Johnson et al. BMC Bioinformatics 2014, 15(Suppl 9):S14
http://www.biomedcentral.com/1471-2105/15/59/S14

BMC
Bioinformatics

PROCEEDINGS Open Access

A better sequence-read simulator program for
metagenomics

Stephen Johnson'", Brett Trost', Jeffrey R Long', Vanessa Pittet?, Anthony Kusalik'

From RECOMB-Seq: Fourth Annual RECOMB Satellite Workshop on Massively Parallel Sequencing
Pittsburgh, PA, USA. 31 March - 05 April 2014

Abstract

Background: There are many programs available for generating simulated whole-genome shotgun sequence
reads. The data generated by many of these programs follow predefined models, which limits their use to the
authors’ original intentions. For example, many models assume that read lengths follow a uniform or normal
distribution. Other programs generate models from actual sequencing data, but are limited to reads from single-
genome studies. To our knowledge, there are no programs that allow a user to generate simulated data following
non-parametric read-length distributions and quality profiles based on empirically-derived information from
metagenomics sequencing data.

Results: We present BEAR (Better Emulation for Artificial Reads), a program that uses a machine-learning approach
to generate reads with lengths and quality values that closely match empirically-derived distributions. BEAR can
emulate reads from various sequencing platforms, including lllumina, 454, and lon Torrent. BEAR requires minimal
user input, as it automatically determines appropriate parameter settings from user-supplied data. BEAR also uses a
unique method for deriving run-specific error rates, and extracts useful statistics from the metagenomic data itself,
such as quality-error models. Many existing simulators are specific to a particular sequencing technology; however,
BEAR is not restricted in this way. Because of its flexibility, BEAR is particularly useful for emulating the behaviour of

which can be an arduous task.

technologies like lon Torrent, for which no dedicated sequencing simulators are currently available. BEAR is also
the first metagenomic sequencing simulator program that automates the process of generating abundances,

Conclusions: BEAR is useful for evaluating data processing tools in genomics. It has many advantages over
existing comparable software, such as generating more realistic reads and being independent of sequencing
technology, and has features particularly useful for metagenomics work.

Introduction

A common problem in metagenomic studies is that given
real data (e.g., whole genome shotgun (WGS) sequences
generated by next-generation sequencing (NGS) technolo-
gies), it is difficult to know if the bioinformatics analyses
generate correct or complete results. In order to evaluate
the results, the user typically needs to supply the bioinfor-
matics programs (e.g., genome assembly software) with
WGS sequencing data for which correct, complete results

* Correspondence: sej917@mail.usask.ca

1Department of Computer Science, University of Saskatchewan, 176
Thorvaldson Bldg., 110 Science Place, S7N 5C9 Saskatoon, Canada
Full list of author information is available at the end of the article

are known. As this is often not possible in the form of real
sequencing data, it is instead necessary to use artificial
reads generated in silico.

More generally, in the field of metagenomics there are
few real datasets for which the correct results are known.
Recent metagenomic studies of global algal distribution
and human microbiome have derived results that conflict
from previous studies in the same environments [1,2]. It
is difficult to determine the usefulness of obtained results
when their correctness is unknown. Even for problems
such as de novo genome assembly, a simpler problem
than metagenomic assembly, there is still debate as to
which features make a “good” assembly due to significant

© 2014 Johnson et al,; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative

(BioMVed Central

Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

mailto:sej917@mail.usask.ca
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/

Johnson et al. BMC Bioinformatics 2014, 15(Suppl 9):S14
http://www.biomedcentral.com/1471-2105/15/59/S14

variability in results between programs (e.g., high variabil-
ity in average contig length and N50 values between pro-
grams) [3]. While some problem areas in bioinformatics
such as multiple sequence alignment have resources like
BAliBase for benchmarking, there are very few bench-
marking datasets for metagenomics [4,5]. Furthermore,
the simulated datasets used in previous metagenomic
studies contain roughly 100 genomes, whereas actual
metagenomic samples may have reads from thousands of
organisms [6].

