
PROCEEDINGS Open Access

Ensemble analysis of adaptive compressed
genome sequencing strategies
Zeinab Taghavi

From RECOMB-Seq: Fourth Annual RECOMB Satellite Workshop on Massively Parallel Sequencing
Pittsburgh, PA, USA. 31 March - 05 April 2014

Abstract

Background: Acquiring genomes at single-cell resolution has many applications such as in the study of microbiota.
However, deep sequencing and assembly of all of millions of cells in a sample is prohibitively costly. A property
that can come to rescue is that deep sequencing of every cell should not be necessary to capture all distinct
genomes, as the majority of cells are biological replicates. Biologically important samples are often sparse in that
sense. In this paper, we propose an adaptive compressed method, also known as distilled sensing, to capture all
distinct genomes in a sparse microbial community with reduced sequencing effort. As opposed to group testing in
which the number of distinct events is often constant and sparsity is equivalent to rarity of an event, sparsity in
our case means scarcity of distinct events in comparison to the data size. Previously, we introduced the problem
and proposed a distilled sensing solution based on the breadth first search strategy. We simulated the whole
process which constrained our ability to study the behavior of the algorithm for the entire ensemble due to its
computational intensity.

Results: In this paper, we modify our previous breadth first search strategy and introduce the depth first search
strategy. Instead of simulating the entire process, which is intractable for a large number of experiments, we
provide a dynamic programming algorithm to analyze the behavior of the method for the entire ensemble. The
ensemble analysis algorithm recursively calculates the probability of capturing every distinct genome and also the
expected total sequenced nucleotides for a given population profile. Our results suggest that the expected total
sequenced nucleotides grows proportional to log of the number of cells and proportional linearly with the number
of distinct genomes. The probability of missing a genome depends on its abundance and the ratio of its size over
the maximum genome size in the sample. The modified resource allocation method accommodates a parameter
to control that probability.

Availability: The squeezambler 2.0 C++ source code is available at http://sourceforge.net/projects/hyda/.
The ensemble analysis MATLAB code is available at http://sourceforge.net/projects/distilled-sequencing/.

Introduction
Progress in DNA amplification techniques [1] and high
throughput cell cultivation methods [2,3] allow capturing
of genomes at single-cell resolution. However, deep
sequencing and assembly of all of the cells in a sample is
prohibitively costly since there are millions sometimes bil-
lions of cells. The good news is that, to capture all distinct
genomes, deep sequencing of every cell should not be

necessary as the majority of cells are biological replicates.
For instance, the number of detected distinct species in
the human gut was estimated to be in the order of 1,000,
while the number of microbial cells in a human body,
most of which reside in the gut, is in the order of 100 tril-
lion [4]. We call this effect the sparsity of distinct genomes
in a sizeable microbial population. Biologically important
samples are often sparse in that sense. We use sparsity to
capture all of the genomes in a sample.
During the last decade, the rich field of compressed sen-

sing in non-adaptive [5-7] and adaptive (distilled sensing
Correspondence: ztaghavi@mail.colostate.edu
Computer Science Department, Colorado State University, 346 Computer
Science Building, Fort Collins, CO 80523, USA

Taghavi BMC Bioinformatics 2014, 15(Suppl 9):S13
http://www.biomedcentral.com/1471-2105/15/S9/S13

© 2014 Taghavi; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://
creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://sourceforge.net/projects/hyda/
http://sourceforge.net/projects/distilled-sequencing/
mailto:ztaghavi@mail.colostate.edu
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

and refinements) forms [8,9] has been developed to reduce
the cost of sampling and reconstruction of sparse signals
[10,11]. In the general form of the problem, both adaptive
and non-adaptive methods reduce the number of sensing
in comparison to the non-adaptive naive sensing, and
make it proportional to the number of distinct events
times log of the data size [12]. However while adaptive
compressed methods may seem more cumbersome than
their non- adaptive counterparts, adaptive methods often
improve detection and estimation performance [12].
Our problem is an instance of a larger class of problems

called element distinctness, which is a popular problem in
massive data analysis with numerous applications and dif-
ferent variants including (i) finding if there are duplicates
in a list, (ii) calculating the number of distinct elements
(support size), and (iii) estimating the distribution of dis-
tinct element populations [13]. In the vast majority of ele-
ment distinctness problems, the complexity of deciding if
two elements are identical is of O(element size). We dis-
tinguish between different classes of the problem based on
the size of an element in comparison with the size of the
entire population.
In some of the problems such as estimation of the

number of distinct words an author knows (e.g. Shake-
speare) [14], the size of an element is very small in com-
parison with the size of the problem. In some others,
hash functions are used to reduce the element size. Such
variants of the problem have been investigated deeply to
find optimal algorithms both in time and space. For data
stream analysis, if n is the size of the language of ele-
ments, then the space complexity of optimal probabilistic
(1 ± ∈)-approximation algorithm is O(∈−2 + log n) and
its time complexity is O(n) [13]. In such algorithms, each
element is either completely sensed or not sensed at all,
i.e., no partial sensing of an element. However, there are
important variants of the problem in which each element
is complex, such as the case of whole genome sequences.
The contributions of this paper and its predecessor [15]
is (i) introduction of this other class of problems with
large element size with respect to the sample size, and (ii)
the first adaptive compressed method to the best of our
knowledge to solve an instance of this problem in the
form of finding all distinct genomes with reduced
sequencing effort in a sparse microbial sample.
Assume that the distinction of two cells is based on the

differences between their genomes. Therefore, the com-
plexity of pairwise distinction is a function of the lengths
of the DNA sequences, each in the order of 1,000,000 −
10,000,000 base-pairs for a bacterial cell and 3,300,000,000
base-pairs for a human cell, with an average size of m.
A sample contains n cells, for instance 10,000,000 cells,
where n and m are in the same order. In this problem,
there are two types of cost: (i) wet-lab cost related to

sequencing, i.e., reading the DNA sequence digitally, and
(ii) computational cost of genome assembly and compari-
son, i.e., digital reconstruction of the whole genome
sequences from the sequencer output. The output reads of
a sequencer are short randomly sampled subsequences of
the genomic sequence which cover the genome multiple
times. The number of reads that contain a genomic loca-
tion is called the coverage. In the assembly, the reads
are concatenated to reconstruct the whole genome.
Sequence assembly is a challenging task due to sequencing
errors and repetitive elements. To compare a number of
sequenced read data sets, a co-assembly software such as
HyDA [16] is used. The output of HyDA provides us with
measures to compare the extent of similarity between the
underlying genomes from which the read data sets are
derived.
Wet-lab cost includes the monetary cost which is line-

arly proportional to the total number of base-pairs
sequenced. If m is the average genome size and c is the
necessary coverage, then the cost is O(nmc) for the
exhaustive sequencing of all cells. Computational cost
includes the space complexity and time complexity of
assembly and comparison. If the assembly is done using
the de Bruijn graph [17], the time complexity is O(nmc
log m) and space complexity is O(nm). For instance, a
typical real-world scenario involves c = 20, m = 5,000,000
bps, and n = 10,000, 000 for which the exhaustive wet-
lab, time, and space cost complexities would be respec-
tively O(1015), O(1016), and O(1013). The exhaustive
approach is not tractable even for a small population.
Hence, sublinear algorithms are needed to solve the
problem.
We propose an adaptive compressed method, also

known as distilled sensing. Our ultimate goal is to reduce
the nm factor in wet-lab, time, and space complexities to
sm log n in which s is the number of distinct genomes in
the community. We cannot use the algorithms and ana-
lyses given for the classical compressive sensing approach
since our sparsity is unordered set sparsity rather than
ordered sparsity by time or space. As opposed to group
testing in which the number of distinct events is often
constant and sparsity is equivalent to rarity of an event,
sparsity in our case means scarcity of distinct events in
comparison to the data size. It is also important to note
that we do not have positional access (a.k.a. random access
in the computer science literature) to the DNA sequence,
which limits the use of many dimensionality reduction
techniques [18].
We previously defined the problem and proposed a dis-

tilled sensing solution based on the breadth first search
strategy [15]. To evaluate the performance of our algo-
rithm, we simulated the whole process including genome
amplification by MDA [19], sequencing by Illumina, (co-)

