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Abstract

Background: Chronic infection with hepatitis C virus (HCV) is a risk factor for liver diseases such as fibrosis, cirrhosis
and hepatocellular carcinoma. HCV genetic heterogeneity was hypothesized to be associated with severity of liver
disease. However, no reliable viral markers predicting disease severity have been identified. Here, we report the
utility of sequences from 3 HCV 1b genomic regions, Core, NS3 and NS5b, to identify viral genetic markers
associated with fast and slow rate of fibrosis progression (RFP) among patients with and without liver
transplantation (n = 42).

Methods: A correlation-based feature selection (CFS) method was used to detect and identify RFP-relevant viral
markers. Machine-learning techniques, linear projection (LP) and Bayesian Networks (BN), were used to assess and
identify associations between the HCV sequences and RFP.

Results: Both clustering of HCV sequences in LP graphs using physicochemical properties of nucleotides and BN
analysis using polymorphic sites showed similarities among HCV variants sampled from patients with a similar RFP,
while distinct HCV genetic properties were found associated with fast or slow RFP. Several RFP-relevant HCV sites
were identified. Computational models parameterized using the identified sites accurately associated HCV strains
with RFP in 70/30 split cross-validation (90-95% accuracy) and in validation tests (85-90% accuracy). Validation tests
of the models constructed for patients with or without liver transplantation suggest that the RFP-relevant genetic
markers identified in the HCV Core, NS3 and NS5b genomic regions may be useful for the prediction of RFP
regardless of transplant status of patients.

Conclusions: The apparent strong genetic association to RFP suggests that HCV genetic heterogeneity has a

quantifiable effect on severity of liver disease, thus presenting opportunity for developing genetic assays for
measuring virulence of HCV strains in clinical and public health settings.

Background

Hepatitis C virus (HCV) is a major cause of liver disease
world-wide and the leading cause of liver transplantation
in developed countries [1,2]. There are 7 major genotypes
divided into >100 subtypes [3,4], with genotype 1 being
responsible for the majority of HCV-infections world-
wide [5]. Approximately 70%-80% of HCV-infected
patients fail to clear the virus, and develop chronic HCV
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infections, which is a risk factor for liver diseases such as
fibrosis, cirrhosis and hepatocellular carcinoma [6]. Liver
fibrosis, which results from an excessive connective tissue
built up in the liver (fibrogenesis), can gradually exacer-
bate during the course of the infection and lead to scar-
ring of the tissue (i.e., cirrhosis) and more severe liver
dysfunction. The rate of fibrosis progression (RFP) in
HCYV infection has been proposed to be classified into 3
categories: fast, intermediate, and slow [7].

A wide array of host factors and conditions has been
reported to affect the RFP and predispose patients with
chronic HCV infection to rapid progression of liver
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fibrosis [8]. These include patients with the vitamin D
receptor (VDR) bAt|CCA haplotype in combination
with low levels of vitamin D [9], reduced expression
levels of the transcription factor RelA protein [10], a
high body mass index [11,12], elevated ALT levels [12]
and older age [7,12,13]. Accelerated RFP has also been
associated with male gender, excessive alcohol consump-
tion, age at acquisition of HCV infection [7,11,13] and
to immuno-suppression in liver-transplanted patients
[14].

Viral factors associated with rapid progression of liver
fibrosis have also been identified. Based on data col-
lected from the Swiss Hepatitis C Cohort Study (SCCS)
[15], Bochud and colleagues found that among geno-
types 1-4, genotype 3 was significantly associated with
faster RFP [16]. In liver-transplanted patients, high level
of viremia at the time of transplantation has also been
found significantly associated with faster RFP [14]. A
phylogenetic association of the core sequences with
fibrosis scores was observed among HCV strains recov-
ered from post-transplanted patients, suggesting that
RFP is a heritable trait [17]. Minimum-spanning tree
analysis showed association of 2 HCV genomic regions,
core and NS5B, with RFP in non-transplanted patients.
However, to date, studies examining the HCV genetic
factors as predictors of RFP in patients with chronic
HCYV infections have been inconclusive [7,13,17-20].
Nonetheless, these observations, taken together with
findings indicating associations of genotype with HCV-
related steatosis [13,21] and diversity of intra-host HCV
variants with liver disease progression [22], suggest that
the genetic composition and diversity of HCV strains
may affect RFP in patients with chronic HCV infections.

