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Abstract

their functions) in a microbial community.

projects/transgenescan/.

Background: Metatranscriptomic sequencing is a highly sensitive bioassay of functional activity in a microbial
community, providing complementary information to the metagenomic sequencing of the community. The
acquisition of the metatranscriptomic sequences will enable us to refine the annotations of the metagenomes, and
to study the gene activities and their regulation in complex microbial communities and their dynamics.

Results: In this paper, we present TransGeneScan, a software tool for finding genes in assembled transcripts from
metatranscriptomic sequences. By incorporating several features of metatranscriptomic sequencing, including strand-
specificity, short intergenic regions, and putative antisense transcripts into a Hidden Markov Model, TranGeneScan can
predict a sense transcript containing one or multiple genes (in an operon) or an antisense transcript.

Conclusion: We tested TransGeneScan on a mock metatranscriptomic data set containing three known bacterial
genomes. The results showed that TranGeneScan performs better than metagenomic gene finders (MetaGeneMark
and FragGeneScan) on predicting protein coding genes in assembled transcripts, and achieves comparable or even
higher accuracy than gene finders for microbial genomes (Glimmer and GeneMark). These results imply, with the
assistance of metatranscriptomic sequencing, we can obtain a broad and precise picture about the genes (and

Availability: TransGeneScan is available as open-source software on SourceForge at https.//sourceforge.net/

Background

Fueled by rapid advances of sequencing techniques [1],
culture-independent community-wide methods (known as
the metagenomics approach) have been commonly used to
study the microbial community in different environments,
such as in soil [2], ocean [3], freshwater [4] and human-
associated communities [5-7]. Large scale surveys of
human microbiomes through the Human Microbiome
Project (HMP) [6,7] and the MetaHit Project [5] have pro-
vided great resources for studying the diversity and com-
plexity of human microbiomes and their potential impacts
on human health and diseases. Comparison of human gut
microbiomes of individuals with type II diabetes (T2D)
against those of normal controls have revealed important
taxonomic and functional differences of the microbial
communities that might be correlated with T2D [8-10].
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While metagenomic sequencing revealed important func-
tional properties encoded in microbial communities, charac-
terization of these properties requires direct analysis of the
active component of the metagenome, through meta-omic
techniques such as metatranscriptomics or metaproteomics.
Bacteria have low inventories of short-lived mRNAs so that
fluctuations in their mRNAs pools provide a highly sensitive
bioassay for environmental signals (e.g., the concentrations
of dissolved organic carbon [11] and pollutant concentra-
tions [12]) that are relevant to microbes [13], and the collec-
tive interaction among microbial organisms in response to
the changes of their environment ( e.g., the health condition
of the host of human microbiome [14]).

In a common metatranscriptomic study (using the
RNA-seq protocol), total RNA is first isolated from the
sample and structural RNAs are then removed to enrich
for mRNA, which is then reverse transcribed into cDNA
subject to DNA sequencing using next generation
sequencing (NGS) platforms like Illumina sequencers
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[15]. Metatranscriptomic data indicate which of the genes
encoded in a metagenome are actually transcribed, and
which of the potential metabolic pathways are active (and
the level of their activities) on the basis of their transcrip-
tions within a microbial community under certain envir-
onmental condition. HMP II, the second phase of the
Human Microbiome Project (HMP) plans to generate
coherent meta-omic (metagenomic, metatranscriptomic
and metaproteomic) datasets acquired from the same
cohorts of healthy human subjects and patients with cer-
tain diseases (including diabetes, Crohn’s disease and
ulcerative colitis).