Taghavi BMC Bioinformatics 2014, 15(Suppl 9):S13
http://www.biomedcentral.com/1471-2105/15/S9/S13

Page 2 of 13

assembly by HyDA [16], and comparison. We proposed an
adaptive resource allocation method to determine the
amount of sampling of each genome in each round, which
is related to the one proposed by [8,9]. Due to the compu-
tational intensity of each of those processes, we were able
to demonstrate the power of our approach for a few
instances of the problem, but the behavior of the algo-
rithm for the entire ensemble is yet to be studied.
In this paper, we give a new algorithm based on the

depth first search strategy and modify our previous
breadth first search resource allocation and set selection.
Since simulating the entire process is time-consuming,
we provide a dynamic programming algorithm to analyze
the behavior of the method over the entire ensemble.
Our algorithm recursively calculates the probability of
capturing every distinct genome and also the expected
total sequenced nucleotides for a given population pro-
file. It is important to note that even though the popula-
tion is known for the ensemble analysis algorithm, the
actual sensing algorithm works without that knowledge.
That is our sensing algorithm can be applied to any
population, even without knowing the profile. To have a
clear view of the effect of each parameter on the expected
cost, we assume that our model is error free at this stage.
The results in this paper may lead to theoretical solutions
and analysis with more complete model assumptions in
the near future.

Method
Our method consists of two parts: (i) wet-lab process, and
(ii) computational process. On the wet-lab side, we are
assuming to have a high throughput device which is cap-
able of isolating each cell in the sample, cultivate it, then
extract the DNAs of each cultivated cell and amplify them.
This device should also be capable of sampling customized
amount from selected amplified DNAs, pool them, and pre-
pare them for sequencing. If we would like to sequence
more than one pool of samples in the same run, the device
should uniquely barcode each pool before sending the sam-
ples for sequencing. Although there is currently no such
device, one can envision automated microfluidic devices in
near future based on the technologies already developed for
separation, cultivation, DNA extraction, amplification, and
barcoding [2,3].
The output of sequencing is a library of reads which will

be demultiplexed based on the barcodes. Therefore, for
each pool of sampled amplicons which is sent for sequen-
cing, a read data set is obtained. All the read data sets at
each round are co-assembled (with HyDA [16]). In the co-
assembler, to each read data set a unique color is assigned.
All the colors are assembled on a single de Bruijn graph.
The output is a list of contigs and their colored average
coverages. This provides us with a measure to compare

the similarities between the assembly of different colors.
Based on those similarities, we decide if any two assem-
blies could potentially be from the same genome.
In the naïve exhaustive approach, each isolated cell is

sampled and deeply sequenced. Based on the similarity
measures provided by the co-assembler, distinct genomes
are then identified. In the adaptive method, at each round
a number of collections of cells are selected. For each col-
lection, the amount to be sampled from each cell is com-
puted based on the analysis in the previous rounds. The
output read data sets are analysed and the next round of
sampling is calculated. We describe the details of the sam-
pling collections and size in this section. First, let’s clarify
the assumptions for our model.

Model assumptions
The definition of distinct genomes may vary in different
applications. We, instead of phenotypic notions like spe-
cies or strains, use a quantifiable genomic measure to
determine the distinction of genomes. We define two gen-
ome sequences to be distinct if the ratio of their differ-
ences over the whole genome size is above a threshold,
called τ. That threshold is input by the user and controls a
trade-off between sensitivity and specificity [15].
Let C = {C1, C2, . . . , Cn} comprise the input community

of cells. As described earlier, we are given a device that
can sense each cell Ci partially at random, and the cost of
a sensing is proportional to the sensing size, i.e., the num-
ber of nucleotides sampled. As the sensing size increases,
the reconstructed genome of Ci after the assembly con-
verges to completion. To introduce appropriate notations,
let I ⊆C be a subset of the community. Let be the sensing
of the aggregated cells in I, which is the superposition of
all sensing taken from the cells in I, i.e., the aggregated
read data set or equivalently the resulting assembly. The
key observation is that if there are enough replicates of a
particular distinct genome in I, then that distinct genome
can be completely captured from the superposition of par-
tial sensing of the replicates provided that the partial sen-
sing are random and unbiased.

Comparison of assemblies of two sets
Let I1, I2 ⊆ C be two subcollections of the input commu-
nity, and A1, A2 the corresponding aggregate sensing. If all
of the distinct cells represented in I1 are also represented
in I2, then we say that A1 subsumed by A2 (A1 ≤ A2). In
ideal world with no errors and genome variations, A1 is
called subsumed in A2 if A1 is a subset of A2. However, in
real world, while two genomes are considered similar
(from the same type), they may have some variations like
single nucleotide polymorphisms. In addition, errors,
noise, and contaminations in sequencing and assembly
make the situation harder to handle just by pure

Taghavi BMC Bioinformatics 2014, 15(Suppl 9):S13
http://www.biomedcentral.com/1471-2105/15/S9/S13

Page 3 of 13

mathematical subset definition. To address this issue, the
subset definition is relaxed to ignore those differences
between two assemblies that are less than a threshold, τ.
Therefore, subsumption [15] is defined as follows

A1 ≤ A2 iff 0 ≤ Dτ (A1,A2). (1)

In this equation, Dτ (A1, A2) quantifies the differences
in assembly of A1 with respect to A2 which is more than
τ and is defined as follows

Dτ (A1,A2) = τ − ||A1\A2||
||A1|| , (2)

in which A1\A2 = {b ∈ A1|b ∉ A2}, || · || denotes the
total assembly size. In other words, τ is the maximum
differences tolerated between two genomes which are
considered similar. Parameter τ is user defined and τ
gives a trade-off between specificity and sensitivity of
the algorithm to distinguish between two distinct gen-
omes [15].