Recently, we have shown that epistatic connectivity
among viral genomic sites is strongly associated with
host factors such as age, gender and race [23] as well as
with interferon or lamivudine resistance [23,24], indicat-
ing that intra-host viral evolution is convergent and
clinically important traits can be predicted by modeling
coevolution among viral genomic sites. Here, we investi-
gated epistatic connectivity among nucleotide sites from
3 regions, core, NS3 and NS5B, of HCV genome and its
association with RFP. This is the first study to report
the development of computational models with capacity
for accurately predicting RFP based on the HCV genetic
diversity and composition.

Methods

Patients and HCV 1b sequences

HCV 1b consensus nucleotide (nt) sequences of the
core, NS3 and NS5b (genome positions: 345-731, 4464-
4685 and 8276-8612; spanning polyprotein positions 2-
130, 1375-1448, and 2646-2757, respectively) were
obtained from GenBank (Accession numbers: AY898811
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to AY898940). Sequences of HCV 1b isolates were iden-
tified through a study on cohorts of liver transplanted
(TOH; n = 22) and non-transplanted - immunocompe-
tent - patients (IC; n = 22) [18]. In order to conduct an
interaction/dependency-based analysis, sequences from
these three genomic regions were concatenated into a
single nt sequence, aligned and annotated with clinical
data. Sites were numbered according to their position in
the genome using HCV isolate Conl as reference
sequence (GenBank accession number: AJ238799). Sites
that were conserved and/or presented an ambiguous nt
were removed from the alignment. A total of 174 poly-
morphic sites were used. Then, data were further
reduced to a subset of selected relevant nt sites (n = 25)
to conduct analysis of the HCV genetic diversity associa-
tion to RFP.

Sequence profiles were divided into 2 RFP classes, fast
(n = 17) and slow (n = 25), as described in [18]. For
purposes of model evaluations, data were also divided
by liver transplant status associated to sequence profiles:
TOH dataset (n = 22; comprising 10 patients with fast
and 12 with slow RFP) and IC dataset (n = 20; compris-
ing 7 patients with fast and 13 with slow RFP). In addi-
tion, random-labeled datasets from TOH and IC were
also generated in which HCV sequence profiles were
randomly assigned to RFP classes. Two patients (IC, fast
RFP) were excluded from our analysis as sequences of
the HCV NS3 region were not obtained from these
patients [18].

Selection of relevant HCV genetic features

Polymorphic nt sites with the highest degree of correla-
tion to the patients’ yearly RFP (fast or slow) were deter-
mined using the correlation-based feature subset
selection (CFS) method [25], which is based on the
“merit” heuristic. The merit heuristic of a feature subset
S containing k features is defined as,

. k x rca
Merits =
\/k+(k— 1) x raa

where rca is the average feature-class correlation
and raa is the average feature-feature inter-correlation.

CES iterates through subsets of highly correlated and
non-redundant features to find the best subset of inter-
acting features (i.e. features whose values are dependent
on the values of other features and the class, and as
such, provide additional information about the class).
The Best-first greedy search strategy [26] was used in
CFS iterations, which considers effects of adding (or
removing) a feature to the current subset in order to
find a better subset of interacting features. The Best-
first search was started with an empty set of features
and generated all possible single feature expansions [27].
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The subset with the highest merit is chosen and
expanded by adding features one at a time. If expanding
a subset results in no improvement in the merit score,
the search drops back to the next best unexpanded sub-
set and continues from there. The best subset found is
returned when search terminates. Here, the Best-first
search was performed in the forward direction. The sub-
set of relevant viral features selected on the basis of the
Merit heuristic served as the viral parameters to derive
models of RFP-specificity of the HCV strains.