In addition to elucidating functional characteristics of
microbial communities, metatranscriptomic data pro-
vides valuable information for accurate annotations of
genes and studies of their regulation in the community
that are complementary to metagenomic sequencing.
Metatranscriptomic sequences can be assembled into
transcripts, each encoding one or more genes that are
transcribed together (in the same direction). In the latter
case (known as operons), the intergenic regions between
coding genes are relatively short. In comparison, metage-
nomic sequences are assembled into contigs of genomic
segments, many of which may contain long non-coding
intergenic regions. In addition, current metatranscrip-
tomic studies adopt the stranded RNA-seq protocol [15];
as a result, the genes should be encoded on the positive
strand of the assembled transcripts in metatranscrip-
tomic sequences, while in metagenomic sequences, genes
can be encoded in either strand. These features of meta-
transcriptomic data can significantly improve the gene
prediction accuracy in metatranscriptomic sequences,
and thus should be incorporated into gene predictors
specifically designed for metatranscriptomic data.
Furthermore, because of the strand-specificity in meta-
transcriptomic data, antisense RNAs (asRNAs), which are
encoded on the DNA strand opposite to a protein coding
(sense) gene, and play various, important regulatory roles
by forming extensive base-pairing interactions with the
corresponding sense RNA [16], can be revealed in meta-
transcriptomic sequences. Antisense RNAs range in size
from tens to thousands of nucleotides, complementing
with part of a gene, a complete gene or a group of genes
[17,18]. Although asRNAs were first observed in bacteria
more than 30 years ago [19], most studies of asRNAs in
bacteria are rather recent, and have been applied mainly
to single bacterial species, including Chlamydia tracho-
matis [20] and Escherichia coli [21]. Metatranscriptomics
research is creating an unprecedented opportunity to
gain knowledge about the gene regulation for the vast
majority of uncultured microbial species.

In this paper, we present a gene finding software tool
(TransGeneScan) specifically designed for metatranscrip-
tomic sequences that addresses all features described above.
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TransGeneScan incorporates strand-specific hidden states,
representing coding sequences in sense and antisense
strands in a Hidden Markov Model (HMM), which is differ-
ent from the HMM that we used in FragGeneScan [22]. As
a result, TransGeneScan can predict a sense transcript con-
taining one or multiple genes (in an operon) or an antisense
transcript. We note that TransGeneScan inherits the advan-
tage of FragGeneScan in that the parameters of the HMM
can be computed based on the GC% of the input sequences
and therefore no trainings on specific data sets are needed, a
desirable feature for gene finding in metagenomic/metatran-
scriptomic sequences. We tested TransGeneScan on a mock
metatranscriptomic data set containing 3 bacterial genomes,
and compared its performance with metagenomic gene fin-
ders MetaGeneMark [23] and FragGeneScan [22], as well as
Glimmer [24] and GeneMark [25], gene finders trained for
each specific bacterial genome (assuming their presences in
the metatranscriptome are known). The results showed that
TranGeneScan performs much more accurately than meta-
genomic gene finders on metatranscriptomic sequences, and
achieves comparable or even higher accuracy than gene fin-
ders for microbial genomes. These results imply, with the
assistance of metatranscriptomic sequencing, we can obtain
a broad and precise picture about the genes (and their func-
tions) in a microbial community.

