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Abstract

Background: Overlapping transcription constitutes a common mechanism for regulating gene expression. A major
limitation of the overlapping transcription assays is the lack of high throughput expression data.

Results: We developed a new tool (IAOseq) that is based on reads distributions along the transcribed regions to
identify the expression levels of overlapping genes from standard RNA-seq data. Compared with five commonly
used quantification methods, IAOseq showed better performance in the estimation accuracy of overlapping
transcription levels. For the same strand overlapping transcription, currently existing high-throughput methods are
rarely available to distinguish which strand was present in the original mRNA template. The IAOseq results showed
that the commonly used methods gave an average of 1.6 fold overestimation of the expression levels of same
strand overlapping genes.

Conclusions: This work provides a useful tool for mining overlapping transcription levels from standard RNA-seq
libraries. IAOseq could be used to help us understand the complex regulatory mechanism mediated by
overlapping transcripts. IAOseq is freely available at http://lifecenter.sgst.cn/main/en/IAO_seq.jsp.

Background
The advent of genome-wide techniques for studying tran-
scription has strongly indicated that the majority of the
genome can be transcribed [1-3]. Genome-wide overlap-
ping transcription has been reported in various animal
and plant species [4-9]. Multifunctional usage of the same
genomic space leads to identical cDNA sequences pro-
duced from the same or opposite strands of DNA. The
overlapping regions can include the exons in mRNAs, and
a large number of transcripts from overlapping genes do
not encode proteins [10-13]. Overlapping transcription is
a highly conserved phenomenon that spans the animal,
plant and fungal kingdoms, constituting a common
mechanism for regulating gene expression.
The overlap of sense-antisense gene pairs can affect the

regulation of gene expression at several levels including
transcription, messenger RNA processing, splicing, stability,

cellular transport and translation [14-16]. Natural anti-
sense transcripts (NATs) are frequently functional and
use diverse transcriptional and post-transcriptional gene
regulatory mechanisms to carry out a wide variety of
biological roles. Given the diverse regulatory functions
and the widespread abundance of NATs in the human
genome, it is not a surprise when some NATs were
implicated in human diseases. Studies have shown that
changes in antisense transcription were implicated in
pathogenesis [17-19], indicating that activated antisense
transcripts might be potential molecular markers for
disease risk, as well as serving as novel therapeutic tar-
gets. However, apart from a few experimentally validated
cases, the physiological roles of antisense transcription
and the underlying mechanisms are largely unknown.
In-depth analysis of the transcriptome of overlapping

genes is a valuable way for understanding the overlapping
transcripts-mediated regulatory mechanism. A major
limitation to the development of overlapping transcripts
assays is the lack of high throughput expression data.
Expression profiles of antisense and their sense targets
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can be used to infer the regulatory mechanism of action
and the mechanism of antisense function. Techniques,
like serial analysis of gene expression (SAGE) and cap
analysis gene expression (CAGE), have been extensively
used for the analysis of overlapping transcription [20,21].
Both of these methods have disadvantages and are much
expensive to perform [22]. The widely used high-
throughput microarray method, when dealing with
probes mapped to the overlapping regions of same-strand
overlapping genes, would provide no help to distinguish-
ing signals from the original mRNA templates.
Next generation sequencing as a powerful tool has

made dramatic improvement in sequencing cDNA
derived from cellular RNA in a massively parallel and
cost-effective way [23]. Recently developed techniques
lead to more efficient assembly of individual transcrip-
tomes. TIF-Seq determine both transcript ends by jointly
sequencing the 5’ and 3’ ends of each RNA molecule
[24]. RNA paired-end tags (RNA-PET) could demarcate
the genomic boundaries of PET-represented DNA frag-
ments [25]. However, standard libraries for RNA-seq, the
most commonly used protocol, do not preserve informa-
tion about which strand was originally transcribed, and
strand specific RNA-seq method is labor intensive and
requires substantial amounts of starting material [26,27].
Furthermore, though strand specific library construction
preserves information about the orientation of tran-
scripts, most current studies analyzed cDNAs without
strand information because of its inefficiency and arti-
facts of reverse transcription.
Several methods have developed to reconstruct novel

transcripts [28], and estimate isoforms abundances [29].
There are also several bioinformatics methods developed
to infer strand information from non-strand specific
RNA-seq data based on information such as open read-
ing frame (ORF) in protein coding genes, biases in cover-
age between 5’ and 3’ ends or splice site orientation in
eukaryotic genomes [30-32]. However, when dealing with
reads mapped within exon challenge must be overcome
to the inference without splicing information; besides, for
those reads mapped within overlapping regions of same
strand overlapping genes, even strand specific RNA-seq
methods could not distinguish which strand was present
in the original mRNA template.
To solve these problems, we developed a new method,

IAOseq, to infer abundance of overlapping genes from
high-throughput RNA-Seq data constructed by standard
library. Levin et.al. had built a compendium of yeast
libraries using several strand specific protocols and a
non-strand specific protocol under same biological con-
dition [26], which makes it possible to verify the perfor-
mance of IAOseq. We therefore applied our method on
the non-strand specific RNA-seq dataset (nonST in
short) to infer expression levels of overlapping genes and

use the strand specific dataset to test the validity of the
method. Compared with other five most commonly used
quantification methods, IAOseq yielded much better
inferences.

Methods
According to the yeast genome annotation, about eigh-
teen percent of yeast genes are overlapping genes, most
of which are located on different strand and about one-
fifth are multi-gene overlaps (Additional file 1: Table S2).
The average overlapping length is 290 bp for yeast over-
lapping genes (Additional file 1: Figure S1), and in mam-
malian genomes it is longer than 1 Kb [3]. Sequence
reads obtained from the common next generation
sequencing platforms, including Illumina, SOLiD and
454, are often very short (30-400 nt) [27]. Therefore,
there is a high possibility that reads, which are shorter
than the overlapping length, would be fully mapped to
the overlapping regions with the result that strand infor-
mation cannot be inferred by subsequent computational
analyses using informations such as splice site orientation
etc, leading to an overestimation of overlapping genes’
expression levels.