Linear projection graphs and models
To uncover interactions among relevant viral features
associated to RFP characteristics of patients and provide
information about inter- and intra-RFP class similarities
among HCV strains, a linear projection (LP) method
[28] was used. This machine-learning method, which
takes into consideration interactions among attributes,
finds a linear combination of features so that when
mapped onto a 2-dimensional (2D) graph the projected
data exhibit a trait-specific structure, such as clusters.
To find the most useful projections comprising a subset
of features (base vectors) that would optimally associate
HCYV variants to RFP characteristics of patients we used
the VizRank search method [29]. Computations were
carried out on dataset of relevant features of HCV 1b
isolates from 42 patients. To evaluate projections, a
scoring function based on the measure of classification
accuracy was used, which is common in machine-learn-
ing. For each projection, the average probability (P)
assignment to the correct RPF-class was computed
using a probabilistic k-nearest neighbors algorithm
(k-NN), where the parameter k was set at 6. Given
enough time, the VizRank search method will explore
the entire search space, so it is common to limit the
projections’ size (subset of features) and/or to limit
search times. We limited the global search on dataset to
500 minutes, projections size to up to 11 features and
kept the list of projections returned by VizRank to a
maximum of 5,000. We then extended the search to the
local list of 50000 projections to find optimal projec-
tions. This local search was manually terminated after a
period of ~4,320 minutes while retaining a list of 20,000
projections (comprised of up to 13 features). Projections
with classification scores 290.0% were examined and
manually selected on the basis of how well they could
visually separate HCV strains into RFP-specific clusters.
To generate LP models, the 9-feature-based projection
was mapped into LP graph. Then, the FreeViz machine-
learning method [28] was used to generate LP models of
the projection. This method searches the space for opti-
mal orientations and order placements of base vectors
that best represents data classes in the graphs. LP mod-
els based on RFP-relevant viral features in selected
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projections were evaluated on HCV 1b data collected
from the 42 patients by 10 repetitions of 70/30 split
cross-validation (CV), i.e., randomly sampling 70.0% of
data for training and testing classification performance
of the model on the remaining 30% of samples. In addi-
tion, to validate LP models and viral parameters in
selected projections, classification performance of LP
models trained on a specific liver-transplant group data-
set (see Patients and HCV 1b sequences in Materials
and Methods) was measured using the opposite liver-
transplant group data as test sets. All analyses related to
LP graphs and evaluation of LP models were conducted
using the Orange software (v2.0) [30].

Representation of physicochemical properties of HCV
nt sequences was achieved by transforming the standard
4-letter alphabetical nt sequence profile of HCV variants
into N x 5 dimensional numerical vectors, where N is the
sequence length and 5 represents the number of physico-
chemical values assigned to a nt base, which were based
on experimentally measured properties of nt bases
(hydrophobicity, polarity, dipole moment, surface area
and stacking area) [31].

Bayesian network classifier (BNC)

To examine how dependency in nt substitutions among
relevant genomic sites associate HCV genetic heterogene-
ity of strains to RFP and to further explore inter- and
intra-RFP-class similarities among HCV strains between
TOH and IC patients, the learning Bayesian network (BN)
approach [32] in the form of a BN classifier (BNC) was
used. BN is a probabilistic graphical model, where nodes
in the graph represent random variables in data - herein,
RFP of host and relevant genetic features of the HCV 1b
strains - and arcs in graph represent direct dependencies
between the variables. A BNC can represent genomic
sequence information and associated metadata in an inte-
grated data-structure (network structure - representing
dependencies among features, conditional probability dis-
tributions, etc.) to qualitatively and quantitatively assess
dependency among genetic features and target features
(associated metadata). BNC models can handle problems
of convergent evolution when estimating HCV resistance
to treatment [23,24] and host-related features, such as,
demographic characteristics of patients [23].

Derivation of BNC consists of two tasks, selection of a
learned-BNC structure and parameter estimation of
BNC. The structure-learning task was conducted in two
steps. First we initialized BNC as a naive BNC, where
arcs from the RFP node, representing the yearly RFP
characteristics of patients, were directed to each of the
nodes representing relevant HCV nt sites. Then, rela-
tionships (dependency) among the HCV genetic features
were learned from data in an unsupervised fashion
using a greedy-search heuristic, the K2 algorithm [33].
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For this 2nd step, a constraint in the maximum number
of parents (arcs direct towards any given node) was
enforced (set to a maximum of 3). The scoring function
criterion used in final selection of the BNC structure
was based on the Bayesian with Dirichlet priors, BDe
metric [34]. The second task, parameter estimation,
which consists of estimating the conditional probability
tables of nodes in BNC, was directly estimated from
data and based on frequency counts.

The BNC model where all features depends on the
class and any feature depends on k other features at
most is described by the formula,

plclfr, ... fn) < p(e)p(filfis ooer o €) X oo X p(flfts oevs fis €)

where c is the RFP-class and {f}, f;, fy, fi, .... fn} are
features, CFS-selected sites of the HCV genome used in
this study whose values represent nt states (4-letter
alphabetical code). The threshold of BNC output bound-
ary between the RFP-classes was set at 0.5.

Two BNC models were generated: the BNC-TOH,
learned from TOH cohort HCV 1b isolates and BNC-
IC, learned from IC cohort isolates for the purpose of
conversely evaluating prediction performances of BNC
on test sets from opposite cohort data (tests with
unseen data). In order to maintain equal representations
of RFP-class examples, size of the IC dataset used to
train BNC-IC was reduced from 20 to 14 samples
(7 fast and 7 slow fibrosers) by randomly selecting HCV
sequences from data.