Methods

TransGeneScan takes as input a set of transcript
sequences, and reports the annotation of these
sequences, either sense RNA (including mRNAs that
encode one or more protein coding genes, and RNAs
that don’t contain coding regions), or asRNAs with reg-
ulatory functions. It is built upon a Hidden Markov
model that considers each input transcript sequence as
an observation sequence, and computes the most likely
hidden sequence, representing the annotation of the
sequence. The metatranscriptomic sequences acquired
by using a stranded RNA-seq protocol will be first
assembled into transcripts by a reference-mapping
approach (e.g., through mapping the reads to reference
bacterial genomes or corresponding metagenomes) or
by a de novo assembly approach, e.g., by using Velvet
[26], Trinity [27] or Oases [28]. We tested TransGeneS-
can on a metatranscriptomic data set acquired from a
mock community consisting of three bacterial species:
Escherichia coli, Rhodobacter sphaeroides, and Prochloro-
coccus marinus [15]. To evaluate the performance of
TransGeneScan, we focused on the accuracy of the pro-
tein-coding genes on the predicted mRNA transcripts,
where the currently annotated genes in each of the
three genomes are considered to be true positives. We
also analyzed the asRNAs and operons predicted by
TransGeneScan. Below, we describe these methods in
details.
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Transcript assembly
In this study, we adopt an ad hoc reference-based assem-
bly algorithm for reconstructing transcript sequences from
metatranscriptomic data. Transcriptome assemblers are
available for processing RNA-seq data, including refer-
ence-based transcriptome assemblers such as Cufflinks
[29] and de novo assemblers such as Velvet [26], Trinity
[27] and Oases [28]. These algorithms were designed for
eukaryotic transcriptome assembly, and thus focused on
the challenge of reconstructing alternative splicing forms.
On the one hand, the assembly of bacterial transcriptomes
might be less challenging because of the lack of splicing;
but specific issues like overlapping transcripts and alterna-
tive operon structures may complicate the problem [30].
As a result, fine-tuned algorithms may be needed for
metatranscriptome assembly. Nevertheless, we stress that
implementation of a metatranscriptome assembler is
beyond the scope of this paper, and hence, we adopt a
simple approach to this problem, as described below.
Given a set of RNA-seq sequences, we first align them
onto reference genomes by using BWA [31]. To obtain
the start and end positions of transcripts from the mapped
reads, we partition the reads into two sets using SAMtools
[32]: the first set contains reads contributed by transcripts
transcribed from the positive strand of the reference gen-
ome (i.e., positively-transcribed reads), and the second set
contains reads contributed by those transcribed from the
negative strand (i.e., negatively-transcribed reads). Because
the stranded RNA-seq protocol is used, this partitioning
can be easily achieved using the SAMtools flag-filters
based on the rules as shown in Supplementary Table S1
(see Additional file 1). In the next step, for each set, we
mark regions in the reference genome supported by at
least one read from the respective set. Then, we extract
contiguous marked regions that are > 120 base pairs long.
These sequences are considered as potential transcripts
and input to the gene prediction programs. Since we know
that the transcripts assembled from the second set of reads
correspond to transcripts from the negative strand, these
transcripts are converted into their reverse complements
before giving as input to the prediction programs. The
gene annotations for the transcripts are obtained from the
corresponding annotations for the reference genome,
which are downloaded from Genbank (IDs: E. coli:
NC_000913.3, P. marinus: NC_005072.1 and R. sphaer-
oides: NC_007493.2). We used the reference genomes to
achieve a well-assembled set of transcripts, for the purpose
of evaluating the gene-prediction accuracy in metatran-
scriptomic data. In practice, complete reference genomes
may not be available for metatranscriptome studies. In this
case, one can use transcripts assembled by de novo assem-
bly algorithms (such as Velvet [26], Trinity [27] or Oases
[28]) as input to TransGeneScan.
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Hidden Markov Model for gene finding

In TransGeneScan, we extended the Hidden Markov
Model (HMM) used in FragGeneScan to the gene finding
in metatranscriptomic sequences. FragGeneScan HMM
incorporates codon usage bias, sequencing error models
and start/stop codon patterns in a unified model for gene
finding in short, error-prone metagenomic sequences
[22]. The model parameters (e.g., the transition and emis-
sion probabilities) were not learned from training data,
but were estimated by using a linear regression to the GC
% of the input genomic sequences. We modified the
FragGeneScan by removing the frameshift states (based
on the assumption that the assembled transcript
sequences contain no frameshift errors), and incorporat-
ing the strand specificity of the transcript. As shown in
Figure 1, the HMM employed in TransGeneScan consists
of 9 super-states in two modules: 4 super-states in the
sense (coding) strand module, representing coding
regions, start codons, stop codons and un-translated
regions, respectively; and 5 super-states in the antisense
strand module, representing start codons, stop codons,
coding regions, and un-translated regions, respectively.
The un-translated regions in the antisense strand are
represented as two distinct states, one for the 5" un-trans-
lated region and one for the 3’ un-translated region to
prohibit the transition from the coding regions in one
gene to those in another (because antisense transcripts
often overlap with only one gene). Furthermore, an idle
start state is used to ensure that the annotation (hidden
state) sequence can only initiate from the un-translated
regions in positive strand (but can initiate from any state
in the negative strand). We removed transitions from the
forward strand to the backward strand and vice versa
making the top and the bottom half of the model
mutually exclusive. Each of the two super-states for cod-
ing regions consists of six consecutive match states (M1
to M6, and M1- to M6-, respectively) represented by dia-
monds, allowing different parameters to be used for each
position in a di-codon, which collectively model the
codon bias in coding regions. We used the same regres-
sion models as used in FragGeneScan to obtain transition
and emission probabilities for the match states [22].

