic poly-Q expansions
typically cause gains of toxic functions associated with
protein misfolding or aberrant interactions with RNAs or
other proteins [1]. At least ten neurodegenerative disor-
ders are caused by poly-Q expansions, including Hunting-
ton’s disease (HD), dentatorubral and pallidoluysian
atrophy (DRPLA), spinal and bulbar muscular atrophy
(SBMA), and the poly-Q spinocerebellar ataxias [2]
(SCAL, SCA2, SCA3, SCA6, SCA7, SCAS, and SCA17)
[3-5]. The proteins involved in these diseases have no sig-
nificant sequence, compositional or structural homologies
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[6,7] and numerous studies and observations have estab-
lished that the length of the polyglutamine repeats plays a
critical role in the progress and pathogenesis of these dis-
eases [5,8]. Analysis from patients’ data reveals that the
expansion of polyglutamine repeats beyond certain patho-
logical threshold causes the disease phenotype (Table 1)
[9-12]. Also the number of the glutamines in the polyglu-
tamine region is inversely correlated with age of onset
[9,13-17]. For instance for SCA2, people with 32 or 33
repeats tend to first experience symptoms of SCA2 in late
adulthood, while people with more than 45 repeats usually
have symptoms by their teens [2].

One possible mechanism for these diseases pathology is
the assembly of unfolded protein monomers into 3-sheet
amyloid fibers [18]. Both in vivo and in vitro studies have
shown that the poly-Q expansion may lead to protein
misfolding [19] and may cause a structure transition to
form parallel B-helix and -sheet folds [20]. Protein mis-
folding and aggregation has been shown to depend on
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Table 1 Length of poly-Qs in polyglutamine diseases.

Gene Wild-type allele Mutant allele
repeat number repeat number

SCA1 ATXN1 6-39 41-83
SCA2 ATXN2 13-31 > =32
SCA3 ATXN3 12-43 60-89
SCA6 CACNATA <18 20-33
SCA7 ATXN7 <19 36-460
SCA8 ATXN8 15-50° 80-250°
SCA17 TBP 25-42 49-66

HD HTT 10-26 >40
DRPLA ATN1 6-35 >48
SBMA AR < =36 >38

@ The non-coding gene ATXN8OS gene may contribute to SCA8 pathogenesis.
The number of CAG repeats in normal and mutant ATXN8 are assumed to be the
same as the number of CTG repeats in normal and mutant ATXN8OS, as in [4].

the poly-Q length and the concentration of the protein
[21-23]. As shown in [24] the poly-Q tract will form
B-sheet structures when the number of the Qs increases
resulting in an increase of the chance of aggregation.
Therefore the understanding of the effect of the length-
ening of the poly-Q repeat segment on protein folding
can provide new insights and perhaps therapies for these
diseases.

Although the association of the lengthening of the poly-
Q repeats with the related polyglutamine diseases has
been known for almost 20 years [25,26], high-resolution
structural analysis of these proteins in their native context
has eluded researchers [27] and only very limited experi-
mental information exists. Kim has crystallized multiple
structures of the N-terminal segment of huntingtin protein
with 17 and 36 glutamines repeats [28,29], finding that the
poly-Q regions exhibit conformational flexibility with
o-helix, random coil, and extended loops [28,29]. These
structures are the only crystal structures of poly-Q seg-
ments available in the RCSB PDB database. Computational
modeling can provide valuable insights to this problem
[23,30,31], but to our knowledge no comprehensive stu-
dies have been reported comparing the 3D structures pre-
dicted for these segments with the limited experimental
data available.

The accuracy of the structures obtained using 3D
structure prediction programs is improving rapidly, and
some of the commonly available programs have shown
excellent performance in the CASP competition [32].
However, all the 3D structure prediction programs are
trained with a variety of proteins and their performance
is usually evaluated on a general dataset [33]. There is no
literature evidence reporting the performance of these
programs on proteins containing poly-Q tracts. So it is
necessary for us to evaluate the performance of these
programs before we use them to predict the structure of
polyglutamine disease proteins at large scale.
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In this paper we present our results of the evaluation
of the prediction performance of two efficient and popu-
lar 3D structure prediction programs, I-TASSER and
Rosetta, on the N-terminal end of huntingtin protein
with 17 glutamines (HTT17Q-EX1).