In addition, to support predictions of models and to
account for possible random correlations in data we
conducted the same evaluation assessments on BNC
models parametized on random-labeled datasets
(ranaBNC). For these experiments, the structure learning
step was skipped. Instead, fixed structure-learning was
performed by selecting the BNCs learnt from non-
randomized data for the training phases on randomized
datasets. A total of 5 randomly-labeled datasets were
generated by randomly re-sampling HCV data to con-
duct 5 repetitions of evaluations of ,,q BNC perfor-
mance on validation tests.

Evaluation of LP and BNC models

Four metrics were used to evaluate capacity of the mod-
els to predict RFP-class: classification accuracy (CA),
sensitivity (SN), specificity (SP) and the F-measure,

CA=[(TP +TN) = [(TP + FN) + (FP + TN) x 100] ]

SN = TP = (TP + FN) x 100

SP = TN = (FP + TN) x 100
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2 xTP
FMEASURE =
2 x TP + FP + EN

where TP is the number (No.) of true positives; TN,
No. of true negatives; FP, No. of false positives and FN,
No. of false negatives.

Results and discussion

RFP-specific genetic features of HCV

The heuristic method used to identify which polymorphic
nt sites are most relevantly associated to RFP is based on
the hypothesis that good features have high correlation to
classes and less inter-correlation with each other [35].
This method has been shown to be efficient in finding use-
ful features from data and improves accuracy of machine-
learning classifiers [25]. The most RFP-relevant features of
HCV are shown in Table 1. Genetic heterogeneity at sev-
eral nt sites in the HCV Core (n = 8), NS3 (n = 8) and
NS5b (n = 9) regions was found to be associated to RFP-
class (i.e., fast- and slow-RFP) by CFS analysis. Based on
the merit score of the CFS feature subset, it was found
that no single nt site or any individual HCV genomic
region could strongly and independently explain RFP fea-
tures. This finding is concordant with a previous study on
same HCV 1b data, which demonstrated absence of a
RFP-specific clustering in phylogenetic trees of variants of
the HCV Core, NS3 and NS5b regions [18]. The relatively
low merit score of the CFS feature subset and, conse-
quently, of the feature subsets of individual regions (see
legend, Table 1) suggest at least two possible explanations.
First, the data contain trivial information grossly unasso-
ciated with RFP and, therefore, features in data are useless
for the purpose of the RFP classification, which is not
likely since the prior analyses showed that sequence data

Table 1 RFP-relevant HCV sites.

Method Sites® Score
CFS? 450, 500, 548, 581, 584, 602, 630, 659, 0.35
4484, 4492, 4496, 4514, 4535, 4538, 4560,
4610, 8324, 8342, 8378, 8435, 8438, 8480,
8540, 8546 and 8606
VizRank®
12-feature 8480X5, 4496X2, 4484X1, 450X3, 4496X4, 90.38%
projection 8606X5, 8480X1, 8606X1, 8435X5, 8378X4,
4496X1, 4496X3
9-feature 4496X4, 8480X5, 450X3, 8606X4, 4484X4, 90.17%
projection 8435X5, 8606X3, 4496X5, 8378X2

SGenomic positions assigned based on reference sequence Con1.

A total of 3,757 feature subsets were evaluated by CFS search method.
Scoring metric is based on the merit heuristic. Merit scores of feature subsets
of the individual regions were also computed: core (0.19), NS3 (0.28) and
NS5b (0.20). CFS sites, physicochemical properties of which were selected for
the RFP-relevant projections are shown in bold.

PFeatures are listed in the placement order of base vectors in LP graphs
shown in Fig. 1. Site-specific physicochemical properties are denoted X1
(hydrophobicity), X2(polarity), X3(dipole moment), X4(surface area) and X5
(stacking area). See methods for details on scoring metric.
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have information related to RFP [18,36]. However, even in
such a case, it’s been shown that features whose values
have low predictive power and appear completely irrele-
vant, when combined, can still contribute significantly to
machine-learning classification [25,37]. Second, the
observed merit scores most likely reflect an overall highly
complex genetic relationship to RFP phenotype and that
CFS-selected HCV genetic features have values predictive
of a small area of the RFP space, which may be obvious
only under certain conditions (e.g. methods of data analy-
sis, immune status of patient, etc.). In fact, a positive cor-
relation between RFP and genetic diversity of variants of
the HCV Core and NS5b regions from non-transplanted
and immunocompetent patients was observed by mini-
mum spanning network analyses, however, not in HCV
strains from liver transplant recipients [18].