To annotate transcript sequences, the Viterbi algorithm
is used to obtain the most likely path of hidden states
that generates the input nucleotide sequence. In this
study, we output coding sequences of length greater than
120 base pairs that start in a start state (start codon) and
end in a stop state (stop codon). A length of 120 bps is
chosen to ensure the transcript contains at least two
overlapping reads, since the length of Illumina reads is
about 100 bps. Genes predicted in the strand opposite to
the native strand of the transcript (denoted as the nega-
tive strand) are reported as antisense transcripts. While
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Figure 1 The Hidden Markov Model employed in TransGeneScan. The model consists of 9 super-states in two modules, 4 for the sense (coding)
strand (top module), representing coding regions (i), start codons (ii), stop codons (iii) and un-translated regions (iv), respectively, and 5 for the
antisense strand (bottom module), representing start codons (v), stop codons (vi), coding regions (vii), and un-translate regions (viii and ix),
respectively. The un-translated regions in the antisense strand are represented as two distinct states, one for the 5’ un-translated region and one for
the 3" un-translated region to prohibit the transition from the coding regions in one gene to those on another (because antisense transcripts are often
a part of gene in the opposite strand). Furthermore, an idle start state is used to ensure that the annotation (hidden state) sequence can only initiate
from the un-translated regions in positive strand (but can initiate from any state in the negative strand). The transition from the hidden states in one
strand to the states in another strand is prohibited. Each of the two super-states for coding regions (i and vii) consists of six consecutive match states
(M1 to M6, and M1- to M6-, respectively) represented by diamonds, which collectively correspond to a six-periodic inhomogeneous HMM. Comparing
to the HMM used in FragGeneScan [22], this model does not contain the insertion and deletion states, based on the assumption that the assembled
transcripts from metatranscriptomic sequences contain no frameshift errors.

more than one open reading frames are allowed to be
predicted in the native strand of a transcript (i.e., corre-
sponding to an operon), at most one is allowed in the
antisense strand.

TransGeneScan is implemented using C and Perl, and
is available as open-source software on SourceForge at
https://sourceforge.net/projects/transgenescan/.

Performance evaluation and comparison

The performance of gene prediction is measured in
terms of sensitivity, precision and accuracy. Sensitivity
(Sn) is computed as the ratio of true positives versus all
annotated genes and precision (Pr) is the ratio of true
positives versus all predicted genes. The accuracy is
measured using the F-score defined by,

Feo. Pr-Sn (1)
Pr+8n

The performance of TransGeneScan is compared with

GeneMark, Glimmer, MetaGeneMark and FragGeneScan.

The parameters used for these programs are shown in

Table 1. All the programs are given the same input tran-

script sequences. Partial gene predictions are removed from

the output of all programs for the purpose of performance
evaluation.

Results and discussion

We analyzed RNA-seq reads from a mock bacterial com-
munity containing three bacterial species[15]:Escherichia
coli [GenBank:NC_000913.3],Prochlorococcus marinus
[GenBank: NC_005072.1]and Rhodobacter sphaeroides

Table 1 Command lines and parameters used for the
programs in the benchmarking.