Results

Predicted models

As evidence shows that the poly-Q region can adopt dif-
ferent structures [28,29] in the proteins of interest for
poly-Q diseases, it is not appropriate to seek the ‘best
structure’ of this region, but it is more appropriate to
look for ensembles of structures (generated by multiple
independent runs) which can show overall trends and
represent the variety of structures observed by experi-
mental methods.

Following this reasoning, both Rosetta and I-TASSER
were run 10 times using different random seeds for
each run of 3D structure prediction of the HTT17Q-
EX1 sequence shown in Figure 1(b). For each run we
kept the five best models, so a total of 50 I-TASSER
models and 50 Rosetta models were retained for
analysis.

Each structure prediction program will return some
parameters to estimate the accuracy of the models. For
I-TASSER, the C-score, which lies in the (-5,2) range, is
calculated for each model [34]. The C-scores of the best
50 I-TASSER models, listed in Table 2, range from
-2.62 to -4.72.

The clustering algorithm from Rosetta was used to
identify the most frequently sampled conformations. For
each run we selected the five structures with the lowest
energy from the structures encountered in the five dif-
ferent clusters in which the number of structures was
greater than 10 on each. The energies of the total 50
Rosetta structures, listed in Table 3, they range from
16.06 to 20.13.

Secondary structure

For better visualization, WebLogo [35] was used to dis-
play secondary structure patterns. The WebLogo of the
secondary structures of the experimental PDB structures
and the best I-TASSER and Rosetta models are shown in
Figure 2. For easy description, we divided the sequence
into three regions: the 17-residue head region including
residues 1 to 17; the poly-Q region including residues 18
to 34 and C-terminal region including residues 35 to 60.
As discussed in the original publication for the 21 PDB
structures most crystals show o-helix in the head region,
which is always well resolved, with only a few structures
showing turns at the beginning and end of the head
region. Both the I-TASSER and Rosetta best models
reproduce the observed trends showing a majority of
helix structures in the head region, but the I-TASSER
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{a)
MBP 3A N-terminal C-tag
(17aa) (19aa)
{b)
>HTT17Q-EX1
MATLEKLMKAFESLKSFQQQQQQAQAQAQAQQQQAQAAAAPPPPPPPPPPPQLPQPPPQAQPLLPQ
Figure 1 The sequence construction of HTT17Q-EX1. (a) sequence structure of the PDB records; (b) sequence used for structure prediction.

structures show better agreement with the experimental
findings showing a preference for a-helix, while the
Rosetta structures show a mix of a-helix and 3-helix.
The secondary structure, for the resolved structures, in
the poly-Q region is more diverse showing a number of
structures with a-helix, random coils and turns. The
Pro-enriched C-terminal region is dominated, at least for
the resolved structures in this region, by coil structures.
Unfortunately, as depicted in Figure 2(a), the number of
well resolved structures rapidly decreases beyond the
head region making comparison with the experiments
less reliable. None-the-less the overall experimental
trends are reproduced by both I-TASSER and Rosetta,
but it appears that the I-TASSER structures show more
loops than the experimental data.

Overall I-TASSER appears to be superior reproducing
quite well the stable a-helix structure of the N-terminal
regions and showing increased diversity of structures in
the poly-Q region and a predominance of coil structures
in the C-terminal region.

Reproducibility of I-TASSER and Rosetta results

In order to test the sensitivity of I-TASSER and Rosetta
with the selection of the seeds used in the calculations,
we have calculated the structure similarity using the
TM-score between models obtained using the same pre-
diction program. A total of 1225 TM-scores were gener-
ated comparing pairwise the best 50 I-TASSER and 50
Rosetta models, respectively.

Table 2 C-scores for the best I-TASSER models.