Because integration of features with values of low pre-
dictive power or that specify a small fraction of one or
more class spaces into a computational framework that
combines the values with trait-specific interactions and/or
dependencies among features has been effective in identi-
fying HCV markers associated to complex phenotypic
traits [23,38], this approach was chosen to resolve the
HCV genotype to REP phenotype association.

RFP-specific clustering of HCV strains in LP graphs

A total of 2,911 projections out of the list of 20,000 projec-
tions returned by VizRank achieved classification score
that ranged between 90.0% and a maximum of 90.42%.
Two projections comprising subsets of RFP-relevant nt
physicochemical properties of HCV sequences (Table 1)
were found to provide the most marked visual division of
HCV strains into the RFP classes. LP graphs of the
selected RFP-specific projections are shown in Figure 1.
Clustering of HCV 1b strains in LP graphs showed strong
association to the yearly RFP features of patients, which
was projected onto LP graph with as little as 9 physico-
chemical features from 7 relevant nt sites. It is important
to note that the observed clustering in LP graphs corre-
sponds to a true property of the data points because fea-
tures used to represent nt sequence profiles of HCV
strains are continuous values, hence, a consequence of
properties ensuing from values assigned to the 4 nt-bases
and not a consequence of the visualization [29].

Both the 9- and 12-feature-based LP graphs revealed a
tight cluster of HCV strains obtained from IC and TOH
patients with slow RFP (n = 25, 13 from IC and 12 from
TOH patients). While strains from patients with fast
RFP exhibited a broader degree of property variations as
they were more dispersed and mostly separated into two
spaces in the LP graphs. The apparent RFP-specific clus-
tering among HCV strains in LP graphs together with
the level of intermixing observed between IC- and
TOH-related strains suggest that RFP may be directly
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predicted from the HCV sequences irrespective of the
transplant status of host.

LP models of the HCV RFP-specificity

An LP model, generated in an automated fashion by
FreeViz [28] using the HCV dataset from 42 patients and
based on the RFP-relevant 9-feature projections (Table 1)
is shown in Figure 2A. The optimally rearranged base
vectors in LP model grouped HCV strains into three
spaces in the graph, two of which were associated to the
fast RFP-class and separated by an area associated to the
slow RFP-class. Both fast-RFP associated spaces con-
tained only HCV strains sampled from patients with fast
REP, with strains from IC and TOH patients being evenly
distributed between spaces. While the slow-RFP asso-
ciated space contained 4 HCV strains sampled from
patients with fast-RFP. Evaluation of the 70/30-split CV
tests showed that the LP model had 93% accuracy of
RFP-classification (Table 2). Similarly, accuracy of
290.0% was observed for LP-TOH and LP-IC models
(models specifically generated from the TOH and IC
datasets, respectively; Table 2). Furthermore, only slight
decline in classification accuracy was observed in valida-
tion tests of LP-TOH and LP-IC, indicating that the
models captured general genetic properties associated
with RFP from both cohorts of patients and, therefore,
are very robust. This finding supports the aforemen-
tioned observation in LP graphs that the association
between the HCV genetic diversity and RFP is not
affected by the transplant status of patients.

BNC models of the HCV RFP-specificity
Findings from the LP graphs and models indicate that the
CFS-selected features can be used as genetic markers of
RFP. To further examine these features, a set BNC models
was learned from IC and TOH datasets (Figure 3). Net-
work structures were markedly different between BNC
models. However, considering the small size of each data-
set, it is expected that presence or absence of a single
sequence may have a significant effect on the BN struc-
ture, thus making unreliable any assertions regarding the
specificity of interactions or dependencies among poly-
morphic nt sites of the 3 regions in the context of associa-
tion to RFP. The important observation is that variation at
polymorphic sites in these 3 regions is associated with RFP
in both datasets. Evaluation of classification performances
of models in validation tests (Table 2) indicates that both
BNCs accurately captured interrelationships among all
variables and are capable of predicting RFP classes from
molecular data despite differences in structures of the
BNC-IC and BNC-TOH.