It would be far more convenient and accurate to
simulate in silico NGS reads with known properties
(correct outcomes), and subject that data to the analysis.
For example, if a simulated-read dataset is generated
based on completed genomes, then various assemblers
can be evaluated by determining which assembler gener-
ates contigs best matching the original genomes. Such a
basis for evaluation is preferable to traditional measures
such as average contig length. For software pipelines,
simulated data can provide insight with respect to opti-
mal parameter settings. Unfortunately, read simulation
is not as simple as selecting random subsequences from
genomes. Read length, error rates, quality scores, and
community abundances (for metagenomics) can have
significant variation between samples. Thus, it is impor-
tant to have a tool that can emulate all of these charac-
teristics; the tool should generate artificial data that is as
“messy” as real data.

Generating in silico NGS reads is not without difficul-
ties. Each NGS technology has its own error rates, qual-
ity profiles, and read-length distributions (Illumina reads
are generally uniform in length, reads from other tech-
nologies can vary greatly in length). Furthermore, the
technologies are constantly improving in terms of gener-
ating longer, higher-quality reads. One can easily
imagine developing software that mimics a given
sequencing platform, and by the time the software is
complete and tested, the platform has been significantly
modified by its vendor. Another inconvenience of many
modern sequencing simulator programs is that the user
must determine appropriate settings for numerous para-
meters to generate data similar to real data. Exploring
the parameter space can be a serious challenge, espe-
cially if documentation is sparse. Furthermore, modern
sequencing simulator programs often have fixed, inter-
nal models for characteristics such as read length
distributions and quality profiles. These models may not
always reflect the characteristics observed in real reads.
As such, a program designed for one type of sequencer
(e.g., pyrosequencer) may not adequately simulate data
from another (e.g. semiconductor sequencer). When
sequencing simulator programs use these fixed models,
they are generally limited to simulating a specific NGS
technology.

Page 2 of 10

To address these shortcomings, we have developed a
software package called BEAR (Better Emulation for
Artificial Reads). BEAR has, as input, a multi-FASTQ file
(a file containing multiple sequences in FASTQ format) of
WGS reads with the desired read length distribution and
quality profile, as well as a source database. For metage-
nomics applications an abundance profile can be provided.
BEAR generates simulated sequencing reads that are
representative of genomes in the source database. The
resulting data have a read length distribution and quality
profile similar to those of the sample multi-FASTQ file.
This approach allows for the emulation of read length dis-
tribution and quality profiles from various sequencing
platforms. Since the artificial reads produced have known
characteristics in terms of the source organisms and their
correct assemblies, the data can then be used to evaluate
techniques for analysis of NGS data (such as sequence
assembly or community/diversity analysis in the case of
WGS metagenomic data).

In this paper, we present our simulator and then
compare it to five other popular sequencing simulator
programs: Grinder [7], MetaSim [8], 454sim [9], Sim-
Seq [10], and GemSIM [11]. Grinder and MetaSim are
able to emulate Sanger, 454, and Illumina data, while
454sim and SimSeq are specific to 454 and Illumina,
respectively. GemSim claims to be able to simulate any
short-read simulator technology, but requires a refer-
ence genome for alignment of reads in order to derive
its error model. We demonstrate that our program,
BEAR, better emulates many features of WGS (meta)
genomic reads from multiple NGS platforms without
the need of a reference genome.

Methods

BEAR methodology

Grinder, MetaSim, 454sim, SimSeq, and GemSIM were
evaluated for their ability to emulate real data. Shortcom-
ings identified in each of these programs were used to
guide the development of BEAR. BEAR is implemented as
a collection of Perl and Python scripts and available at
https://github.com/sej917/BEAR The use of BEAR is free
for academic purposes. A summary of the BEAR workflow
is provided in Figure 1.

Abundance profile generation

Abundance profile files are necessary input for existing
metagenomic sequencing simulators. A common format
for such files is that used by Grinder and GemSIM,
which is tab-delimited text where the first column is a
genome identifier, and the second column is the relative
abundance of that genome in the simulated community.
BEAR not only accepts abundance profiles in this format,
but also provides users with the resources to generate
them for any number of organisms. There are currently

https://github.com/sej917/BEAR

Johnson et al. BMC Bioinformatics 2014, 15(Suppl 9):S14 Page 3 of 10

http://www.biomedcentral.com/1471-2105/15/5S9/S14

Real NGS reads/
training data (multi-
FASTQ)

Microbial organism
database (multi-
FASTA)

Abundance profile generation

Homology-based
abundance profile OR
generation (slow)

Species

abundance file
(tab-delimited .txt)

Parametric abundance
profile generation (fast)

