
RESEARCH Open Access

Variant Tool Chest: an improved tool to analyze
and manipulate variant call format (VCF) files
Mark TW Ebbert1,2, Mark E Wadsworth1, Kevin L Boehme1, Kaitlyn L Hoyt1, Aaron R Sharp1, Brendan D O’Fallon2,
John SK Kauwe1, Perry G Ridge1*

From The 10th Annual Biotechnology and Bioinformatics Symposium (BIOT 2013)
Provo, UT, USA. 5-6 December 2013

Abstract

Background: Since the advent of next-generation sequencing many previously untestable hypotheses have been
realized. Next-generation sequencing has been used for a wide range of studies in diverse fields such as
population and medical genetics, phylogenetics, microbiology, and others. However, this novel technology has
created unanticipated challenges such as the large numbers of genetic variants. Each caucasian genome has more
than four million single nucleotide variants, insertions and deletions, copy number variants, and structural variants.
Several formats have been suggested for storing these variants; however, the variant call format (VCF) has become
the community standard.

Results: We developed new software called the Variant Tool Chest (VTC) to provide much needed tools to work
with VCF files. VTC provides a variety of tools for manipulating, comparing, and analyzing VCF files beyond the
functionality of existing tools. In addition, VTC was written to be easily extended with new tools.

Conclusions: Variant Tool Chest brings new and important functionality that complements and integrates well
with existing software. VTC is available at https://github.com/mebbert/VariantToolChest

Background
The variant call format (VCF) has become the standard
format for storing variants identified in next-generation
sequencing (NGS) and other studies. VCF files are flex-
ible with eight fixed fields including chromosome
(CHROM), position (POS), known variant IDs such as
dbSNP identifications (ID), reference allele (REF), alter-
nate allele(s) (ALT), variant quality score (QUAL), filter
information summarizing why a variant was or was not
considered valid by the variant calling software (FILTER),
and an information field (INFO). Additional fields con-
taining genotypes for one or more samples may also be
present. Each row of the file contains information about
observed variants at the given position and chromosome,
may have information about how the variant(s) was/were
identified (allele frequency, depth, strand bias, genotype
likelihoods, etc.), and biological annotations (gene,

variant frequency, 1000 Genomes membership, mRNA
and protein positions, etc.). The last columns of a VCF
file contain genotype information specifying whether the
individual is heterozygous, homozygous reference or var-
iant, or whether it is unknown (missing). Finally, VCF
files can contain information for a single or multiple
samples. Alternatively, summary VCF files containing
minimal information (chromosome, position, reference
allele, variant allele, and genotypes) can be used. VCF
files are used to store all variant types including single
nucleotide variants, insertions and deletions, copy num-
ber variants, and structural variants. The VCF has
become an important format in modern biology and is
the only widely used format for variant storage.
Several programs exist for manipulating and comparing

VCF files: VCF tools [1], BedTools [2], BcfTools, and the
Genome Analysis Toolkit (GATK) [3,4]. Each of these
softwares is flexible and powerful, but missing certain
essential features. In this manuscript we describe a novel
program, the Variant Tool Chest (VTC). The Variant

* Correspondence: perry.ridge@byu.edu
1Department of Biology, Brigham Young University, Provo, Utah, USA
Full list of author information is available at the end of the article

Ebbert et al. BMC Bioinformatics 2014, 15(Suppl 7):S12
http://www.biomedcentral.com/1471-2105/15/S7/S12

© 2014 Ebbert et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

https://github.com/mebbert/VariantToolChest
mailto:perry.ridge@byu.edu
http://creativecommons.org/licenses/by/2.0


Tool Chest complements existing softwares by extending
their capabilities without replicating existing solutions for
working with VCF files. We also provide suggestions for
building upon the VTC rather than building new tools
from scratch. VTC can be downloaded at https://github.
com/mebbert/VariantToolChest.