GeneMark:
$ gmsn.pl ——prok ——format GFF <input>

Glimmer:
$ build —icm —r runl.icm < <coding—sequences>
$ glimmer3 —050 —g110 —t30 <input> runt.icm run1

MetaGeneMark:

$ gmhmmp —s . — f G —=m MetaGeneMark v1 . mod —o mgm.gff
<input>

FragGeneScan:
$ run_FragGeneScan.pl —genome=<input> —out=Frag
—complete=1 — train =complete
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[GenBank:NC_007493.2].The set of raw RNA reads
(paired-end 101 bps reads acquired by using Illumina
sequencer) were downloaded from Short Reads Archive
(SRA ID: SRR442380), which contains 9,668,044 paired-
end reads of 976.5 Mbps with the average insertsize of
300 bps. The reads were mapped to the three reference
genomes by using BWA [31], and a total of 5,278,699,
2,439,476 and 1,113,601 reads can be mapped to the gen-
omes of E. coli, P. marinus and R. sphaeroides, respec-
tively. These mapped reads were further assembled into
the transcripts representing genomic sequences continu-
ously covered by mapped reads in each genome (see
Methods for details). These transcripts were provided as
input to TransGeneScan, which classified each transcript
as a sense transcript or an antisense transcript. For sense
transcripts, TransGeneScan also reported the protein-
coding genes in them.

Accuracy of protein-coding gene prediction

We first evaluate the prediction accuracy of TransGeneS-
can on protein-coding genes. The performance is com-
pared with two metagenomic gene finders MetaGeneMark
and FragGeneScan, and two gene finders for microbial
genomes, Glimmer and GeneMark. The default para-
meters were used for TransGeneScan, MetaGeneMark
and FragGeneScan, and thus are independent of the input
sequences used here for performance evaluation. Notably,
the parameter used in TransGeneScan for estimating
transition and emission probabilities are inherited from
FragGeneScan [22], which were trained on a set of genes
in bacterial genomes with various GC-content [22]. The
parameters of Glimmer and GeneMark were self-trained
on protein-coding genes in each respective bacterial gen-
ome, and as a result, different model parameters might be
used in the gene prediction on transcripts from each of
the three bacterial genomes. We note that, in practice of
metatranscriptomic gene prediction, the bacterial genomes
from which some transcripts are transcribed may not be
known; as a result, Glimmer and GeneMark may not per-
form as well as reported here.

The performance of these five programs were measured
on sensitivity, precision and accuracy (see Methods), as
shown in Table 2. A gene annotated in a respective refer-
ence genome is considered to be positive if it is fully con-
tained in an assembled transcript. A total of 2,171, 621
and 1,184 genes can be recovered in the assembled tran-
scripts of the metatranscriptome sequences in the bacteria
E. coli, P. marinus and R. sphaeroides, respectively. A pre-
dicted gene is considered to be true positive if it comple-
tely overlaps with (or overlaps with at least 80% of) an
annotated gene in the corresponding frame in the respec-
tive reference genome. The rest of predicted genes are
counted as false positives. We found that a significant pro-
portion of false positives correspond to predictions in
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Table 2 Comparison of performance measures (TP - True
Positives, Sn - Sensitivity, Pr - Precision and Ac -
Accuracy) between GeneMark, Glimmer, MetaGeneMark
(MGM), FragGeneScan (FGS) and TransGeneScan (TGS).