Error model generation Uniform ¥ read generation

DRISEE and DRISEE

: Read generator (uniform
analysis

length)

Simulated reads,
uniform length

Error rate and

quality models (FASTA)

Read modeling ‘and generation

Read trimming, error and
quality score simulation

Simulated reads
with realistic quality
scores and read
lengths (multi-
FASTQ)

Figure 1 BEAR workflow. There are four major stages of using BEAR: error model generation, abundance profile generation, uniform read
generation, and read modeling and generation. Blue rounded rectangles represent data files, red rectangles represent processes. Incoming and
outgoing arrows represent input and output to and from processes, respectively.

species complexity. Plots of the three power func-
tions are shown in Additional File 1 (Supplementary
Data). A “low” species complexity represents an
environment with few dominant species, while a

two separate methods for generating abundance profiles
in BEAR:

« Power function-based abundance profile genera-

tion (fast): This method derives abundance values
from one of three power functions, where each func-
tion indicates either “low”, “medium”, or “high”

“high” species complexity has no dominant species.
The parameters of these functions were derived by
fitting the abundance values of the simulated simLC,

Johnson et al. BMC Bioinformatics 2014, 15(Suppl 9):S14
http://www.biomedcentral.com/1471-2105/15/59/S14

simMC, and simHC datasets from Pignatelli and
Moya [12] to power functions.

+ Homology-based abundance profile generation
(slow): This method derives abundance values by
first determining the similarity of WGS shotgun
reads in a user-supplied sample of real data to pro-
tein sequences (in genpept format) in the RefSeq
database by using RAPSearch [13,14]. The accession
number of each protein sequence is associated with
taxonomy listed in a genpept record, allowing all sig-
nificant hits in the WGS dataset to be associated
with a taxonomy. The taxonomy of a given query
(read) is calculated by taking all the lineages for all
search results that have a bit score within a certain
neighborhood of the highest one, finding the lowest
common ancestor (LCA) among all those lineages.
This approach is very similar to that of MEGAN
[15]. The abundances of each species-level classifica-
tion are then used to create the abundance profile.

Error rate and quality-error model generation

BEAR uses both error rate and quality-error models
when generating simulated data. The error rate model
determines the probability of substitutions, insertions, or
deletions at a given base pair position within a read.
BEAR uses modified DRISEE scripts (included with
BEAR) to infer error rates by first clustering artifactual
duplicate reads in a user-supplied WGS dataset. DRISEE
is a tool that bins all reads with identical 50bp prefixes,
and processes each bin to predict error rates within the
entire sample [16]. DRISEE then produces a file listing
the substitution error rates for each nucleotide at each
read position, and a combined insertion/deletion rate
for each position. BEAR subjects all of these rates to
exponential regression to create its error rate models.
BEAR also analyzes the WGS input file and the DRISEE
output file to determine the ratio of insertions to deletions
at each position, and transition/transversion rates for
substitutions.

The quality-error model determines the quality score
to assign to a nucleotide resulting from a substitution or
insertion error. This model is derived by processing the
output from the modified DRISEE scripts and determin-
ing the average quality score assigned to erroneous
nucleotides at each position in the read. BEAR performs
second-degree polynomial regression on these values,
creating a model for generating quality scores for incorrect
base calls.

These error models are then used in the next stage to
predict errors and quality scores for erroneous
nucleotides.

If the user chooses not to use the DRISEE-derived
error models, BEAR also has a lightweight default error

Page 4 of 10

model in which the probability of an incorrect base call
is directly related to the predicted quality score at the
current position in the simulated read. This simple
model makes the assumption that substitutions, inser-
tions, and deletions are all equally likely.

Read modeling and generation

BEAR uses the abundance file and an organism database
(a file containing the genomes) to generate a simulated
dataset containing randomly sampled single or paired-end
reads of uniform quality and length but reflecting the
specified community composition. The organism database
is in multi-FASTA format; i.e. it contains multiple
sequences, each in FASTA form.

Next, input WGS reads are used as training data to
create a read length distribution and a quality score model
for correct base calls. The latter model is a position-
dependent first-order Markov chain. That is, the quality
score at a given position within a read influences the qual-
ity score at the next position. The script then uses the
models for error rate, quality-error, read length distribu-
tion, and quality score along with the uniform-length
reads to generate the final variable-length artificial reads.