BNCs showed equal accuracy of RFP-classification as
LP-based models for both IC datasets in validation tests
(Table 2). Meanwhile, only 5.0% decrease in classification
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Figure 1 2D linear projection (LP) graphs. Base vectors of projection represent RFP-relevant features. Sites are identified by their positions in
the HCV genome and physicochemical properties are shown in parenthesis as X1-X5. See Table 1 for detail. LP graphs of HCV 1b isolates (n =
42) sampled from TOH and IC patients based on A) 12-feature and B) 9-feature projections are shown. To the right of each LP graph is the same
graph except for the condition that data points were jittered [41] to highlight membership and size of clusters.

accuracy was observed for BNC-TOH compared to LP-
TOH. This finding indicates that, similar to LP models,
BNCs are robust and HCV strains from patients with
comparable yearly RFP have similar genetic properties
extracted by both kinds of models. Because prediction
performances of BNC models trained on randomized-
labeled data deteriorate during validation tests, falling
closely to the excepted classification accuracy of 50.0%,
associations observed in data are not likely to be result of
random correlations, thus, further providing evidence to
support relevance of identified viral markers, accuracy of
models performance and association to RFP.

Findings obtained from performance evaluations of LP
and BNC models suggest that genetic heterogeneity at
the identified polymorphic nt sites in the HCV core, NS3
and NS5b regions (Table 1) is relevant to RFP. This
strongly implies that the genetic composition of HCV
may influence liver disease progression. Circulation of
potentially more aggressive HCV genotypes in human
populations has been proposed to influence progression
and severity of liver disease [18,39]. Moreover, the obser-
vation that different HCV genotypes and subtypes differ
in responses to therapy [40] and epidemiology
[5,13,16,21] provides further evidence of the potential
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Figure 2 RFP-specificity of LP models. A) 2D graph of the LP model shown in Fig 1. HCV strains distributed into 4 clusters, from left to right:
cluster 1 (fast RFP-IC, n = 1), cluster 2 (fast RFP-IC, n = 2; fast RFP-TOH, n = 4), cluster 3 (slow RFP-IC, n = 13; slow RFP-TOH, n = 12, and fast
RFP-IC, n = 1; fast RFP-TOH, n = 3) and cluster 4 (fast RFP-IC, n = 3; fast RFP-TOH, n = 3). The graph below, shows mapping of computed
probability potentials in LP model defining three RFP-class spaces of HCV strains (fast-RFP in blue, slow-RFP in red), where color density of areas
are directly proportional to the probability of association to the respective RFP-class. Plots, where x-axis represents predicted probabilities and y-
axis denotes observed RFP-class of HCV strains, show classification performances in validation tests of the B) LP-IC and C) LP-TOH model.

Table 2 Performance evaluations of models.

Model* Dataset CV test® CA (%) Sensitivity (%) Specificity (%) F-measure (%)
LP Full (n = 42) 70/30-CV 93.20 82.00 100 90.11
LP-TOH TOH (n = 22) 70/30-CV 90.00 76.67 100 86.79
LP-IC IC (n = 20) 70/30-CV 95.00 85.00 100 92.31
Validation test sets
LP-TOH IC (n = 20) 90.00 7143 100 83.33
LP-IC TOH (n = 22) 86.36 70.00 100 82.35
BNC-TOH IC (n = 20) 85.00 7143 92.31 82.90
BNC-IC TOH (n = 22) 86.40 70.00 100 85.62
RandBNC-TOH IC (n = 20) 45.00 na na na
RandBNC-IC TOH (n = 22) 4554 na na na

*LP model is based on the selected projection comprised of 9 HCV features. Classification accuracy for g.,qBNCs was averaged over 5 repetitions.

Values were averaged for 10 repetitions.
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A

transplanted patients are shown.

Figure 3 BNC models of RFP-relevant HCV sites. Nodes in the graph represent 25 nt sites (Table 1) and arcs between them represent
relationships. Numbering of nodes in BNC denotes genomic position in Con1 as reference and colour represent genomic region. Node
representing RFP is coloured in red. Models learned from HCV sequence profiles sampled from A) non-transplanted patients and from B)

impact that particular HCV strains may have on clinical
outcomes in chronic hepatitis C.

Conclusions

In conclusion, the Core, NS3 and NS5b genomic regions
of the HCV 1b strains analyzed in this study were found
to contain the RFP-relevant genetic markers, which
were previously undetected by other analytical methods
[18]. Here, for the first time, we show feasibility of
developing robust and accurate genetic assays for the
prediction of liver fibrosis progression in patients with
chronic HCV infection using only HCV nt sequences.
Development of such assays offers novel opportunities
for clinical managements of patients and molecular sur-
veillance of HCV-associated liver disease.
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