Search strategies
Our algorithm aims to assemble all of the distinct gen-
omes represented in C and identify at least one cell per
distinct genome. The objective is to minimize the total
number of bases required to be sequenced. To reach this
goal a search tree is created and explored iteratively to
find the leaves which are the sequenced and assembled
species. In the first iteration, the set of deeply sequenced
and completely assembled distinct genomes, I, and its
aggregated sensing, A, is empty. The algorithm divides
the n cells C1, . . . , Cn into two sets I1,1 = {C1, . . . , C[n/2]}

and I1,2 = {C[n/2⌋+1, . . . , Cn}. Denote I
1
= {I1,1, I1,2} . In

each iteration i, Ii,j’s are subsets of C and are chosen
based on the results in the iteration i − 1. The search tree
of Ii,j to find leaves can be traversed by different methods.
Here we choose two methods, breadth first search (BFS)
and depth first search (DFS). In the BFS strategy, in each
iteration i, all Ii,j’s are explored at the same time, while in
DFS, nodes (Ii,j’s) are explored sequentially in time and
analyzed one after the other.
In the recursive call on I

i
= {Ii,1, ..., Ii,mi} , the set of

cells is sensed according to the resource allocation pol-
icy. Then, the aggregated sensing, Ai,j, for each Ii,j is
obtained by sequencing and assembly. Those Ii,j’s that
contain a single cell, i.e., |Ii,j| = 1, are leaves, and if they
are fully assembled, they will be added to the list of dee-
ply sequenced cells. In other words, if the corresponding
assembly is reliable, i.e., ci,j ≥ Ml, for a given constant
Ml, Ii,j will be popped from I

i and pushed to I. In addi-

tion, Ai,j will be added to A.
For the BFS search strategy to find the optimum path to

continue, a subset of I
i with minimum number of cells is

chosen that covers all of the assembly. In other words, the

minimum assembly-set cover Icover ⊆ I
i with minimum

number of cells is found for which A ∪ A is subsumed in

Acover ∪ A , i.e.,

Dτ (Ā ∪ A, Ācover ∪ A) = τ − ||(A ∪ A)\(Ācover ∪ A)||
|||Ā ∪ A|

= τ − ||Ā ∪ A|| − ||Ācover ∪ A||
|||Ā ∪ A|| ≥ 0.

(3)

Second line can be derived from the first line because

(Acover ∪ A) ⊆ (A ∪ A) . In these notions Acover and A
are the the resulting superposition of partial sensing and
equivalently the corresponding assemblies of all cells

represented in Icover and I
i , respectively. The search of

the subtrees rooted at Ii,j /∈ Icover are terminated, and

the next level set I
i+1

:= Icover.
For the DFS strategy, the minimum set cover is calcu-

lated gradually during several iterations. Since in the

DFS, in each iteration I
i only includes two subsets, and

the number of cells in both subsets are (almost) equal,
the minimum set cover can be calculated based on the
greedy algorithm. The Ii,j with maximum assembly size
has the highest priority to be in the minimum set cover.
Therefore, Icover := {Ii,j} , and the second Ii,j′ will be

pushed to the stack W , which is the waiting list of the
untraversed nodes in the tree. If Acover is subsumed in
A, then Acover will be emptied and the last element will
be popped from W and pushed toIcover . This will con-
tinue until Acover is not subsumed in A. In the end, the

next level set I
i+1

:= Icover .
For both search strategies, all subsets in I

i+1 will be
divided to two almost equal size subsets, which con-
cludes iteration i. This algorithm will continue until I

i

and W are empty. Figures 1 and 2 depict examples of
the DFS and BFS strategies on 10 cells with 3 distinct
genomes shown in different colors.

Resource allocation
Resource allocation policy determines the size of partial
sensing from each cell in each step. This is done with two
objectives: (i) the amount of sensing from each element is
such that with a given probability all of the distinct gen-
omes present in Ii,j can be reconstructed almost comple-
tely from the superposition of partial sensing, and (ii) the
total sensing size in the whole algorithm is minimized.
Assume the input set of cells Ii,jis obtained from split-

ting Ii−1,k (for clarity we call it Iparent). Let tparent, aparent,
and cparent be total nucleotides sampled, the assembly

size, and the average coverage of Iparent and c′i,j and a′
i,j

be the intended coverage and assembly size of Ii,j. We

Taghavi BMC Bioinformatics 2014, 15(Suppl 9):S13
http://www.biomedcentral.com/1471-2105/15/S9/S13

Page 4 of 13

Figure 1 DFS algorithm example. The adaptive depth first search algorithm for an example with 10 cells and 3 distinct genomes shown in
different colors. Each row corresponds to one sequencing round. Yellow boxes represent leaves.

Figure 2 BFS algorithm example. The adaptive breadth first search algorithm for an example with 10 cells and 3 distinct genomes shown in
different colors. Each row corresponds to one sequencing round. Yellow boxes represent leaves.

Taghavi BMC Bioinformatics 2014, 15(Suppl 9):S13
http://www.biomedcentral.com/1471-2105/15/S9/S13

Page 5 of 13

assume that there is a constant minimum coverage Mu,
such that if the coverage is above Mu, then the resulting
assembly covers the entire genome, i.e., does not have
any gaps. We would like the actual coverage ci,j after the
sequencing and assembly to be at least Mu, so we let
c′i,j = Mu as a surrogate. Hence, the total nucleotides ti,

jto be sampled and sequenced from Ii,j is estimated by

ti,j =
tparentc′i,ja

′
i,j

cparent aparent
= Mu

tparenta′
i,j

cparent aparent
. (4)

In this equation a′ should be estimated from cparent
and aparent and may differ from the actual value a
obtained after sequencing and assembly. If Ii,j is a leaf,
i.e., |Ii,j | = 1, then the algorithm does a deep sequencing
of the single cell in Ii,j. In that case, the algorithm
repeats the resource allocation and sequencing until a
sufficient actual coverage is reached, i.e., ci,j ≥ Mu .

DFS versus BFS
Although the two search strategies are similar, they have
differences in several aspects:

• In DFS, the number of cell subcollections to be
explored in each round is fixed. For instance, it is two
in the current implementation. In BFS, this number is
dynamic. For instance, in the first round of the exam-
ple in Figure 2, it is two and in the third round is four.
From another point of view, the number of rounds in
BFS is fixed, [log2 n], whereas that in DFS is variable
depending on the setup. The number of rounds and
the number of subcollections are both desired to be
minimum because each incurs a cost: each round
incurs a setup cost for sample preparation and run-
ning-and-stopping the sequencer and each subcollec-
tion requires a unique barcode and incurs the cost of
barcoding and sequencing the base pairs in the bar-
code. Hence, there is a trade-off between the two costs
that determines the most suitable algorithm. The opti-
mal algorithm should consider both costs.
• In the process of choosing the minimum set cover,
sets are compared to determine the subsumption rela-
tionships. In DFS, one side of the comparison is always
A in which each single cell is deeply sequenced and
completely assembled. Therefore, our information
about that side is almost complete and has minimal
error. The resource allocation of the algorithm is
applied such that Ai,j’s for all i and j are completely
sequenced on average to reduce unwanted missing of
some distinct genomes. If the resulting coverage of Ai,j

is low, i.e., ci,j ≤ Mi for a constant Mi, then the data is
considered unreliable and Ii,j is treated as if it contains
a new distinct genome. In that case, Ii,j would be

divided into two groups and explored further in the
following rounds with increased requested resources.
Although Ai,j’s have deep coverage on average, there is
a non-zero probability of missing small and less abun-
dant distinct genomes. We explore these probabilities
in the Results section. In BFS, the missing probability
is more since on both sides of the ≤ relation, cells are
deeply sequenced not individually but on average,
which increases the error and intrinsic noise in
comparisons.