More formally, we define a read of length p to be a
string of characters S = s;...s, with an associated quality
string Q = ¢;...q,. For each read, BEAR uses the training
data to generate quality values g;, 1 < i < p based on ¢, ;
and position i - 1. In the case that i = 1, g;_; = 0. Thus,
for a given position i within a quality string Q, we wish
to find gi by sampling from the conditional probability
distribution P (g;|g;—1, i — 1). This is only for producing
nucleotides that are correct base calls. If an erroneous
nucleotide is to be generated, the error model overrides
the predicted quality value for g;. For example, in the
case that the error rate model predicts a substitution
error at position i, the Markov chain is not sampled and
the quality-error model sets ¢; = ay;i? + byji + ¢;;, where
as, bs, c,, are the coefficients of the second-degree poly-
nomial regression for the nucleotide s;.

Testing

We compared BEAR to five sequencing simulator pro-
grams based on their ability to emulate the characteris-
tics of actual sequence data obtained from Ion Torrent,
454, and Illumina sequencers. When determining the
input organism databases and abundance files, we used
the specific genomes and relative abundance values
listed in previous work with simulated metagenomic
data [12]. The programs that do not support abundance
files were supplied with just the database of genome
sequences. For each of the tested programs, parameters
were chosen that would generate the read length and
quality score distributions that most closely matched
those of the actual test data.

Johnson et al. BMC Bioinformatics 2014, 15(Suppl 9):S14
http://www.biomedcentral.com/1471-2105/15/5S9/S14

Training data

For each of the tests, a dataset was used to train BEAR. An
Ion Torrent training set consisting of 377,630 raw metage-
nomic reads was generated using a Personal Genome
Machine with an Ion 318 Chip. Another Ion Torrent
training set consisting of 689,365 reads from the E. coli
DH10B genome was used for comparing BEAR and Gem-
SIM error models. A 454 training set consisting of 122,737
raw reads from Roche 454 Genome Sequence FLX plat-
form and an Illumina training set of 14,376,051 reads were
obtained from Pittet et al. [SRA: SRX216314] [17,18]. In
the case of the Illumina dataset, only the first 100,000
reads were used. The sequence simulators were then
evaluated by how closely they were able to emulate the
characteristics of the training dataset.

Results

Results of attempts to simulate NGS data with each
program are provided in this section. A summary of our
findings for the read length distributions, errors, and qual-
ity profiles for each of the tested sequencing programs can
be found in Table 1. In general, most programs were only
able to generate reads following a uniform distribution
(454sim, SimSeq) or a normal distribution (Grinder, Meta-
Sim). With respect to generating realistic quality profiles
and error models, each program behaved differently. The
parameters of 454sim were difficult to calibrate due to the
lack of documentation explaining how the parameters
affect the generated data. SimSeq was able to generate
profiles that were high quality for the first 80bp and low/
variable quality for the last 20bp. SimSeq’s parameters do
not appear to be empirically determined, but it has been
used successfully for evaluating assemblies of Illumina
data [3,10]. Grinder can generate data based on uniform,
linear, and polynomial error models, but is only capable of
generating two possible quality values per run (a “good”
quality value for correct bases and a “bad” quality value for
errors), which is highly uncharacteristic of raw reads.
MetaSim provides a number of options for user-specified

Page 5 of 10

error parameters. Unfortunately, it did not support the
generation of quality scores. GemSIM was able to generate
non-parametric read length and quality score distributions.
However, it can only derive error rates and quality scores
by aligning reads to a reference genome. That is, GemSIM
requires training on WGS reads from a single genome and
therefore is unable to directly generate data having the
error, quality, and read length characteristics of a given
metagenomic sample.

While we had each program generate three different
simulated metagenomic datasets (simLC, simnMC, simHC),
the results for all three sets were indistinguishable in
terms of the features (read length distribution, quality pro-
files) that were used for evaluation. Consequently, only the
low complexity simulated dataset is shown in the figures.