Results and discussion
Novel features
Multi-sample VCF support
As next-generation sequencing continues to gain
momentum, researchers need the ability to compile
many samples into a single VCF or analyze variants from
multiple VCF files. VTC was built to work with a combi-
nation of multi- and single-sample VCF files. Existing
softwares are only capable of handling either a single
VCF file, or one multi-sample VCF file. VTC can handle
a mix of single and multi-sample VCF files, with the user
defining which sample(s) to use from each of the VCF
files.
Genotype set operations
VTC contains a powerful set operation tool named
“SetOperator” designed to perform simple or complex
set operations using VCF files, including intersects,
complements, and unions. While various tools exist to
perform set operations on VCF files, VTC improves
existing solutions in two ways. First, existing software
performs set operations based only chromosome and
base pair position. This means that if one individual is
heterozygous and another homozygous, the resulting
operations would assume that these two individuals
have the same genotype. Second, existing tools work on
only a collection of single sample VCF files. In contrast,
VTC can perform set operations on a single multi-
sample VCF file, or a combination of multi- and single
sample VCF files. Furthermore, the user can choose to
only perform the operations based on certain individuals
from each multi-sample VCF file. These abilities save
researchers time by not forcing the user to extract all
samples of interest into a collection of single sample
VCF files, and allow more efficient storage of genotypes
in multi-sample VCF files. For example, it is helpful and
makes sense for a researcher to store all genotypes for a
single family in a single VCF file; however, the
researcher may have interest in performing set opera-
tions across multiple families (VCF files), such as per-
forming an intersection of variants from all affected
individuals from all families.
VTC has several operation-specific settings for inter-

sects and complements that allow researchers to specify
genotype-level requirements. For intersects, VTC cur-
rently has five genotype-level intersect methods and two
record-level (i.e., ignore genotypes) intersect methods.
The genotype-level intersect methods are as follows:

(1) heterozygous; (2) homozygous variant; (3) heterozy-
gous or homozygous variant; (4) homozygous reference;
and (5) match sample exactly across variant pools. The
record-level intersect methods are: (1) variant; and (2)
position.
The genotype-level intersect methods require that all

sample genotypes involved in the intersect fall into the
specified category. One caveat is that the heterozygous
genotype requires the sample to have a reference allele.
So if a sample’s genotype has two different variant
alleles (i.e. a tri-allelic position), though technically a
heterozygote, will not be considered as such. This dis-
tinction is made assuming that researchers interested in
identifying heterozygotes will assume the samples have a
reference allele. This also greatly simplifies several cor-
ner cases when dealing with multiple variants at a single
location.
The record-level intersect methods ignore genotypes

and only consider whether the variant pools included in
the analysis contain the variant. The “position” method
only considers chromosome, position, and the reference
allele, while the “variant” method also includes the alter-
nate allele(s). For the “variant” method, records with
multiple alternates are considered to intersect if at least
one of the alternates matches.
There are currently three complement methods: (1)

heterozygous or homozygous variant; (2) exact genotype
matches; and (3) variant. When performing a comple-
ment, the “heterozygous or homozygous variant” method
requires that all sample genotypes in both variant pool be
either a heterozygous or homozygous variant in order to
be removed from the variant pool being subtracted from.
The “exact genotype” method requires that all samples
across both variant pools have the same genotype, what-
ever it may be. The “variant” method ignores genotypes
and only subtracts if the chromosome, position, refer-
ence, and alternate match between the two variant pools.
Unions combine all variants and specified samples

into a single VCF file regardless of genotype. Samples
missing variants will have a “no call” genotype (“./.”).
Detailed set operation syntax
The Set Operator tool in the VTC empowers research-
ers to define set operations with a powerful, simple syn-
tax. This simple syntax has several advantages: (1)
researchers may specify any number of input files (var-
iant pools) to perform operations; (2) researchers may
specify specific samples within a given variant pool to
include in the operation; and (3) each operation is
assigned an identification value (ID) automatically by
VTC or specified by the user, so that it can be used in
subsequent operations. The general syntax structure for
a single operation is as follows (no spaces):
oId=operator[input_id1[sample_id1,sample_id2,etc.]:

input_id2[sample_id3,sample_id4,etc.]:etc.]

Ebbert et al. BMC Bioinformatics 2014, 15(Suppl 7):S12
http://www.biomedcentral.com/1471-2105/15/S7/S12

Page 2 of 5

https://github.com/mebbert/VariantToolChest
https://github.com/mebbert/VariantToolChest