The mentioned differences between the two strategies,
do not result in considerable performance priority of one
over the other method. Each are proper for a specific con-
dition. In this paper, we compare the two methods using
case-by-case setups. We show that the total nucleotides
required is almost the same in both methods. We could
not do the ensemble analysis for BFS using dynamic pro-
gramming since the exploration of different subcollections
in one round are coupled. For instance, the four subcollec-
tions to be compared in the third round of Figure 2 come
from two parent subcollections in the second round. That
creates an inevitable coupling between the parents in the
second round. Without dynamic programming, exploring
all of the permutations of cells to provide ensemble analy-
sis is intractable. Therefore, we provide the ensemble ana-
lysis only for the DFS algorithm.

Implementation
The pseudocode of the algorithm is given in 1, 2, and 3.
COMPRESSEDSEARCH is the main function and
SELECTNEXTLEVELSETS and Subsumed are two sub-
functions of the algorithm. This algorithm has been
implemented in the tool squeezambler 2.0.

squeezambler 2.0 versus squeezambler 1.0
The tool squeezambler 1.0 has been implemented based
on the BFS algorithm given in [19]. There are three main
differences between the BFS algorithm implemented in
squeezambler 1.0 and the one in squeezambler 2.0:

• In the recursion, the method to choose subsets
passed to the next level is different in the two imple-
mentations. In squeezambler 1.0, every subset that is
subsumed in another one is eliminated from further
analysis. However, this is not the optimum method to
choose next level sets. In squeezambler 2.0, a collec-
tion of subsets is chosen, which will cover the whole
assembly with minimum number of cells.
• The resource allocation in squeezambler 1.0 was
design for those sequencing technologies that have
non-uniform coverage. That resource allocation results
in assembly gaps and in some cases causes missing
some of the distinct genomes. The resource allocation

Taghavi BMC Bioinformatics 2014, 15(Suppl 9):S13
http://www.biomedcentral.com/1471-2105/15/S9/S13

Page 6 of 13

in squeezambler 2.0 is modified such that it reduces
the random missing of the distinct genomes and let us
predict the probability of missing genomes. This prob-
ability is analysed in the Results section. We have
added the resource allocation described in this paper
to squeezambler 1.0. The new version is called squee-
zambler 1.1.
• The parameter τ in squeezambler 1.0 is variable and
is dependent on the number of cells involved in each
round. As the number of cells increases, τ decreases.
Reduced τ increases the number of base pairs required
to be sequenced when error appears in the reads. In
squeezambler 2.0 τ is set to be fixed in the whole
algorithm.

Ensemble analysis
We provide the ensemble analysis on the DFS algorithm
to calculate the expected total number of sequenced base
pairs and the probability of capturing every distinct gen-
ome over the entire ensemble of n! permutations of C.
To reduce the complexity, instead of exhaustively trying
multiple permutations we developed a dynamic program-
ming algorithm to calculate the results. In this analysis,
the simulation of the entire process is replaced by black
boxes which are mathematical models of the behaviors of
the process. To ease finding decoupled effects of different
parameters in the algorithm, we do not consider the
sequencing and assembly errors in our model. Another
assumption, again in the interest of other important spar-
sity-related parameters, is to consider uniformity of cov-
erage. This assumption is not far from reality. With the
advancement of automated microfluidic cell separation
and cultivation devices [2,3], the genome can be captured
from cultivated cells and sequenced with close to uni-
form coverage. This is different from the assumption we
made in [15] for which a genome was amplified from a
single cell using multiple displacement amplification and
suffered from highly uneven coverage after sequencing.
Although we are assuming uniform coverage distribution
in this work as opposed to in [15], this is only a conveni-
ent choice that does not change the algorithm. This
assumption is reflected only in (5).
Given the uniformity of coverage, we assume

a(c) =

{
g

c
Mu

c ≤ Mu,

g c ≤ Mu,
(5)

in which c is the sequencing coverage, a is the total
assembly size, g is the genome size, and Mu is a constant
that defines the minimum coverage to obtain a complete
assembly of the whole genome. For more advanced mod-
els, see [20]. In the ensemble analysis, we treat (co-)
assembly as a black box oracle that knows g and Mu, the

input to which is the total sequenced nucleotides and the
output of which are a and c. That is based on the
assumption that ac is the total sequenced nucleotides, i.e.
there are no sequencing errors. In this case the resource

allocation formula in (4) will be reduced to ti,j = Mua
′
i,j .

In the worst case, all of the distinct genomes in Iparent are

also represented in Ii,j which means a′
i,j ≥ aparent . There-

fore, the total nucleotides can be estimated by

ti,j = 2Muaparent (6)

which is twice the lower bound as a safe margin.
Dynamic programming algorithm
The dynamic programming algorithm can be divided
into three main functions Cost (Algorithm 4), ALLO-
CATESEQUENCEASSEMBLEORACLE (Algorithm 5),
and Subsumed (Algorithm 6). Algorithm 4 is the main
dynamic programming, and its subroutines are pre-
sented in Algorithms 5 and 3. Let s be the number of
distinct genomes in C. A distinct genome profile p =
(p1, p2, . . . , ps) ∈ (N ∪ {0})s is a population vector. In

the root of the search tree,
∑s

j=1
pj = n , where n is the

total number of cells. The vector of deeply sequenced
and assembled distinct genomes before exploration of
the current node is denoted by I = (I1, I2, . . . , Is) where
Ij ∈ {0, 1} and Ij = 1 means that the distinct genome j
has been sequenced and completely assembled.
Throughout the algorithms, a = (a1, a2, ..., as) is the
assembly size profile per distinct genome in the current
node, and ||a||1 is the total assembly size. Denote the
assembly size of the parent search node by aparent, total
sequenced nucleotides by t, and the expected total
sequenced nucleotides by E[t]. We denote the probabil-
ities of capturing distinct genomes by P = (q1, q2, . . . ,
q2s), in which qj is the probability of the vector of dee-
ply sequenced and assembled distinct genomes I ∈ {0,

1}s where j = I
〈
(20, 21,, 2s−1)

〉
+ 1 , upon complete

exploration of the current node in the search tree.
Above, j is the decimal representation of I treated as
binary (in reverse order) plus one. For example, for s =
3 and I = (0, 1, 1) (in short I = 011), j is the decimal
representation of reverse of 011 plus one which is equal
to 7. Therefore, q7 (or in another notation q011) is the
probability that after exploration of the current node the
distinct genomes 2 and 3 are recognized by the algo-
rithm, while distinct genome 1 is missed.
The COST function requires the genome population

profile for the current node, p, the set of distinct gen-
omes already deeply sequenced and assembled, I, and the
result of the assembly of the parent node aparent as input
parameters. The output of this function is the estimated
cost E[t] and the probabilities of capturing genomes P

Taghavi BMC Bioinformatics 2014, 15(Suppl 9):S13
http://www.biomedcentral.com/1471-2105/15/S9/S13

Page 7 of 13

after exploring the current node. At first (line 5), an ora-
cle will decide on the sampling size of the current node
and the resulting coverage and assembly size based on
the formulations given in (4) and (5). In line 7, using the
function SUBSUMED, the node is then compared with I
to see if it includes any new distinct genome. If there is
no new distinct genome (line 41), the probability of cap-
turing the corresponding genomes is set to 1 and the
function exits. Otherwise, the node will be explored
further.
If the node includes only one cell, then that node is a

leaf, and it will be sequenced and assembled deeply (line 9)
and the corresponding capturing probability is set to 1. In
the case of a node with more than one cell, the collection
of cells will be divided into two groups. The expected cost
and capturing probability, starting from the current node,
is calculated over the ensemble of all of the possible divi-
sions of the node into v and w between lines 19 and 39.
The ensemble parameters are averaged over all divisions
(v, w) by calculating their probability of occurrence
(line 36). For a given division, v is explored followed by w.
For each u ∈ {v, w} (line 24) and each combination of
already captured distinct genomes with non-zero probabil-
ity (lines 26-28), the expected cost t′ and capturing prob-
ability profile P′′′ are recursively calculated using the COST
function (line 29). These parameters are averaged over all
non-zero probability profiles (lines 30, 31).