Read-length distributions

The read-length distribution of the real WGS training data
is compared to the distributions generated by each
sequencing simulator program in Figure 2. As demon-
strated in that figure, data obtained from actual NGS
experiments is not necessarily simple enough to be charac-
terized, for example, by supplying a mean and standard
deviation of the read length distribution. GemSIM and
BEAR are the only programs that closely modeled the Ion
Torrent distribution. While the normally-distributed read
lengths generated by Grinder and MetaSim model weren’t
as accurate as the read lengths generated by BEAR and
GemSIM, they were far more accurate than those
generated by 454sim and SimSeq. Over 80% of the reads
generated by 454sim were 165bp, with read lengths never
exceeding 175bp. SimSeq only generated reads 100bp in
length. With respect to the 454 data, BEAR and Grinder
matched the read length distribution far better than the
other programs.

Quality profiles
Comparisons of quality profiles for all sequencing pro-
grams and WGS data can be seen in Figure 3. Similar to

Table 1 Summary of characteristics of read-length distributions and quality profiles for BEAR and popular sequencing

simulator programs

Program Read length Quality profiles Errors
distribution

MetaSim Uniform and Not generated User-defined, parametric

Normal
SimSeq Uniform High quality for first 80bp, low quality after User-defined, parametric
Grinder Uniform and Binary; either “good” or “bad” User-defined, parametric

Normal
454sim Uniform Highly sensitive to parameter settings User-defined, parametric
GemSIM Non-parametric Non-parametric Inferred from alignment to reference genome
BEAR Non-parametric Non-parametric for correct base calls, second-degree Inferred from log regression analysis of clustering artifactual

polynomial for errors

duplicate reads within data

Johnson et al. BMC Bioinformatics 2014, 15(Suppl 9):S14
http://www.biomedcentral.com/1471-2105/15/5S9/S14

Page 6 of 10

0.12
BEAR ——
GemSIM ——
0.1 Grinder
MetaSim
Ion Torrent
éw 0.08 +
=
g
= 0.06 -
£
5
(>
& 0.04
0.02
/\ R
o IO e =
T T T
0 64 128 192 256 320
Read length in bp
0.2
BEAR ——
0.18 GemSIM =—
Grinder
0.16 MetaSim
454sim ——
5 0.14 7 454 data
g 012 A
g
i 0.1
£
E 008 -
[
[
0.06 4
0.04 +
0.02
0 | P— T
0 172 688 860
Read length in bp
Figure 2 Comparison of read length distributions generated by metagenomics sequencing simulator programs. Top: lon Torrent.
Bottom: 454 data. When attempting to emulate these distribution, SimSeq only generated 100bp reads. Over 80% of the reads generated by
454sim were 165bp when emulating the lon Torrent distribution, thus it is excluded from the top plot. Note that both panels BEAR closely
matches the distributions of the real data. A panel for Illumina data is not shown since all real and simulated Illumina reads were 67bp in length.

the read length distribution analysis, GemSIM and BEAR
were the best of the tested simulator programs for gener-
ating data with the quality profile that most closely
matched the real data. Near the end of the longer reads in
the Ion Torrent and 454 data the base calls become quite
noisy, leading to inconsistent quality values. While reads
exceeding this length comprise a very small percentage of
the data, it is worth noting that BEAR was able to generate
noisy quality values after 250bp as well. Of SimSeq,
Grinder, and 454sim, only SimSeq consistently produced
non-constant quality scores. Unfortunately, it can only
generate very short reads.

Error models
Overall error rates predicted by GemSIM, DRISEE, and
BEAR when supplied with various types of WGS data

are compared in Figure 4. GemSIM failed to report
error rates for every base pair position in the Ion
Torrent and 454 datasets, in particular predicting error
rates of 0 for positions beyond 250 and 525, respectively.
In order to generate errors for all positions in long
reads, BEAR automatically performs a exponential
regression on the predicted error rates. This frees the
user from the need for parameter tuning. This feature
also allows BEAR to potentially generate substitution,
insertion, and deletion errors at any possible read
position, a feature that may not always be possible in
GemSIM. GemSIM overestimated error rates at the
beginning of all reads, and underestimated error rates at
the ends of long reads (typically the most error prone
region). GemSIM also overestimated the error rate at
every position in the Illumina data. Conversely, BEAR