Where oId is a user-specified ID for the operation (may
be omitted), operator is the operation of interest (i, c, or u
for intersect, complement, or union), input_id is the var-
iant pool ID, and sample_id is a sample ID for a sample
within the given variant pool. If sample IDs are omitted,
Set Operator will use all samples within the variant pool.
For example, the following intersect operation will per-
form an intersect on all samples within the variant pools
named “file1” and “file2": myOP=i[file1:file2].
Operation stringing
As previously mentioned, the set operation syntax allows
resulting variant pools to be used in subsequent opera-
tions. This feature allows researchers to obtain final
results with a single command in most circumstances.
Continuing with the previous example, “myOP” may be
specified in a subsequent operation as follows: “myOP=i
[file1:file2] myOP2=c[myOP:file3]”.
Intermediate files
When performing complex set operations, researchers
may want all intermediate operation results to be
printed to a file. Otherwise, the researcher would be
required to perform separate commands. As such, a
simple option named “–intermediate-files” will print
each operation result to a file named according to the
specified “oId” previously mentioned.
Header repair
VCF files can be complex, and maintaining a valid VCF
header can be challenging. Since VTC is built on the
code that defines VCFs, it is possible to detect invalid
VCF headers and repair them. VTC will automatically
add missing required header information such as the
“GT” header line when genotypes are being printed.
There are many useful (unrequired) header lines that
cannot be anticipated, however. This feature is still
under active development.
Add/remove “chr”
Chromosome numbers in VCF files may be prefixed by
“chr” or may simply be the chromosome ID (e.g., chrX or
X). Many next-generation sequencing softwares are
incapable of handling VCF files that do not use the same
convention simultaneously. For example, if one file
includes “chr” and another does not, current tools will
reject the files. And some tools require the VCF files to
have the same chromosome ID as the reference
sequenced used in the original analysis. VTC will either
prepend or remove “chr” from all variant records seam-
lessly according to the user’s specifications by simply
including (or omitting) the “–add-chr” flag.
Summary information
Several tools exist that will provide high- or low-level
detail on a variant pool, but they can be cumbersome.
VTC has a tool named VarStats that will provide a
quick summary of the variant pool, or a detailed var-
iant-by-variant summary. High-level summary metrics

include total number of variants, total number of single
nucleotide variants (SNVs), insertions and deletions,
structural variants, and variants with multiple alternates.
The summary also includes summary depth and quality
values. The variant-by-variant summary includes allelic
counts and the minimum, maximum, and average read
depth and quality scores for each variant.
Compare operation
Many analyses require researchers to perform several set
operations to identify all variants in common between
VCFs, those that are unique to a given VCF, and research-
ers may also need the combined set. Researchers are gen-
erally not satisfied knowing only the number of variants
that fall into each group, such as would be represented by
a Venn diagram. To obtain all of this information a
researcher would perform four set operations: an intersect
(common variants), two complements (unique variants),
and a union (combined set). Set Operator has a compare
operation ("–compare”) that will automatically perform all
four operations, print the results to their respective files,
and print a summary of each resulting variant pool to the
console. This option currently is limited to two input files.
VCF association analysis
Association analyses are common using genomic data, but
we are not aware of any available tools to perform such
analyses on VCF files. The VarStats tool in VTC will per-
form association analyses on all variants in a variant pool
if a phenotype file is provided. Results, including odds
ratios and p-values for each variant are printed to a file. If
there are multiple alternates at a given location, VarStats
will perform the analysis on each alternate and print
results on a separate line. This option does not currently
provide p-value correction such as multiple test correc-
tion, but will be implemented in a future release. These
corrections can be easily performed in statistical software.

Future directions
Filter tool
Next-generation sequencing variants are often filtered
on various values including quality scores and depth.
Several tools already exist that, when combined, satisfy
most needs for filtering variants. Ideally, a single tool
would incorporate all of this functionality along with
new features for simplicity.
File formats
While VCFs are the most common format for next-
generation sequencing variants, there are other file for-
mats that will be incorporated into VTC including Plink
(ped/map or bim/bam/fam) and comma-separated value
(CSV) files. Plink is particularly important since there
are many existing large-datasets in Plink format. In
order to compare or combine data in Plink format to
those in VCF format, there must be a tool to handle
this. VTC will enable researchers to read in variant data

Ebbert et al. BMC Bioinformatics 2014, 15(Suppl 7):S12
http://www.biomedcentral.com/1471-2105/15/S7/S12