Model #1 #2 #3 #4 #5

Run 1 =291 -3.69 -333 -3.62 -4.72
Run 2 -2.84 -3.71 -3.31 -35 -4.42
Run 3 -2.81 -3.76 -348 -3.89 -3.74
Run 4 -2.62 -3.69 -332 -3.76 -349
Run 5 -3.02 -3.21 -3.91 -4.11 -342
Run 6 =267 -3.76 -348 -3.62 -4.37
Run 7 -2.77 -342 -3.96 -33 -3.51
Run 8 -3.09 -345 -4.09 -4.22 -4.27
Run 9 -2.73 -3.61 -3.38 -3.76 -442
Run 10 -2.62 -349 =375 -4.33 -4.01

TM-scores between any two models from I-TASSER
range from 0.2781 to 0.7163, with an average of 0.4086
and a standard deviation 0.0692. Whereas the TM-scores
between any two Rosetta models range from 0.2865 to
0.8236, with an average of 0.4979 and a standard deviation
0.0892. The difference between TM-scores of I-TASSER
and Rosetta is statistically significant (t-test, p < 0.001,
Figure 3). The number of TM-scores greater than 0.5 is
two times greater for Rosetta/Rosetta pairs than for
I-TASSER/I-TASSER pairs, i.e. 561 pairs in Rosetta and
126 pairs in I-TASSER have scores larger than 0.5.

When comparing only the best models of each run,
the TM-scores range from 0.4539 to 0.6813 for I-TAS-
SER (Table 4) and from 0.2872 to 0.6879 for Rosetta
(Table 5). Therefore the best models of each run from
I-TASSER are more similar among themselves than
those from Rosetta, i.e. 33 pairs of the 45 structure pairs
have TM-scores greater than 0.5 for I-TASSER, whereas
for Rosetta, only 18 pairs of best models have TM-
scores greater than 0.5.

The sensitivity to the selected random seeds was also
evaluated at the run level. TM-scores were calculated
for the structures of any 5 models in one run compared
with any 5 models of other runs. The number of pairs
with TM-score greater than 0.5 between any two experi-
ments is shown in Table 6 for I-TASSER and Table 7
for Rosetta. For I-TASSER, the number of pairs with
TM-score greater than 0.5 ranges from 0 to 6. There
are 6 pairs with TM-scores greater than 0.5 between

Table 3 Energy for the best Rosetta models.

Model #1 #2 #3 #4 #5
Run 1 16.061 16.349 18.609 19.656 19.956
Run 2 17.881 18.309 18.373 18.386 19.215
Run 3 16.943 17.598 17.639 18.306 19.436
Run 4 18414 18.662 18.691 18.812 19.076
Run 5 16.74 18.004 18.192 18.3 19.015
Run 6 18.353 18.388 18572 18.766 18.96
Run 7 17435 18.897 19.571 19.603 19.617
Run 8 18.128 19111 19.521 19.643 19.707
Run 9 17.317 17.586 17.655 17.916 18.69
Run 10 19.329 19.899 19.928 20.104 20.13
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B-bridge; E: Strand; G: Helix-3; I: Helix-5; T: Turn; S: Bend; M: Missing data.

Figure 2 Secondary structure WebLogo. (a) PDB structures; (b) I-TASSER models; (c) Rosetta models. In (a) M represents the number of
structures with missing values due to lack of resolution in the experimental data. The codes for secondary structure are as follows: H: a-helix; B:

P I ] S T

Run 4 and Run 7, however, no pairs with TM-scores
greater than 0.5 between Run 1 and Run 8. For Rosetta,
the number of pairs with TM-score greater than 0.5 at
run level ranges from 5 to 20. 20 of 25 pairs are with
TM-scores greater than 0.5 between Run 3 and Run 7,
which is the best. The smallest number of pairs for
Rosetta is 5, which shows in 3 pairs, Run 1 and Run 6,
Run 6 and Run 8, Run 5 and Run 8.

These results show that our ensemble approach to pre-
dict the structure of proteins associated with poly-Q dis-
eases appears to be appropriate. Using multiple seeds it is
possible to obtain an ensemble of structures that show
reasonable diversity, but still retain the main features.
We believe that this approach is quite promising because
it can incorporate in future analysis the diverse structure
of which appears to be an emerging observation from the
limited experimental data on these proteins.