Johnson et al. BMC Bioinformatics 2014, 15(Suppl 9):S14 Page 7 of 10
http://www.biomedcentral.com/1471-2105/15/59/514
e N
40
® ——_LL\.N_\
30
\
2
g 254
=
T 20
o
E]
g 154
=
10 4 BEAR ——
GemSIM ——
Grinder
51 SimSeq
Ion Torrent data
0 T T T T
0 64 128 192 256 320
Position within read (bp)
45
40
35
% 30 +
Z 25+
g
z 20
2
= 154 BEAR —
GemSIM ——
10 4 Grinder -
SimSeq
5 4 454sim
454 data
0 T T T T
0 172 344 516 688 860
Position within read (bp)
40
> V— - \
35 4 \ \
a0 M =
£
2 254
=
T 20
=
=
K]
2 15
=
10 BEAR ——
GemSIM ——
Grinder
5 SimSeq ——
Illumina data
0 T T T T T
0 13 26 39 52 65
Position within read (bp)
Figure 3 Comparison of quality score distributions for real and simulated WGS datasets. Top: lon Torrent. Middle: 454. Bottom: lllumina.
454sim and MetaSim are excluded from the lon Torrent and lllumina plots, as MetaSim does not generate quality scores and 454sim generated
reads with a median quality score of 40 for all positions. GemSIM, 454sim, and SimSeq are unable to match the read length distribution of the
454 data, and as a result their quality score traces end prior to position 860.

Johnson et al. BMC Bioinformatics 2014, 15(Suppl 9):S14
http://www.biomedcentral.com/1471-2105/15/59/514

Page 8 of 10

0.12

Error rate (frequency)

0.1
T
s
S0
E) —=GemSIM
::: ~—DRISEE
= o8 BEAR
E ==lon Torrent data
0.04 l
o 50 100 150 200 250
Position within read (bp)
===GemSIM
==DRISEE

BEAR
——Real 454 data

0 100 200

Position within read (bp)

400 500

0.045

0.04

0.035

=8
g
8

e
o
B
&

==GemSIM
==DRISEE

Error rate (frequency)
o
5]

e
o
&

0.005

BEAR

==Real lllumina data

o 10 20 30

rates are displayed as relative frequencies.
.

Position within read (bp)

Figure 4 Overall error rates for real WGS data and error rates predicted by GemSIM, DRISEE, and BEAR. Top: lon Torrent data; Middle:
454 data; Bottom: lllumina data. Real error rates were inferred by aligning reads to their respective reference genomes using Bowtie2 [19]. Error

predicted increases in error rates as read length
increased for all datasets, with error models that more
closely matched the real error rates.

BEAR also performs second-degree polynomial
regression for determining the average quality score
for an erroneous nucleotide. Plotting generated quality

scores for erroneous bases and correct bases (data not
shown) confirms that erroneous base calls generally
have lower quality scores than correct base calls, two
characteristics that are supported by the simultaneous
decline in quality scores and increase in error rates
observed in Figures 3 and 4, respectively.

Johnson et al. BMC Bioinformatics 2014, 15(Suppl 9):S14
http://www.biomedcentral.com/1471-2105/15/59/S14

Discussion

The results above suggest that BEAR can be particularly
useful for simulating raw genomic reads from NGS tech-
nologies such as Ion Torrent, which exhibit characteristics
that most current programs are unable to emulate well.
Figure 3 suggests that the general decline in median qual-
ity across the length of the read in actual Ion Torrent data
is captured both by our position-dependent Markov
chain-based approach, and the alignment-based context-
dependent method used by GemSIM. However, for the
454 and Illumina datasets where the reads did not align as
well to the reference genome, BEAR clearly emulated the
read length and quality distributions better than GemSIM.
In addition, BEAR can adapt to changes in NGS technol-
ogy. For example, if the technology for a sequencing
platform is modified to extend read length and quality
characteristics, BEAR would be able to generate simulated
data with these new qualities with no modifications. We
also demonstrated that BEAR peforms well with both
genomic and metagenomic data, exhibiting versatility that
is lacking in other existing programs. Finally, we believe
that BEAR belongs in a new category of sequencing simu-
lator programs without the need for external parameter
calibration. There are many possible extensions for BEAR,
such as the generation of metatranscriptomic data,
emulation of GC bias within a sample, paralellization, and
development of more robust error models. However,
further analysis and study needs to be completed before
the results of any of these extensions can be reported.