Page 3 of 5



from multiple formats and perform all of the same ana-
lyses seamlessly. This is especially pertinent as a com-
mon QC measure of single nucleotide variants identified
in NGS studies is to compare NGS variants to variants
genotyped on a SNP array. Array data is most often
reported in Plink format.
Enhanced compare
As different technologies are compared, there is a need to
determine concordance between samples tested on multi-
ple technologies. VTC will implement an “Enhanced Com-
pare” option that will report genotypes that are perfect
matches, imperfect matches (heterozygous variant
observed on one technology and homozygous variant
observed from the other), and no matches for the same
samples on different technologies.
Additional SetOperator options
Anticipating all possible uses and hypotheses is difficult
with any new tool, especially with data as complex as
genomic variants. Responding to these needs is impor-
tant and will likely involve updated SetOperator options.
A few options we plan to implement are to accommo-
date specialized union operations, similar to those for
intersect and complement. Specifically, users may need
to union only heterozygotes, heterozygotes or homozy-
gous variant, only homozygous variant, or only homozy-
gous reference.
Incorporate new and existing tools
Building useful computational tools that interface well
together benefits researchers across all disciplines. New
tools, while generally valuable to the research community,
often do not integrate well with other tools used within a
discipline, causing end users grief. There are likely many
reasons for this fragmentation, but we would like to
address two major sources: (1) contributing to an existing
project can be costly (in time and money) and difficult;
and (2) computational researchers need to publish their
work to demonstrate academic productivity.
While object-oriented programming mitigates much of

the difficulty, contributing to an existing project is still
difficult because of the time and effort required to
become familiar with existing source code. Many pro-
jects have hundreds of classes with complex interactions
that make adding new functionality daunting. In many
cases, a researcher may opt to write a separate tool sim-
ply because it is more feasible. Unfortunately, this causes
fragmentation between tools. To promote well-inte-
grated tools, VTC was written specifically to facilitate
contribution with its easily extensible code structure.
Any computational researcher can begin a new tool
without needing to familiarize him/herself with other
complex code.
Contributing to existing source code can be challen-

ging, but publishing requirements also present a chal-
lenge to computational researchers, since publications

are an essential measure of academic productivity. If a
computational researcher adds a novel algorithm to an
existing tool, s/he may forfeit the opportunity to publish
the algorithm and get feedback from the community.
Because VTC is simply a collection of useful tools, how-
ever, researchers can contribute an independent tool or
algorithm with an independent name and publish it
independently.
As we mentioned above, it is not possible to predict all

possible operations and uses for software like VTC and we
anticipate the need for additional functionality. To this
end, we invite all computational researchers to contribute
independent tools associated with variant analysis to VTC.
This will benefit researchers by promoting tool integration
within a simple, intuitive framework.

Conclusions
VCF files are the standard format for storing variants iden-
tified in next-generation sequencing (NGS) and other stu-
dies, but working with them can be challenging. In this
manuscript we describe a novel program, the Variant Tool
Chest (VTC). The Variant Tool Chest is easily extendable
and complements existing softwares by extending their
capabilities without replicating existing solutions for work-
ing with VCF files. VTC is available at https://github.com/
mebbert/VariantToolChest

Methods
Variant tool chest overview
The Variant Tool Chest (VTC) is a collection of tools to
analyze variants from next-generation sequencing (NGS)
and other studies, and is intended to become a tool
chest to accommodate most analysis needs. It is written
in Java (version 1.7) for speed and portability. Two tools
currently exist in the tool chest named SetOperator and
VarStats. Set Operator performs set operations such as
intersects, complements, and unions on variant sets
termed variant pools. VarStats performs statistical
operations including association analyses and summaries
on variant pools. Since there are numerous other tools
necessary for analyzing variant pools, VTC was written
with an emphasis on extensibility.

Extensibility
To make VTC easily extensible, each tool is written
independently and is self-contained within a single Java
package. Researchers can add tools without being forced
to familiarize and integrate with other complicated code.
A single class named VTCEngine is the main entry for
all tools. VTCEngine receives user input and executes
the appropriate tool(s). Most arguments are passed to,
and handled by the tool of interest. Each tool uses a
simple argument-parsing library named Argparse4j [5]
to define and handle all arguments. All tools use the

Ebbert et al. BMC Bioinformatics 2014, 15(Suppl 7):S12
http://www.biomedcentral.com/1471-2105/15/S7/S12

Page 4 of 5

https://github.com/mebbert/VariantToolChest
https://github.com/mebbert/VariantToolChest


same variant and sample data structures known as Var-
iantPool and SamplePool, respectively.
VariantPool is built on the open source public applica-

tion programming interfaces (APIs) distributed by the
Broad Institute that define the Variant Call Format (VCF)
file structure. Specifically, the VTC is built on the Picard
[6], SAMTools [7], tribble, and variant APIs. Tribble pro-
vides necessary utilities for creating and working with var-
ious data file types, including VCF indexes. All three
libraries are essential components incorporated into the
Genome Analysis Toolkit (GATK) [3,4]. As such, VTC is
capable of reading and writing valid VCF files, dependably.
For generalizability, data structure classes are contained
within the main vtc.datastructures Java package. Any
future classes generally applicable across multiple tools
should also be defined within the vtc.datastructures pack-
age. Likewise, a class named UtilityBelt was created for
methods that are generally applicable. The file structure of
VTC can be seen in Figure 1.