Organisms GeneMark Glimmer MGM FGS TGS
E. coli (2171%)  Predicted 2039 2169 1961 1941 2159
Completely TP 1805 1695 1642 1678 1889
Overlap Sn 83.14 78.07 7563 7729 87.01
Pr 97.67 95.71 9756 96.00 97.82
Ac 89.82 86.00 8521 8563 92.10
80% TP 1996 2093 1920 1871 2117
Overlap Sn 91.94 9641 8844 86.18 97.51
Pr 97.89 96.50 9791 9639 98.05
Ac 94.82 96.45 9293 9100 97.78
P. marinus Predicted 631 698 592 578 571
(621%)
Completely TP 488 527 482 456 501
Overlap Sn 7858 84.86 7762 7343 80.68
Pr 83.85 8352 8893 8523 95.98
Ac 81.13 84.19 8289 7889 87.66
80% TP 537 595 532 499 550
Overlap Sn 86.47 95.81 8567 8035 8857
Pr 85.10 85.24 89.86 86.33 96.32
Ac 85.78 90.22 87.72 8324 92.28
R. sphaeroides  Predicted 1078 1121 1024 1026 1165
(1184%)
Completely TP 899 891 897 879 1011
Overlap Sn 7593 7525 7576 7424 85.39
Pr 98.04 97.38 98.36 9788 9787
Ac 85.58 84.90 8559 8444 91.20
80% TP 1060 1097 1009 1007 1143
Overlap Sn 89.53 92.65 8522 8505 96.54
Pr 9833 97.86 98.54 98.15 98.11
Ac 93.72 95.18 9139 91.13 97.32

“The numbers of positive genes recovered in the assembled transcripts.

partial genic regions at the 5’ end of the transcripts. For
these genes, the stop codon is predicted correctly in the
correct frame; but the start codon is picked from the mid-
dle of the gene since the transcript does not cover the
entire gene. Because these genes can neither be counted as
true positives nor as false positives, they are excluded from
the performance evaluation for each of the five programs.
A gene is considered to be false negative if it is covered by
a transcript, but does not completely overlap with (or
overlap with at least 80% of) a predicted gene in the corre-
sponding frame.

From the results, we observe that TransGeneScan per-
forms significantly better than metagenomic gene fin-
ders (MetaGeneMark and FragGeneScan), especially
with respect to sensitivity. It performs comparable to
GeneMark and Glimmer with some tradeoff between
sensitivity and precision (e.g, in the case of E. coli and
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R. sphaeroides, TransGeneScan achieves higher sensitiv-
ity, while in the case of P. marinus, it achieves better
precision). The overall accuracy of TransGeneScan is
better than that of GeneMark and Glimmer. It was
observed that gene prediction accuracy in metagenomic
sequences is typically lower than that in microbial gen-
omes, because the average model parameters are used
for different bacterial genomes potentially present in the
input data [23,22]. Our results, however, indicate that
with the assistance of metatranscriptomic data, bacterial
genes can be predicted accurately in metagenomes, with
comparable or even higher prediction accuracy (i.e.,
> 90%) than that in bacterial genomic sequences (i.e.,
typically 80% to 90%). We attribute this improvement to
the TransGeneScanentary signals in the metatranscrip-
tomic sequences: 1) the boundary of transcripts help to
define the appropriate reading frame as well as the start
codon; and 2) the stranded data help to distinguish the
true coding strand. We stress that we used the reference
genome here only for evaluation purpose, i.e., by consid-
ering annotated genes in the reference as the golden
standard. In practice, one can use TransGeneScan to
directly predict genes in assembled transcripts from
metatranscriptomic sequences without additional train-
ing, and the prediction accuracy should not be substan-
tially worse than the results described here. Finally, gene
prediction in a particular metatranscriptomic data set
may not cover all genes encoded in the community (e.g.,
in the mock data set used here, 2,159 or 52% genes in
E. coli can be recovered from assembled transcript),
because 1) only a fraction of genes are transcribed, and 2)
due to the sequencing depth, some transcribed genes with
low abundances in the sample may not be fully recovered.
Therefore, multiple metatranscriptomic studies of the
same community are needed to achieve a comprehensive
annotation of the genes in the community.