Validity evaluation of I-TASSER and Rosetta

As depicted in Figure 2(a) not all of the 21 PDB struc-
tures have been resolved in the poly-Q region, which is
our main interest. For instance, the longest well resolved
poly-Q region is the B chain of the 3IOW [PDB: 3I0W]
structure in which all the 17 Qs structures are resolved,
whereas for the A chain of the 3I0T [PDB: 3I0T] struc-
ture only one Q has been resolved. Also, there are
numerous gaps in several structures as some of the resi-
dues are not resolved. Taking this into account and in
order to make an accurate comparison with the experi-
mental ones in the region of interest, only PDB struc-
tures in which at least 9 (more than half the total
number) of consecutive Qs in the poly-Q region show
well resolved structures were used for the evaluation of
the results produced with I-TASSER and Rosetta. There
are ten PDB structures that meet this criteria: the B
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Figure 3 Distribution of TM-scores of any two models from I-
TASSER and Rosetta respectively.

Table 4 TM-scores between the best models from |-
TASSER.

run #2 #3 #4 #5 #6 #7 #8 #9 #10
#1 048 048 063 048 054 057 049 051 046

#2 056 054 055 048 054 045 058 046
#3 054 063 053 051 054 056 051
#4 050 052 066 049 056 049
#5 060 051 058 059 054
#6 051 068 054 049
#7 050 057 045
#8 050 052
#9 0.50

Table 5 TM-scores between best models from Rosetta.
run #2 #3 #4 #5 #6 #7 #8 #9 #10
#1 030 043 037 042 042 053 040 038 043

#2 030 034 031 039 028 034 032 038
#3 052 053 053 065 047 057 050
#4 048 053 047 068 049 043
#5 063 052 048 058 061
#6 052 047 064 059
#7 041 056 055
#8 046 042
#9 0.60

chain of 3104 [PDB: 3104] (3io4_b), the C chain of
3104 [PDB: 3104] (3i04 c), the B chain of 3106 [PDB:
3106] (3i06_b), the C chain of 3106 [PDB: 3106]
(3i06_c), the C chain of 3IOR [PDB: 3IOR] (3ior_c), the
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Table 6 Number of pairs with TM-score greater than 0.5
between any two runs of I-TASSER.

run #2 #3 #4 #5 #6
#1 2 3 3 3
#2 2 2
#3 3
#4
#5
#6
#7
#8
#9

=]
o
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Table 7 Number of pairs with TM-score greater than 0.5
between any two runs of Rosetta.

run #1 #2 #3 #4 #5 #6 #7 #8 #9 #10
#1 4 6 10 11 8 5 1 12 8 9
#2 2 11 8 7 6 13 I 1 10
#3 6 15 9 13 20 16 18 16
#4 3 9 7 14 13 16 14
#5 4 8 15 5 16 15
#6 1 8 5 13 9
#7 5 15 16 14
#8 8 7 13
#9 9 17
#10 6

Table 8 Numbers of Qs in the PDB structures.
Number of Qs

PDB structure
3io4_b
3i04_c
3i06_b
3i06_c
3ior_c
3iot_b
3iou_c
3iov_b
3iov_c
3iow_b

o

N = AN WO N~ —

B chain of 3I0T [PDB: 3I0T] (3iot_b), the C chain of
3I0U [PDB: 310U] (3iou_c), the B chain of 3I0V [PDB:
310V] (3iov_b), the C chain of 310V [PDB: 3I0V]
(3iov_c), and the B chain of 310W [PDB: 3I0W]
(3iow_b). The number of consecutive Qs in each struc-
ture is shown in Table 8.