Competing interests
All authors declare they have no competing interests.

Authors’ contributions
ME participated in concept and software design, software writing, and
manuscript writing; MW participated in software design and writing; KB
participated in software design and writing; KH participated in software
writing; AS participated in software design and writing; BO participated in
software design; JK participated on concept design; PR conceived the
concept and participated in concept design and manuscript writing. All
authors read and approved the final manuscript.

Declarations
We graciously acknowledge the resources provided for this work by grants
from the NIH (R01AG042611), the Alzheimer’s Association (MNIRG-11-
205368), and startup funds from Brigham Young University.

This article has been published as part of BMC Bioinformatics Volume 15
Supplement 7, 2014: Selected articles from the 10th Annual Biotechnology
and Bioinformatics Symposium (BIOT 2013). The full contents of the
supplement are available online at http://www.biomedcentral.com/
bmcbioinformatics/supplements/15/S7

Authors’ details
1Department of Biology, Brigham Young University, Provo, Utah, USA. 2ARUP
Institute for Clinical and Experimental Pathology, Salt Lake City, Utah, USA.

Published: 28 May 2014

References
1. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA,

Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R, 1000
Genomes Project Analysis Group: The variant call format and VCFtools.
Bioinforma Oxf Engl 2011, 27:2156-2158.

2. Quinlan AR, Hall IM: BEDTools: a flexible suite of utilities for comparing
genomic features. Bioinformatics 2010, 26:841-842.

3. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A,
Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA: The Genome
Analysis Toolkit: a MapReduce framework for analyzing next-generation
DNA sequencing data. Genome Res 2010, 20:1297-1303.

4. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C,
Philippakis AA, del Angel G, Rivas MA, Hanna M, McKenna A, Fennell TJ,
Kernytsky AM, Sivachenko AY, Cibulskis K, Gabriel SB, Altshuler D, Daly MJ: A
framework for variation discovery and genotyping using next-
generation DNA sequencing data. Nat Genet 2011, 43:491-498.

5. Tsujikawa T: Argparse4j 2013.
6. Picard 2013.
7. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G,

Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup: The
Sequence Alignment/Map format and SAMtools. Bioinforma Oxf Engl
2009, 25:2078-2079.

doi:10.1186/1471-2105-15-S7-S12
Cite this article as: Ebbert et al.: Variant Tool Chest: an improved tool to
analyze and manipulate variant call format (VCF) files. BMC
Bioinformatics 2014 15(Suppl 7):S12.

Figure 1 Variant Tool Chest (VTC) was built to be extensible. Each new tool only needs to interface with a few simple classes and is
otherwise completely independent. All tools should be self-contained within a single parent Java package. The main driver class for VTC is
VTCEngine. Any new tool should have its own Engine class and be instantiated from VTCEngine. All generally applicable data structures such as
VariantPool and SamplePool are placed within the vtc.datastructure Java package. Any new generally applicable data structures should also be
placed in vtc.datastructure. Otherwise the data structure should be housed within the tool’s package. Likewise, any generally applicable methods
should be placed in the UtilityBelt class.

Ebbert et al. BMC Bioinformatics 2014, 15(Suppl 7):S12
http://www.biomedcentral.com/1471-2105/15/S7/S12

Page 5 of 5

http://www.biomedcentral.com/bmcbioinformatics/supplements/15/S7
http://www.biomedcentral.com/bmcbioinformatics/supplements/15/S7
http://www.ncbi.nlm.nih.gov/pubmed/20110278?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20110278?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20644199?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20644199?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20644199?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21478889?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21478889?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21478889?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Results and discussion
	Novel features
	Multi-sample VCF support
	Genotype set operations
	Detailed set operation syntax
	Operation stringing
	Intermediate files
	Header repair
	Add/remove “chr”
	Summary information
	Compare operation
	VCF association analysis

	Future directions
	Filter tool
	File formats
	Enhanced compare
	Additional SetOperator options
	Incorporate new and existing tools


	Conclusions
	Methods
	Variant tool chest overview
	Extensibility

	Competing interests
	Authors’ contributions
	Declarations
	Authors’ details
	References