Predicted antisense transcripts

In addition to sense transcripts, TransGeneScan pre-
dicted a substantial number of antisense transcripts:
among 5,999, 3,027 and 3,173 transcripts predicted in
E. coli, P. marinus and R. sphaeroides, 2,086 (34.8%),
1,094 (36.1%) and 490 (15.6%) were predicted as puta-
tive antisense transcripts, respectively. A majority of
these putative antisense transcripts (2,681 out of 3,670;
73.1%) overlaps partially with one real gene (as anno-
tated in the reference genome) in the opposite strand,
while do not overlap with any gene in the same strand;
1,585 (76.0%), 932 (85.2%) and 164 (33.5%) of those
cases are in E. coli, P. marinus and R. sphaeroides,
respectively. These predicted transcripts are likely true
positives, although the remaining predictions are not
necessarily false. Only very few (0.52%, 2.65% and
2.45%) predicted antisense transcripts contain complete
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annotated genes (11, 29 and 12 in E. coli, P. marinus
and R. sphaeroides, respectively), which are likely
mRNAs instead of asRNAs, and thus are false positives.
The numbers of asRNAs reported for different bacteria
vary extensively, but hundreds and even thousands have
been suggested in some species [33]. Our analysis sug-
gests a widespread antisense transcription in E. coli,
which is consistent with the previous systematic studies
that report thousands of asRNAs in this species [21,34].
We also found prevalent asRNAs in the less studied
bacterial species (P. marinus and R. sphaeroides). We
report these predicted asRNAs in our website (http://
omics.informatics.indiana.edu/mg/TransGeneScan),
which will provide important resources for further stu-
dies of the gene regulation in these species.

Predicted operons

TransGeneScan can predict more than one gene in a given
transcript, which indicates a putative operon structure (ie.,
multiple genes transcribed together in the same transcript).
We observed a total of 512, 158 and 321 putative operons
predicted in E. coli, P. marinus and R. sphaeroides, respec-
tively. We compared the 512 operons predicted in E. coli
with the known operons curated in RegulonDB [35]. Out
of 512 predicted putative operons, 445 (86.9%) matched
with at least 80% overlap of those in RegulonDB, and
144 (28.1%) matched completely with known operons.
Among the remaining 67 predicted operons, 65 were fully
contained within the operons in the RegulonDB predomi-
nantly with at least 30% overlap. These cases may indicate
incomplete coverage of the transcripts containing these
operons in the data set due to low sequencing depth, or
potential alternative operon transcription in the experi-
ment. There were two predicted operons that span across
multiple known operons: one contains the genes yghK and
ygbL, spanning two operons ygbJK (containing genes yghJ
and ygbK), and ygbLM (containing genes ygbL and ygbM)
in regulonDB; the other one contains the genes yjeM (par-
tial), yjeN and yjeO, spanning the two operons yjeM (con-
taining gene yjeM) and yjeNO (containing genes yjeN and
yjeO). The intergenic distances in the known operons are
-3 (overlapping genes), 5 and -3 between the pairs of genes
of ygbJK, ygbLM and yjeNO, respectively, whereas in
the two predicted operons, the intergenic distances are 92
(between ygbKL) and 52 (between ybeMN), respectively.
These two cases may represent novel alternative operon
structures, or artificial transcripts that merge two overlap-
ping transcripts (we note that computational methods have
been developed recently to detect overlapping transcripts
in bacterial RNA-seq data [30]). Nevertheless, our results
showed that most of the putative operons predicted in
E. coli by TransGeneScan agreed with the ones collected in
RegulonDB. Hence, TransGeneScan prediction on meta-
transcriptomic data may provide useful information to
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detect active operons in a microbial community. The full list
of operons in all three genomes are shown in our website
(http://omics.informatics.indiana.edu/mg/TransGeneScan).

Conclusion

In this paper, we present TransGeneScan, a software
tool specifically designed for finding genes in metatran-
scriptomic sequences. TransGeneScan can predict pro-
tein-coding genes as well as antisense RNAs solely from
metatranscriptomic sequences without additional train-
ing. The testing results showed that TranGeneScan
achieves comparable or even higher accuracy than gene
finders for individual microbial genomes, implying that,
with the assistance of metatranscriptomic sequencing,
we can predict accurately the genes in a microbial com-
munity, and thus reveal a precise picture of its func-
tional properties.
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