The best 50 I-TASSER and 50 Rosetta models were
compared with these 10 PDB structures using the TM-
align program. TM-scores, root-mean-square deviation
(RMSD), aligned number of residues, sequence identity
and the structure superposition were obtained from
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TM-align [36]; the number of exact matches and the
number of exact matched Qs were extracted from the
structure alignment and finally the exact structure over-
lap (ESO) and exact structure overlap of Qs (ESOP)
were calculated using equation (2) and equation (3)
given in the methods section. The values of each simi-
larity parameter considered here are shown in Table 9
along with the p-values assessing the significance of the
difference between the I-TASSER and Rosetta results.

The average TM-score of I-TASSER/PDB superposi-
tion pairs is 0.50 and the average TM-score of Rosetta/
PDB pairs is 0.45, reflecting the fact that 253, of the
500, I-TASSER/PDB pairs have TM-scores greater than
0.5 while only 87 pairs of the Rosetta/PDB pairs have
TM-scores greater than 0.5. The average RMSD of
I-TASSER/PDB pairs (1.53 A) is also smaller than that
of Rosetta/PDB pairs (1.74 A). Other TM-align para-
meters depicted in Table 9 also show that I-TASSER
performs better than Rosetta in this test.

The structure overlap scores, ESOP and ESO, for
I-TASSER models are also better than those for Rosetta
models. For instance more than 75% of the Rosetta
models have no exact match in the poly-Q region nor
for the entire sequence, whereas the 75% quantile of the
ESO and ESOP scores for I-TASSER are 53.13 and 9.09,
respectively. The statistical tests have shown that these
differences are significant (Table 9).

Fifty of the I-TASSER/PDB structure superpositions
have ESOP values greater than or equal to 50, which
means that 50 pairs have more than 50% of Qs in the
poly-Q region with exact match. These 50 pairs include

Table 9 Distribution of structure superposition
parameters between predicted models and PDB
structures

I-TASSER Rosetta p-value
TM-score 0.50 + 0.06 045 + 0.06 <0.0001
RMSD (A) 153 + 034 174 + 034 <0.0001
Aligned number 2405 + 2.14 2556 + 241 <0.0001
Sequence Identity ° (0.30,0.71) (0.38,0.52) <0.0001
Exact Match (<5.0 A) ° 0,16) 00) <0.0001
Exact Qs Match(<50 A)® (0,1 00) <0.0001
Total Qs Match(<50 A)* (58) 811) <0.0001
Exact Match (other) @ (0,0) (0,0) <0.0001
Exact Qs Match(other) ? 0,0) 0,0) <0.0001
Total Qs Match(other) @ on o,n <0.0001
Exact Match (all) @ (6,25) 0,0) <0.0001
Exact Qs Match (all) ° [(ORD) 0,0) <0.0001
Total Qs Match (all) @ 6,8 9,12) <0.0001
ESOP ° (0,9.09) 0,0) <0.0001
ESO @ (0, 53.13) (0,0) <0.0001

@ The values between brackets represent the value of the property for the
best structure superposition at the first and third quartile, respectively, of their
distributions.
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9 of the 10 PDB structures, so 9 of the 10 structures
have corresponding I-TASSER models with very good
matches in the poly-Q regions. In contrast only 5 of
these 10 structures have corresponding Rosetta/PDB
structure superposition matches when the same criteria
are used.

The best matches between the predicted structures by
I-TASSER and Rosetta, respectively, and one of the PDB
structures considered here are depicted in Figure 4. The
I-TASSER structure best match is with the B chain of
3106 [PDB: 3106]; the match has a TM-score of 0.56
and the ESOP score of 100. The best two matches for
Rosetta structures show matches with the C chain of
3I0U [PDB: 3I0U] and the B chain of 3IOW [PDB:
3I0W]. Their TM-scores are 0.5074 and 0.5057, respec-
tively, and the ESOP score of 100.

Discussion

This study evaluated two software tools for predicting
from amino acid sequences, the 3D structures of the
poly-Q regions of proteins related to polyglutamine dis-
eases. Pathogenic neurodegenerative poly-Q proteins
were used as a model, for relevance to developing struc-
ture-specific therapeutics based on normal vs. poly-Q
expanded protein structures. Two highly recognized and
efficient 3D structure prediction programs, I-TASSER
and Rosetta, were evaluated to assess their performance
for structure prediction using segments of the hunting-
tin protein harboring poly-Q repeats. Both I-TASSER
and Rosetta produced good results.