Conclusions

This paper presented BEAR, a tool for generating simu-
lated reads based on empirically-derived read length
distributions and quality scores. The approach used by
BEAR for generating data eliminates the need for para-
meter tuning, allowing for an easy-to-use interface; the
user need only provide a sample of data that has
the desired properties of the reads to be emulated. We
demonstrated that BEAR is superior to popular, existing
artificial read generation programs in terms of producing
reads with realistic read length and quality score distribu-
tions. While state-of-the-art programs such as GemSIM
give comparable results in this regard, BEAR has addi-
tional features that make it more suitable for metage-
nomics applications, such as automatically producing
community profiles and the lack of reliance on a reference
genome. We believe that one of the best uses for BEAR
will be for simulating metagenomic reads from emerging
and consistently-updated technologies such as Ion Tor-
rent, as there are few programs available that can capture
their behaviour with respect to read length and overall
quality scores. The features present in BEAR allow simu-
lated data to be easily generated for analysis where one
must know what the correct and complete output is.

Page 9 of 10

Additional material

Additional file 1: Contains Figure S1, describing the power laws
used for parametric abundance file generation.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

SJ wrote the code for BEAR except for the homology-based abundance file
generation scripts, which were written by BT. SJ drafted the manuscript, JL,
BT, VP, and AK revised it and contributed to the study design. AK supervised
the work.

Acknowledgements

The authors thank Sarah Klatt (Contango Strategies) for laboratory work that
provided sample data, as well as Amir Muhammadzadeh, David Vickers,
Qingxiang Yan, Monique Haakensen (Contango Strategies), and Julian Miller
for their participation in the MAVEN project.

Declarations

This work was supported by MAVEN, a project funded by Western Economic
Diversification Canada and Enterprise Saskatchewan, under the provisions of
the Canada-Saskachewan Western Economic Development Partnership
Agreement. Oversight of the MAVEN project is provided by Genome Prairie
and Dr. Reno Pontarollo.

This article has been published as part of BMC Bioinformatics Volume 15
Supplement 9, 2014: Proceedings of the Fourth Annual RECOMB Satellite
Workshop on Massively Parallel Sequencing (RECOMB-Seq 2014). The full
contents of the supplement are available online at http://www.
biomedcentral.com/bmcbioinformatics/supplements/15/59.

Authors’ details

1Departmem of Computer Science, University of Saskatchewan, 176
Thorvaldson Bldg., 110 Science Place, S7N 5C9 Saskatoon, Canada.
’Department of Pathology and Laboratory Medicine, University of
Saskatchewan, Room 2841, Royal University Hospital, 103 Hospital Drive, S7TN
0WS8 Saskatoon, Canada.

Published: 10 September 2014

References

1. Worden AZ, Janouskovec J, McRose D, Engman A, Welsh RM: Global
distribution of a wild alga revealed by targeted metagenomics. Current
Biology 2012, 22(17):R682-R683.

2. Gill SR, Pop M, DeBoy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon Ji,
Relman DA, Fraser-Ligget CM, Nelson KE: Metagenomic analysis of the
human distal gut microbiome. Science 2006, 312(5778):1355-1359.

3. Bradnam KR, Fass JN, Alexandrov A, Baranay P, Bechner M, Birol |, Boisvert S,
Chapman JA, Chapuis G, Chikhi R, Chitsaz H, Chou WC, Corbeil J, Del
Fabbro C, Docking TR, Durbin R, Earl D, Emrich S, Fedotov P, Fonseca NA,
Ganapathy G, Gibbs RA, Gnerre S, Godzaridis E, Goldstein S, Haimel M,

Hall G, Haussler D, Hiatt JB, Ho IYea: Assemblathon 2: evaluating de novo
methods of genome assembly in three vertebrate species. GigaScience
2013, 2:10.

4. Thompson J, Plewniak F, Poch O: BAliBase:A benchmark alignments
database for the evaluation of multiple sequence alignment programs.
Bioinformatics 1999, 15:87-88.

5. Mavromatis K, Ivanova N, Barry K, Shapiro H, Goltsman E, McHardy EC,
Rigoutsos |, Salamov A, Korzeniewski F, Land M, Lapidus A, Grigoriev |,
Richardson P, Hugenholtz P, Kyrpides NC: Use of simulated data sets to
evaluate the fidelity of metagenomic processing methods. Nature
Methods 2007, 4:495-500.