Results
DFS versus BFS
To compare the performance of DFS and BFS algorithms,
we tested the algorithms on simulated data. We have
selected 6 distinct genomes from human gut microbiome
[4] to generate 3 setups (see Tables 1 and 2). The genomes
were amplified and sequenced using ART Illumina
sequencing simulator [21]. Reads are 100 bp long, uni-
formly covering the whole genome. The assembler used in
the paper is HyDA co-assembler [16]. To allocate
resources, the relationship between the coverage and the
assembly size of this setup is calculated using ART and
HyDA over the 6 distinct genomes. The result is depicted
in Figure 3. We selected Mu = Ml = 15 and τ = 0.1.
We have compared the performance of four different

methods: (i) naïve method of sequencing each cell deeply,

(ii) BFS compressed method using squeezambler 1.1,
(iii) BFS compressed method using squeezambler 2.0,
and (iv) DFS compressed method using squeezambler
2.0. The results are summarized in Table 3. See that
squeezambler 2.0 BFS outperforms squeezambler
1.1 BFS in total sequencing base pairs. The BFS and DFS
algorithms of squeezambler 2.0 have close performances
in terms of the total sequenced base pairs. However, for
the case of 31 cells and 6 distinct genomes, BFS missed
one distinct genome. This is one of the examples that
shows the genome missing probability is slightly more
in BFS. Overall, both algorithms have comparable perfor-
mances. Comparison of the performance of naïve algo-
rithm and compressed methods shows that as the
number of cells increases, the total sequenced base pairs
increases linearly for the naïve algorithm and sublinear
for the compressed methods. Although for the case of
31 cells, the naïve method outperforms the compressed
method, at 140 cells the compressed method shows its
strength.

Ensemble analysis
In this section, we selected Mu = 5, Ml = 0.3, and τ =
0.2 except in Table 5. Bacterial genome sizes were con-
sidered to be within 1 - 12 Mbps. In the current version
of the program implemented in MATLAB, we computed
the results for a small number of cells and distinct gen-
omes, i.e., < 200 cells and < 11 distinct genomes. How-
ever, we expect to be able to run the algorithm for a
larger number of cells and distinct genomes with an

Table 1 6 distinct genomes (species) used in simulation.

NCBI ID Name Ref. Status Size (bps)

NC 004663.1 Bacteroides thetaiotaomicron VPI-5482 chromosome complete 6.29 M

NC 009614.1 Bacteroides vulgatus ATCC 8482 chromosome complete 5.16 M

NC 009615.1 Parabacteroides distasonis ATCC 8503 chromosome complete 4.81 M

NC 008532.1 Streptococcus thermophilus LMD-9 complete 1.86 M

NC 016776.1 Bacteroides fragilis 638R complete 5.37 M

FP929051.1 Ruminococcus bromii L2-63 draft 2.25 M

Table 2 Our simulation setups: (i) 31 cells; 6 distinct
genomes, (ii) 59 cells; 4 distinct genomes, and (iii) 140
cells; 4 distinct genomes.

NCBI ID Abundance (%)

31 cells;
6 distinct
genomes

59 cells;
4 distinct
genomes

140 cells;
4 distinct
genomes

NC 004663.1 11 35.50% 22 37% 35 25%

NC 009614.1 4 13% 7 12% 35 25%

NC 009615.1 3 10% 8 14% 35 25%

NC 008532.1 1 3% 0 0% 0 0%

NC 016776.1 1 3% 0 0% 0 0%

FP929051.1 11 35.50% 22 37% 35 25%

Taghavi BMC Bioinformatics 2014, 15(Suppl 9):S13
http://www.biomedcentral.com/1471-2105/15/S9/S13

Page 8 of 13

advanced implementation in C++. We tried to decouple
the effect of different parameters in the analysis, namely
τ in the algorithm, and the number of cells and species
in the input. We would like to test whether the expected
total cost complexity is O(s) for a fixed n and O(log n)
for a fixed s and population profile. This is a first step
to show the expected total cost is O(s log n) in the
future. Therefore, the results also provide intuition for a
potential thorough theoretical analysis of the expected
cost and capturing probability.

Expected cost
To investigate the growth rate of E[t] for different num-
ber of cells n and compare it with the naïve cell-by-cell
sequencing, we ran our program for the profiles of
n
8
(3, 2, 3) where n = 8, . . . , 192 is the total number of

cells with genome sizes (4, 12, 2) Mbps. Figure 4 depicts
the results. The total sequenced nucleotides in the naïve
case is Mu × max genome size × n = 60n Mbps. The
genome of length 2 Mbps may not be captured with at
most 3% probability; the other two genomes are always
captured. Figure 4 suggests that E[t] grows almost line-
arly with log n whereas the naïve cost grows linearly
with n. Hence, E[t] = O(log n) for fixed number of dis-
tinct genomes s and population profile.
To characterize the behavior of E[t] for different number

of distinct genomes s, we plotted E[t] versus s = 1, . . . , 10
for n = 32, 64 in Figure 5. For each n, the best and worst
population profiles in terms of expected cost were consid-
ered. The best case corresponds to roughly uniform n/s
cells per distinct genome and the worst corresponds to
n − s + 1 cells from one distinct genome and one cell per
every other s − 1 distinct genomes (experimentally veri-
fied). The genome size was fixed at 4 Mbps for all distinct
genomes to factor out the effect of genome sizes and
τ = 0.2. Capturing probability of all distinct genomes in
all cases was 1. Comparing the experimental curves with
the linearly interpolated cost curves in Figure 5 suggests
that the upper bound of cost (worst case) for each fixed
n is O(s). In other words, the worst case cost grows
almost linearly with the number of distinct genomes.
Hence, for all population profiles, E[t] = O(s) for fixed
number of cells n.

Capturing probability
We ran our program for a number of setups with 3
and 4 distinct genomes. The number of cells n was
fixed at 40 in all experiments. Genome sizes varied
between 1 and 12 Mbps. The total naïve single-cell
sequencing is the minimum coverage Mu times the
number of cells, which is 40, times the maximum gen-
ome size. In this case, the naïve total cost is 2.4 Gbps.
Tables 4 and 5 show the setups and their expected

Figure 3 Output assembly size in percentile versus coverage.
The plot is the average of the output of sequencing simulation
using ART [21] and assembly using HyDA [16] over 6 distinct
genomes listed in Table 1.