When tested for structure stability under changes of
the initial random seed, Rosetta shows less variability
than I-TASSER. This means that if we run Rosetta and
[-TASSER several times respectively, it is possible that
we will get less variance in the results from Rosetta than
from I-TASSER. None-the-less, both programs produce
a reasonable ensemble of structures with sufficient
diversity and without extreme deviations. Several studies
have illustrated that the poly-Q repeat regions of these
proteins are highly disordered with structure flexibility
[31], but this has not been quantified experimentally.
Therefore it is challenging to discriminate among these
two approaches using these criteria. In consequence we
must conclude that both I-TASSER and Rosetta are sui-
table for the task on predicting ensemble structures of
protein containing poly-Q segments.

The accuracy of the prediction program is a very
important factor that we evaluated here. In this study,
the structure similarity between the predicted models
and the PDB experiment structures available was used
to evaluate the validity of the prediction programs. The
root-mean-square deviation (RMSD) score is the most
often-used parameter to calculate the structure similar-
ity, but a drawback of its use is that a relatively small
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on the left.

Figure 4 Structure superposition of predicted models and PDB structures. Structure superposition of predicted models and PDB structures
with TM-score>0.5 and ESOP = 100. (a) I-TASSER third model of the tenth run with 3io6_b; (b) Rosetta forth model in first run with 3iou_c;
(c) Rosetta third model in fifth run with 3iow_b. tan: PDB structure, sky-blue: predicted models. The N-terminal end of each structure is shown

local variation can result in a high RMSD [37].
TM-score weights the close atom pairs stronger than
the distant matches, and it is more sensitive to the
topology fold than the RMSD [37]. Besides the global
similarity measured by TM-score, more restricted scores
on the exact match of two structures were also calcu-
lated. The exact structure overlap (ESO), derived from
the structure overlap (SO) score [38], was introduced
and instead of calculating the number of aligned pairs it
counts the exact match pairs, which not only counts
aligned residues but also residues that lie in the same
positions in both the sequences of predicted model and
PDB structure. The exact structure overlap of poly-Q

repeat (ESOP) is the special version of ESO, which is
used to measure the prediction accuracy in the poly-Q
region. Considering the TM-score, ESO and ESOP
together gives a more comprehensive view of similarity
between the predicted model and the PDB experimental
structures from both a global and a local aspect. The
ESO score and ESOP score can be used for similarity
comparison tasks, especially if there are regions which
play more critical roles than others.

Rosetta models have a larger number of aligned resi-
dues on average than I-TASSER, but the average RMSD
values and TM-scores are much higher (lower) than
that of I-TASSER. So when the Rosetta models are
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aligned with the PDB structures, the distance between
the models and the experimental structures is large,
which is not a good sign for good structural matches.
On the contrary, I-TASSER models aligned better with
PDB structures not only with better RMSD and
TM-scores, but also better ESO and ESOP scores. This
can also be seen from the secondary structures patterns.
When considering specific structure pairs, both I-TAS-
SER and Rosetta have predicted models which can
match the PDB structures with good global (TM>0.5)
and local (ESO>=50 and ESOP>=50) structures. So both
Rosetta and I-TASSER have the ability to get the native
models, but for the overall performance, I-TASSER
appears to be better than Rosetta.

As several models are returned by the structure predic-
tion programs, it is important to have criteria to select the
best models. However, the model with the lowest energy
in the prediction program may not be the best model for
reproducing the poly-Q regions. For instance for Rosetta,
the two predicted models with TM-score greater than 0.5
and ESOP of 100 (Figure 4(b) and 4(c)) are not the models
with the lowest energy in that Rosetta run. This is true
also for the I-TASSER model with TM-score greater than
0.5 and ESOP of 100 (Figure 4(a)). In fact, of the 29 good
models which have TM-score greater than 0.5 and ESOP
score greater than 50, only one model is ranked as the
best by I-TASSER.