6. Wooley JC, Godzik A, Friedberg I: A Primer on Metagenomics. PLoS Comp
Biol 2010, 6(2):21000667.

7. Angly FE, Willner D, Rohwer F, Hugenholtz P, Tyson GW: Grinder: a
versatile amplicon and shotgun sequence simulator. Nuc/ Acids Res 2012,
40(12):e94.

http://www.biomedcentral.com/content/supplementary/1471-2105-15-S9-S14-S1.pdf
http://www.biomedcentral.com/bmcbioinformatics/supplements/15/S9
http://www.biomedcentral.com/bmcbioinformatics/supplements/15/S9

Johnson et al. BMC Bioinformatics 2014, 15(Suppl 9):S14 Page 10 of 10
http://www.biomedcentral.com/1471-2105/15/59/S14

8. Richter D, Ott F, Auch AF, Schmid R, Huson DH: MetaSim - A sequencing
simulator for genomics and metagenomics. PLoS One 2008, 3(10):e3373.

9. Lysholm F, Andersson B, Persson B: An efficient simulator of 454 data
using configurable statistical models. BMC Research Notes 2011, 4:449.

10. Earl D, Bradnam K, St John J, Darling A, Lin D, Fass J, Yu HO, Buffalo V,
Zerbino DR, Diekhans M, Nguyen N, Ariyaratne PN, Sung WK, Ning Z,
Haimel M, Simpson JT, Fonseca NA, Docking TR, Ho 1Y, Rokhsar DS,

Chikhi R, Lavenier D, Chapuis G, Naquin D, Maillet N, Schatz MC, Kelley DR,
Phillippy AM, Koren Sea: Assemblathon 1: A competitive assessment of
short read assembly methods. Genome Res. 2011, 21:2224-2241.

11, McElroy KE, Luciani F, Thomas T: GemSIM: general, error-model based
simulator of next-generation sequencing data. BMC Genomics 2012, 13:74.

12. Pignatelli M, Moya A: Evaluating the fidelity of de novo short read
metagenomic assembly using simulated data. PLoS One 2011, 6(5):
€19984.

13. Pruitt KD, Brown GR, Hiatt SM, Thibaud-Nissen F, Astashyn A, Ermolaeva O,
Farrell CM, Hart J, Landrum MJ, McGarvey KM, Murphy MR, O'Leary NA,
Pujar S, Rajput B, Rangwala SH, Riddick LD, Shkeda A, Sun H, Tamez P,
Tully RE, Wallin C, Webb JD, Weber amd, Wu W, Dicuccio M, Kitts P,
Maglott DR, Murphy TD, Ostell JM: RefSeq: an update on mammalian
reference sequences. Nucleic Acids Res. 2013.

14. Ye'Y, Choi JH, Tang H: RAPSearch:a fast protein similarity search tool for
short reads. BMC Bioinformatics 2011, 12:159.

15. Huson DH, Auch AF, Qi J, Schuster SC: MEGAN Analysis of Metagenomic
Data. Genome Research 2007, 17:377-386.

16. Keegan KP, Trimble WL, Wilkening J, Wilke A, Harrison T, D'souza M,
Meyer F: A platform-independent method for detecting errors in
metagenomic sequencing data: DRISEE. PLoS Comp Biol 2012, 8:21002541.

17. Pittet V, Ewen E, Bushell B, Ziola B: Genome sequence of Lactobacillus
rhamnosus ATCC 8530. J Bacteriol 2012, 194(3):726.

18. Pittet V, Phister TG, Ziola B: Transcriptome Sequence and Plasmid Copy
Number Analysis of the Brewery Isolate Pediococcus claussenii ATCC
BAA-344T during Growth in Beer. PLoS One 2013, 8(9):e73627.

19. Langmead B, Salzberg S: Fast gapped-read alignment with Bowtie 2.
Nature Methods 2012, 9:357-359.

doi:10.1186/1471-2105-15-S9-514
Cite this article as: Johnson et al.. A better sequence-read simulator
program for metagenomics. BMC Bioinformatics 2014 15(Suppl 9):S14.

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

e Thorough peer review

¢ No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at (-
www.biomedcentral.com/submit BiolVed Central

	Abstract
	Background
	Results
	Conclusions

	Introduction
	Methods
	BEAR methodology
	Abundance profile generation
	Error rate and quality-error model generation
	Read modeling and generation
	Testing
	Training data

	Results
	Read-length distributions
	Quality profiles
	Error models

	Discussion
	Conclusions
	Competing interests
	Authors’ contributions
	Acknowledgements
	Declarations
	Authors’ details
	References