Table 3 squeezambler results for the three setups summarized in Table 2.

Setup Method Total sequencing
(Gbps)

Max
barcodes

No. of predicted distinct
genomes

Iterations

31 cells; 6 distinct genomes Naïve 4 31 6 1

squeezambler 1.1, BFS 13.8 10 6 5

squeezambler 2.0, BFS 11.2 8 5 5

squeezambler 2.0, DFS 11 2 6 12

59 cells; 4 distinct genomes naïve 8 59 4 1

squeezambler 1.1, BFS 10 4 4 6

squeezambler 2.0, BFS 8.7 4 4 6

squeezambler 2.0, DFS 8.8 2 4 9

140 cells; 4 distinct
genomes

naïve 18.5 140 4 1

squeezambler 2.0, DFS 10.3 2 4 10

Taghavi BMC Bioinformatics 2014, 15(Suppl 9):S13
http://www.biomedcentral.com/1471-2105/15/S9/S13

Page 9 of 13

sequenced nucleotides E[t] and P, the capturing prob-
ability. Recall P = (q00···0, q10···0, . . . , q11···1), in which
qI for I ∈ {0, 1}s is the joint probability of capturing
distinct genome j if Ij = 1 and missing it if Ij = 0 for j
= 1, 2, . . . , s.
In Table 4 with constant τ = 0.2, that genome whose

length is 2 Mbps in the first row may not be captured
with probability 0.62% because 2/12 < 0.2 = τ. We see
a similar effect in the subsequent rows. Those gen-
omes whose lengths are 1 and 2 Mbps may not be
captured with non-zero probability. As the abundances
of short genomes increase, the probabilities of missing
them decrease. This suggests that those genomes
whose lengths are shorter than τ times the largest
genome size may not be captured with non-zero
probability.
To further investigate, we ran our program on other

setups with varying τ, which are presented in Table 5.
For the profile (1, 1, 2, 4) and τ = 0, 0.1, all of the gen-
omes are captured with probability 1. For τ = 0.2, there
is a non-zero probability of missing the genomes of
length 1 and 2 Mbps. For τ = 0.4, the genome of size
4 Mbps joins the other two short genomes, and the
probability of missing it becomes non-zero. Comparing
the profiles (1, 1, 2, 4) and (1, 1, 1, 5) for τ = 0.4, the
probability of missing the genome of size 2 Mbps, i.e.,
q1101, increases significantly from 0.8% to 23% as a result
of decrease in its abundance, whereas the probability of
not capturing the genome of size 1 Mbps, i.e., q1110,
decreases from 4.1% to 0.8% as its abundance increases.
This suggests that the missing probability depends on
abundance, potentially relative to the abundance of the
largest genome in the population.

Conclusion
We presented an adaptive compressed algorithm for
sequencing and de novo assembly of distinct genomes in
a bacterial community. We used the characteristics of
sparsity of distinct genomes in a community of cells to
decrease the amount of nucleotides needed to be
sequenced. Using a dynamic programming algorithm to
analyze the ensemble behavior of the algorithm, we
showed that the expected cost is O(log(number of cells
in the community)) for fixed genome population pro-
files and O(number of distinct genomes) for fixed num-
ber of cells. Furthermore, we showed that for a non-
zero threshold τ, those genomes whose sizes relative to
the maximum genome size in the community is less
than τ may go undetected with a non-zero probability.
This probability depends on the abundance of the corre-
sponding genome. These results shed light on our future
path towards theoretical analysis of our algorithm and
further tree exploration strategies.

Figure 4 E[t] for different number of cells n in our adaptive
compressed algorithm versus the naïve cell by cell sequencing.
The total sequenced nucleotides in the naïve case is Mu × max

genome size × n = 60n Mbps. The population profile is
n
8
(3, 2, 3)

with genome sizes (4, 12, 2) Mbps and τ = 0.2. The genome of length
2 Mbps may not be captured with at most 3% probability; the other
two genomes are always captured. The x axis is shown in log scale.

Figure 5 E[t] for different number of distinct genome s and
n = 32, 64 in our adaptive compressed algorithm. For each n,
the best and worst population profiles in terms of expected cost
are considered. The best case corresponds to roughly uniform n/s
cells per distinct genome and the worst corresponds to n − s + 1
cells from one distinct genome and one cell per every other s − 1
distinct genomes. To decouple the effect of genome sizes, the
genome size is 4 Mbps for all distinct genomes and τ = 0.2.
Capturing probability of all distinct genomes in all cases is 1.
Linear interpolated costs are plotted using dashed line for
comparison.

Taghavi BMC Bioinformatics 2014, 15(Suppl 9):S13
http://www.biomedcentral.com/1471-2105/15/S9/S13

Page 10 of 13

Algorithms
Algorithm 1 Compressed Sequencing
1: Input: C = {C1, C2 , . . . , Cn}
2: Output: A, I
3: I1,1 ¬ {C1 , . . . , C[n/2]}
4: I1,2 ¬ {C[n/2]+1 , . . . , Cn}
5: I ¬ {I1,1, I1,2} ▷ I is the list of the subsets to be

analysed in the subsequent round
6: W ¬ {} ▷ W is the waiting list of the subsets

assembled but not ready to be analysed immediately
7: i ¬ 1 ▷ i is the sequencing round index
8: while EITHER I OR W IS NOT EMPTY do
9: t ¬ RESOURCEALLOCATE (I , aparent, cparent,

Mu) ▷Ā t = {ti,1,, ti,|I|} ; based on Equ 4
10: A, a, c ¬ SEQUENCEANDASSEMBLE(t , C) ▷▷

c = {ci,1, ..., ci,|I|} ; c = {ci,1, ..., ci,|I|} ; Ai,j, ci,j are the assem-
bly set and the average coverage of Ii,j, respectively.
11: I,W ¬ SELECTNEXTLEVELSETS(I , W , A , c ,

F) ▷ F : DFS or BFS flag
12: i ¬ i + 1
13: end while
Algorithm 2 selectNextLevelSets
1: Input: I , W , A , c , F
2: Output: Inew,Wnew
3: L = {} ▷ list of subsets with low quality assemblies
4: AL = {} ▷ assemblies of subsets in L
5: for j = 1 . . . |I| do

6: if ci,j < Ml then
7: MOVE Ii,j FROM I TO L ▷ move all low

coverage assembled Ii,j TO L
8: MOVE Ai,j FROM A TO AL

9: else
10: if |Ii,j| = 1 then
11: MOVE Ii,j FROM I TO I ◁ move all single

cell assembled Ii,j TO I
12: MOVE Ai,j FROM A TO A
13: end if
14: end if
15: end for
16: if F is BFS then
17: FIND THEMINIMUM SET COVER Anew CORRE-

SPONDING TO Inew ⊆ I FOR WHICH Dτ ((A ∪ AL ∪ A),
(Anew ∪AL ∪A)) ≥AND |Inew| ISMINIMUM ▷ Equ. 3
18: Inew ← Inew ∪ L
19: Wnew = {}
20: else
21: if F is DFS then
22: Wnew = W
23: POP ALL Ii,j’s FROM Inew AND PUSH TO