Conclusions

Both I-TASSER and Rosetta can be used for in silico
studies of the structures of proteins with poly-Q repeats
related to neurodegenerative diseases. However, I-TAS-
SER shows better performance than Rosetta when con-
sidering the overall agreement between results produced
using these two prediction models with the limited
experimental results available for comparison.

Both I-TASSER and Rosetta are computationally effi-
cient as both applications can be easily parallelized by
executing numerous jobs each with a unique random seed.

In our future studies we will attempt to predict the
change of the structure as function of the number of Qs in
the poly-Q repeat segment for all the proteins involved in
poly-Q neurological diseases. Ideally we could use both
these two programs to predict structures of the poly-Q
disease related proteins. This could provide a quasi “crowd-
sourcing” mechanism to cross check the results, but may
prove computationally too expensive (see Methods).
Therefore the results presented here suggest that studies
should be, at least initially, performed using I-TASSER.

Methods

Poly-Q segments

We searched the RCSB PDB database [39] for structures
with more than 10 consecutive glutamines in their
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sequences on November 2012. A total of 11 structures
were retrieved, including 7 of the first exon of the hun-
tingtin protein with 17 glutamines (HTT17Q-EX1) [28]
and 4 of the first exon of huntingtin protein with 36
glutamines (HTT36Q-EX1) [29]. Figure 1(a) shows the
sequence construction for the X-Ray diffraction experi-
ment on HTT17Q-EX1 which was expressed and crys-
tallized as a maltose-binding (MDP) fusion protein [28].
The same methods were used to get the crystal struc-
ture of HTT36Q-EX1, but the resolution of the
HTT36Q-EX1 is of such poor quality that only
HTT17Q-EX1 structures were used in this study.

PDB identification numbers of the 7 HTT17Q-EX1 crys-
tal structures used here are 3104 [PDB: 3104/, 3106 [PDB:
3106], 310T [PDB: 310T], 310U [PDB: 3I0U], 3I0R
[PDB: 3IOR], 310V [PDB: 310V] and 3I0W [PDB: 31I0W].
Each crystal includes a trimer of MDP-HTT17Q-EX1, so a
total of 21 structures of HTT17Q-EX1 were considered.
Figure 1(b) shows the sequence of the HTT17Q-EX1 used
as the input of the 3D structure prediction.

Protein 3D structure prediction

Two protein structure prediction programs were used in
this study, I-TASSER and Rosetta. Both I-TASSER and
Rosetta have been used by thousands users and they are
among the few programs which can handle large pro-
teins with more than 1000 residues [34,40].

I-TASSER is the 3D structure prediction program based
on multiple-threading alignments and iterative template
fragment assembly simulations [41]. [-TASSER is a fully
automated method and was used without further modifi-
cations, but we have verified that none of the templates
corresponding to the structures 3104 [PDB: 3104], 3106
[PDB: 3106], 310T [PDB: 310T], 310U [PDB: 3I0U],
3I0OR [PDB: 3I0R], 310V [PDB: 310V] and 310W [PDB:
3I0W] was included in the knowledge data used in the
version of I-TASSER used here. Rosetta is a flexible soft-
ware suite for macromolecular modeling, which includes
tools for structure prediction and design [42]. Rosetta ab
initio module was used in this study. For Rosetta, the
quota protocol fragment picking was used to generate 3-
mers and 9-mers fragments, which took into account the
secondary structure predictions by PsiPred [43], Jufo9D
Server [44] and SAM-TO08 [45] as the quota pools. The
weight given to the each quota pool was assigned follow-
ing reference [46] and 200 fragments were picked from
the total of 700 candidates available from both 3-mers and
9-mers fragments. The default parameters were used for
Rosetta ab initio modelling with the number of output
structures set as 5000, the default parameters also were
used for Rosetta cluster module.

We installed I-TASSER Version 2.1 and Rosetta Ver-
sion 3.4 in a cluster at the Center for High Performance
Computing (CHPC) of University of Utah, where all
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computations were performed. As a fully automated pro-
gram, the number of decoys to screen and the number of
simulation jobs in I-TASSER are fixed, whereas Rosetta is
much more flexible and users can define the output
number of structures and the number of parallel simula-
tion jobs, making it much more adaptable to the hard-
ware architecture used. So it is difficult to compare the
computational cost of the two programs. However, for
the modelling tasks with the parameters used in our
simulation, the total CPU time for I-TASSER to finish
one HTT17Q-EX1 (60 amino acid residues) prediction
was, in average, 24.58 hours using one core in a 2.4 GHz
dual-core Opteron processor, whereas the average total
CPU time for Rosetta to finish one HTT17Q-EX1 predic-
tion with 5000 prediction structures was about 50.91
hours in the same computing environment.

3D structure alignment

To assess 3D structure similarity, TM-align was used for
structure comparison and alignment [36]. The TM-score
calculated by TM-align, which lies in (0,1] interval, is
considered a good measure of the similarity of two
structures [37]. A TM-score of less than 0.17 indicates a
random alignment, whereas TM-score greater than 0.5
indicates that the two structures are generally in the
same fold [37].

Similarity measurement

Besides the TM-score, exact structure overlap (ESO) and
exact structure overlap of poly-Qs (ESOP) were also used
to measure the similarity of two structures. The words
‘exact’ here means the aligned residues are within certain
threshold, 5A in this study, and that they are the same
residue in the HTT17Q-EX1 sequence. For example, if a
serine (SER) in the 16th position of the predicted structure
of HTT17Q-EX1is aligned, within the distance threshold,
with the serine (SER) in the 16th position of PDB experi-
mental structure, the 16SER-16SER is an exact match.
ESO and ESOP is derived from the Structure Overlap
(SO) which is a standardized score to compare the struc-
ture alignments and measure the local similarity of two
structures [38]. The SO score is calculated as:

L(A)

SO =100 x .
min (Lm, Le)

(1)

where L(A) is the structure alignment length; the Lm
and Le are the length of the predicted model and the
experimental structure, respectively.

We have modified Equation (1) to meet the aim of
more strict structure comparison, and get the ESO score:

L(EA)

ESO =100 x .
min(Lm, Le)

(2)
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where L(EA) is the length of exact match; Lm and Le
is the length of predicted model and the length of the
PDB experimental structure respectively.

The structure of poly-Q region may play a more
important role than other positions. In this study, the
ESOP score is calculated to evaluate the structure simi-
larity of the poly-Q regions. The ESOP is a special ver-
sion of ESO, and it is calculated as:

L(EAQ)

ESOP = 100 x .
min (LQm, LQe)

3)
where L(EAQ) is the length of the exact match of Qs;

LQm and LQe are the length of poly-Q in predicted

model and PDB experimental structure respectively.

Secondary structure calculation

The secondary structure of the predicted models and
the PDB experimental structures were calculated using
the DSSP algorithm, which is an algorithm to standar-
dize secondary structure assignment [47]. Secondary
structures assigned by DSSP are 8 conformational states,
including a-helix, B-bridge, strand, 3-helix, 5-helix, turn,
bend, and random coil.

The results of DSSP are the secondary structures
represented by one letter for each position. In order to
get a better view of the results, “WebLogo 3 * [35] was
used to plot the secondary structure logo at each posi-
tion. The overall height of the stack indicates the sec-
ondary structure conservation at that position, and the
height of the symbols within the stack indicates the rela-
tive frequency of each secondary structure type at that
position.

3D structure visualization

The 3D structure and the 3D structure superposition
were visualized in the UCSF Chimera software, a free
program for molecular graphics and analysis [48].

Statistics

To depict the data distribution of the parameters calcu-
lated here, the (mean value + standard deviation) is
listed for data with normal distribution, whereas for
data that do not follow the normal distribution, the 25%
quantile and 75% quantile values are listed.

The Student t test was applied for data with normal
distribution and the Wilcoxon ranked test was per-
formed on other data sets to assess significance. The
significant level was set at 0.05. All the statistic work
was done in the R environment which is a free software
environment for statistical computing and graphics [49].
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