Wnew EXCEPT ONE SUBSET WITH THE MAXIMUM
ASSEMBLY SIZE
24: while |Īnew| = 0 AND |W̄new| > 0 do
25: Inew ¬ POP LAST SUBSET IN Wnew
26: Anew ¬ ASSEMBLY OF Inew

Table 4 Effect of population profile.

p/5 Genome size
(Mbps)

E[t]
(Gbps)

P = (q000, q100, q010, q110, q001, q101, q011, q111)

(3, 2, 3) (4, 12, 2) 1.066 (0, 0, 0, 0.0062, 0, 0, 0, 0.9938)

P =(q0000, q1000, q0100, q1100, q0010, q1010, q0110, q1110, q0001, q1001, q0101, q1101, q0011,
q1011, q0111, q1111)

(1, 1, 1, 5) (4, 12, 2, 1) 1.383 (0, 0, 0, 0, 0, 0, 0, 0.0020, 0, 0, 0, 0.0271, 0, 0, 0, 0.9709)

(1, 1, 2, 4) (4, 12, 2, 1) 1.407 (0, 0, 0, 0, 0, 0, 0, 0.0123, 0, 0, 0, 0.0001, 0, 0, 0, 0.9876)

(1, 2, 3, 2) (4, 12, 2, 1) 1.535 (0, 0, 0, ∈, 0, 0, 0, 0.1687, 0, 0, 0, 0.0135, 0, 0, 0, 0.8179)

In this setup τ = 0.2 and the total number of cells is n = 40. qI for I ∈ {0, 1}s is the joint probability of capturing distinct genome j if Ij = 1 and missing it if Ij = 0
for j = 1, 2, . . . , s. Different values of I are explicitly given as binary strings in the fourth column. ∈ is a non-zero probability less than 10−4 .

Table 5 Effect of threshold τ .

p/5 τ E[t]
(Gbps)

P = (q0000, q1000, q0100, q1100, q0010, q1010, q0110, q1110, q0001, q1001, q0101, q1101, q0011, q1011,
q0111, q1111)

(1, 1, 2, 4) 0 1.428 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)

(1, 1, 2, 4) 0.1 1.423 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)

(1, 1, 2, 4) 0.2 1.407 (0, 0, 0, 0, 0, 0, 0, 0.0123, 0, 0, 0, 0.0001, 0, 0, 0, 0.9876)

(1, 1, 2, 4) 0.4 1.266 (0, 0, 0, 0.0002, 0, 0, 0.0008, 0.0411, 0, 0, ∈, 0.0794, 0, 0, 0.1621, 0.7165)

(1, 1, 1, 5) 0 1.418 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)

(1, 1, 1, 5) 0.1 1.414 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)

(1, 1, 1, 5) 0.2 1.383 (0, 0, 0, 0, 0, 0, 0, 0.0020, 0, 0, 0, 0.0271, 0, 0, 0, 0.9709)

(1, 1, 1, 5) 0.4 1.214 (0, 0, 0, 0.0013, 0, 0, ∈, 0.0078, 0, 0, ∈, 0.2308, 0, 0, 0.1369, 0.6231)

The genome sizes are (4, 12, 2, 1) Mbps and the total number of cells is n = 40. qI for I ∈ {0, 1}s is the joint probability of capturing distinct genome j if Ij = 1 and
missing it if Ij = 0 for j = 1, 2, . . . , s. Different values of I are explicitly given as binary strings in the fourth column. ∈ is a non-zero probability less than 10−4.

Taghavi BMC Bioinformatics 2014, 15(Suppl 9):S13
http://www.biomedcentral.com/1471-2105/15/S9/S13

Page 11 of 13

27: if NOT SUBSUMED (Anew, A) then
28: PUSH Inew TO Inew
29: end if
30: end while
31: end if
32: end if
33: DIVIDE ALL Ii,j’s IN Inew TO TWO SETS
Algorithm 3 SUBSUMED
1: Input: Anew, A
2: Output: r ∈ { true, false }
3: ▷ low quality assembly; explore the

node further.
4: if c ≤ Ml then
5: r ¬ false
6: else
7: D ¬ τ − ||Anew \A||/||Anew|| ▷ Equ 2
8: if D < 0 then ▷Equ 1
9: r ¬ false
10: else
11: r ¬ true
12: end if
13: end if
Algorithm 4 COST - ensemble analysis main function
1: Input: p, I, aparent
2: Output: E[t] and ℙ
3:
4: ℙ = (q1, q2, . . . , q2s) ¬ 0
5: t, a , c ¬ ALLOCATESEQUENCEASSEMBLEORA-

CLE(p, aparent) ▷ t total nt, a = (a1, ..., as), c coverage
6: E[t] ¬ t
7: if not SUBSUMEDENSEMBLE(a , c, I) then
8: if ||p||1 = 1 then ▷ leaf base case
9: while c < 2Mu do ▷ ensures the complete

assembly for leaves
10: t, a , c ¬ ALLOCATESEQUENCEAS-

SEMBLEORACLE(p, ||α||1)
11: E[t] ¬ E[t] + t
12: end while
13: k ¬ arg max pj
14: Inew ¬ I
15: Inewk ← 1
16: j ¬ 〈Inew, (20, 21, . . . , 2s−1)〉 + 1
17: qj = 1 ▷ updating ℙ
18: else ▷ recursion
19: for v + w = p, v, w ∈ (N ∪ {0})s do
20: t ¬ 0
21: ℙ ′ ¬ ℙ ▷ ℙ ′ = (q′

1, q
′
2, ..., q

′
2s)

22: j ¬ 〈I, (20 , 21 , . . . , 2s−1)〉 + 1
23: q′

j ← 1
24: for u ∈ {v, w} do ▷ v is explored followed

by w
25: ℙ ′′ ¬ 0
26: for b A BINARY VECTOR OF LENGTH s do

27: j ¬ 〈b, (20, 21, . . . , 2s−1)〉 + 1
28: if q′

j > 0 then ▷ average over all
already captured distinct genome profile with non-zero
probability
29: t′, ℙ ′′′ ¬ COST(u, b, ||a||1)
30: t ← t + t′q′

j

31: P
′′←P

′′ + q′
jP

′′′

32: end if
33: end for
34: ℙ′ ¬ ℙ′′ ▷ for w, q′’s are updated
35: end for

36: π ←
s∏

j=1

(
pj
vj

)
/
(||p||1

||v||1
)

▷ probability of
(v, w)
37: E[t] ← E[t] + π t ▷ average over all pos-

sible (v, w)
38: P ← P + πP′ ▷ average over all possible

(v, w)
39: end for
40: end if
41: else ▷ all distinct genomes represented in p have

already been sequenced
42: j ¬ 〈I, (20, 21, . . . , 2s−1)〉 + 1
43: qj = 1 ▷ updating ℙ
44: end if
Algorithm 5 ALLOCATESEQUENCEASSEMBLE-

ORACLE - ensemble analysis
1: Input: p, aparent
2: Output: t, a , and c
3:
4: t ¬ 2Muaparent ▷ Equ 6
5: tpc ¬ t/||p||1 ▷ total sequenced nt per cell
6: tpdg ← tpc · p ▷ total sequenced nt per dis-

tinct genome
7: a , c ¬ ORACLE(tpdg) ▷ oracle decides on

the assembly size and coverage based on Equ 5
Algorithm 6 SUBSUMEDENSEMBLE - ensemble

analysis
1: Input: a , c, I
2: Output: r ∈ { true, false }
3:
4: if c ≤ Ml then ▷ low quality assembly; explore the

node further.
5: r ¬ false
6: else
7: x ¬ (¬I, a) ▷ exclusive part of assemblies, ¬

is bitwise not, based on Equ 2
8: if τ − x/τ − x/||a|| < 0 then ▷ Equ 1
9: r ¬ false
10: else
11: r ¬ true
12: end if
13: end if

Taghavi BMC Bioinformatics 2014, 15(Suppl 9):S13
http://www.biomedcentral.com/1471-2105/15/S9/S13

Page 12 of 13

Competing interests
The author declares that they have no competing interests.

Authors’ contributions
Z.T. designed and implemented the algorithms, ran the experiments, and
wrote the manuscript.
This article has been published as part of BMC Bioinformatics Volume 15
Supplement 9, 2014: Proceedings of the Fourth Annual RECOMB Satellite
Workshop on Massively Parallel Sequencing (RECOMB-Seq 2014). The full
contents of the supplement are available online at http://www.
biomedcentral.com/bmcbioinformatics/supplements/15/S9.

Declarations
This work and publication has been supported by Wayne State University.

Published: 10 September 2014

References
1. Chitsaz H, Yee-Greenbaum JL, Tesler G, Lombardo M-J, Dupont CL,

Badger JH, Novotny M, Rusch DB, Fraser LJ, Gormley NA, Schulz-Trieglaff O,
Smith GP, Evers DJ, Pevzner PA, Lasken RS: Efficient de novo assembly of
single-cell bacterial genomes from short-read data sets. Nature Biotech
2011, 29(10):915-921.

2. Zengler K, Toledo G, Rapp´e M, Elkins J, Mathur EJ, Short JM, Keller M:
Cultivating the uncultured. Proc Nat Acad Sci 2002, 99(24):15681-15686.

3. Fitzsimons MS, Novotny M, Lo C-C, Dichosa AE, Yee-Greenbaum JL,
Snook JP, Gu W, Chertkov O, Davenport KW, McMurry K, et al: Nearly
finished genomes produced using gel microdroplet culturing reveal
substantial intraspecies genomic diversity within the human
microbiome. Genome research 2013, 23(5):878-888.

4. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T,
Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J,
Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM,
Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P,
Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y,
Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Dore J, Guarner F,
Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, Bork P, Ehrlich SD,
Wang J, Antolin M, Artiguenave F, Blottiere H, Borruel N, Bruls T, Casellas F,
Chervaux C, Cultrone A, Delorme C, Denariaz G, Dervyn R, Forte M, Friss C,
van de Guchte M, Guedon E, Haimet F, Jamet A, Juste C, Kaci G,
Kleerebezem M, Knol J, Kristensen M, Layec S, Le Roux K, Leclerc M,
Maguin E, Minardi RM, Oozeer R, Rescigno M, Sanchez N, Tims S, Torrejon T,
Varela E, de Vos W, Winogradsky Y, Zoetendal E: A human gut microbial
gene catalogue established by metagenomic sequencing. Nature 2010,
464(7285):59-65.

5. Candès EJ, Tao T: Decoding by linear programming. IEEE Transactions on
Information Theory 2005, 51(12):4203-4215.

6. Candès EJ, Tao T: Near-optimal signal recovery from random projections:
Universal encoding strategies? IEEE Transactions on Information Theory
2006, 52(12):5406-5425.

7. Donoho DL: Compressed sensing. Information Theory. IEEE Transactions
2006, 52(4):1289-1306.

8. Haupt J, Castro RM, Nowak R: Distilled sensing: Adaptive sampling for
sparse detection and estimation. IEEE Transactions on Information Theory
2011, 57(9):6222-6235.

9. Wei D, Hero AO: Multistage adaptive estimation of sparse signals. IEEE
Statistical Signal Processing Workshop (SSP) 2012, 153-156.

10. Erlich Y, Gordon A, Brand M, Hannon GJ, Mitra PP: Compressed
genotyping. Information Theory. IEEE Transactions 2010, 56(2):706-723.

11. Stobbe P, Krause A: Learning fourier sparse set functions. Journal of
Machine Learning Research - Proceedings Track 2012, 22:1125-1133.

12. Malloy ML, Nowak RD: Near-optimal adaptive compressed sensing.
Signals, Systems and Computers (ASILOMAR) 2012, 1935-1939, 2012
Conference Record of the Forty Sixth Asilomar Conference On IEEE.

13. Kane DM, Nelson J, Woodruff DP: Proceedings of the Twenty-ninth ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems.
An optimal algorithm for the distinct elements problem. 2010, 41-52, ACM.

14. Efron B, Thisted R: Estimating the number of unseen species: How many
words did shakespeare know? 1976, 63(3):435-447.

15. Taghavi Z, Movahedi NS, Drăghici S, Chitsaz H: Distilled single-cell genome
sequencing and de novo assembly for sparse microbial communities.
Bioinformatics 2013, 29(19):2395-2401.

16. Movahedi NS, Forouzmand E, Chitsaz H: De novo co-assembly of bacterial
genomes from multiple single cells. IEEE Conference on Bioinformatics and
Biomedicine 2012, 561-565.

17. Compeau PEC, Pevzner PA, Tesler G: How to apply de bruijn graphs to
genome assembly. Nature biotechnology 2011, 29(11):987-991.

18. Johnson WB, Lindenstrauss J: Extensions of lipschitz mappings into a
hilbert space. Contemporary mathematics 1984, 26(189-206):1.

19. Taghavi Z, Draghici S: MDAsim:A multiple displacement amplification
simulator. IEEE Conference on Bioinformatics and Biomedicine 2012, 575-578.

20. Motahari AS, Bresler G, Tse DNC: Information theory of DNA shotgun
sequencing. Information Theory IEEE Transactions on 2013,
59(10):6273-6289.

21. Huang W, Li L, Myers JR, Marth GT: ART: a next-generation sequencing
read simulator. Bioinformatics 2012, 28(4):593-594.

doi:10.1186/1471-2105-15-S9-S13
Cite this article as: Taghavi: Ensemble analysis of adaptive compressed
genome sequencing strategies. BMC Bioinformatics 2014 15(Suppl 9):S13.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Taghavi BMC Bioinformatics 2014, 15(Suppl 9):S13
http://www.biomedcentral.com/1471-2105/15/S9/S13

Page 13 of 13

http://www.biomedcentral.com/bmcbioinformatics/supplements/15/S9
http://www.biomedcentral.com/bmcbioinformatics/supplements/15/S9

	Abstract
	Background
	Results
	Availability

	Introduction
	Method
	Model assumptions
	Comparison of assemblies of two sets
	Search strategies
	Resource allocation
	DFS versus BFS
	Implementation
	squeezambler 2.0 versus squeezambler 1.0
	Ensemble analysis
	Dynamic programming algorithm

	Results
	DFS versus BFS
	Ensemble analysis
	Expected cost
	Capturing probability

	Conclusion
	Algorithms
	Competing interests
	Authors’ contributions
	Declarations
	References