Implementation of IAOseq
To address this issue, we firstly divide annotated genes
into two categories according to their genomic locations:
overlapping genes and non-overlapping genes. To accu-
rately infer overlapping genes’ expression levels from
nonST data, the overlapping regions are further divided
into sub-regions as illustrated in the left box of Figure 1.
Assume a transcribed genomic region contains m over-
lapping genes with expression levels (θ1, ...., θm). The
transcribed region is split into n sub-regions with length
(l1, ...., ln) based on the overlapping pattern. A set of
read counts (x1, ...., xn)are got from nonST data, where
xj is the total read counts mapped to the j-th sub-region.
An indicator matrix (aij)mxn is introduced to describe the
overlapping pattern of the transcribed region, where
aij = 1 or aij = 0 indicates whether the j-th sub-region is
included in or excluded from the i-th gene respectively.
Under the assumption that sequenced reads are

sampled independently and uniformly, according to the
Poisson distribution model proposed by Jiang et al.
when modeling the distribution of an individual sample
[33], the read counts xj would follow a Poisson distribu-

tion with parameter λj, and λj = ljw
m∑

i=1

aijθi, where w is

the total number of mapped reads. As reads distribu-
tions in most RNA-Seq datasets are not uniform [34],
two bias curves, the global bias curve (GBC) and the
local bias curve (LBC) are introduced to revise the indi-
cator matrix aij. The GBC represents the general
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tendency of reads distribution for the whole transcrip-
tome, and the LBC depicts gene-specific read distribu-
tion [35].
GBC is constructed from the non-overlapping gene

sets because of its independence on specific genes.
Reads distribution of a genomic region covered by over-
lapping genes is a mixture distribution of all its
expressed genes. LBC is thus constructed to approxi-
mately describe the trend of read distribution along
each gene [35]. For regions covered by overlapping
genes, a step function is introduced for each gene on

the j-th transcribed sub-region as xj/(lj
m∑

i=1

θiaij), j =

1,2,...n, which means the read counts are normalized by
the sub-region length and the gene occurrences, and the
read counts are weighted by expression level. The LBC
of the gene is further got by normalizing the step func-
tion to be of mean 1.
A weighted indicator matrix Gij is got from GBC. The

non-zero elements in Gij are weighted by the expression
level of the j-th transcribed sub-region of the i-th gene.
In the same way, a weighted indicator matrix Lijis got
from LBC. The two weighted indicator matrix Gij and Lij
are combined together as bij = α(Gij) + (1 − α)Lij to take
the place of aij in order to revise the parameter λj in the

Poisson distribution function. In this study, a is set to
0.1 (Additional file 1: Note and Table S1).
For a transcribed sub-region that has xj reads mapped,

the corresponding likelihood function is defined as

L(�|xj) =
e−λjλj

xj

xj!
.

Assume the read counts of each transcribed region are
independent from each other, the joint log-likelihood
function for gene members of the overlapping group is

log(L(�|x1, ...., xn)) =
n∑

j=1

log(
e−λjλj

xj

xj!
)

Then, we have

log(L(�|x1, ...., xn)) = −w
n∑

j=1

m∑

i=1

ljbijθi +
n∑

j=1

xj log(ljw
m∑

i=1

bijθi) −
n∑

j=1

log(xj!)

Due to the convexity of the function, the gradient des-
cending method is used to compute the maximum likeli-
hood estimator Θ [33], that is, the expression levels of
overlapping genes. We set initial value 1 to θi and iterate the
optimization process, the θi is updated after each iteration
process. Figure 1 illustrates the flowchart of the method.

Correction of reads count in UTRs
Most overlapping regions involve UTR, therefore, it’s
necessary to include the UTR region for the overlapping

Figure 1 Flowchart of IAOseq.
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analysis since UTRs are important parts of the transcript
sequence. Alternative polyadenylation and transcrip-
tional start sites could result in mRNA isoforms with
variations in their untranslated regions, reads counts in
UTRs are thus corrected according to a general ten-
dency learned from reads distribution in UTRs of non-
overlapping genes.
As reads distributions are not uniform, bias curve

UTR(z) is introduced to revise the estimation of reads
in UTR. To simulate the general tendency of reads dis-
tribution along UTR, UTR(z) is constructed from those
non-overlapping gene sets without intersection with any
other gene body or extended UTR. Assume the non-
overlapping dataset contains t genes (p1, p2... pt). The
normalized general tendency of reads number mapped
to the z-th nucleotide is defined as,

UTR(z) = (
t∑

c=1

depthpc(z)

depthpc(0)
)/t,

where z stands for the z-th nucleotide from the near-
est coding nucleotide and depth(z) is the number of
reads mapped to it.
The median lengths of yeast UTRs were estimated to

be around 50 bp for 5’UTR, and 100 bp for 3’UTR [36].
Coding regions of yeast genes are therefore extended to
200 bp for 3’UTR correction and 100 bp for 5’UTR cor-
rection. The corrected reads count x′

j for the extended
UTR region of the i-th overlapping gene is estimated as,

x′
j = xj −

UTRlength∑

z=1

UTR(z)depthθi(0)

The reads count in UTRs is replaced by x′
j in the

above log-likelihood function.

Data
RNA-seq datasets
Currently, qRT-PCR appears to be the most popular
technology for producing “gold standard” abundance
measurements; however, there is limit to get qRT-PCR
results of genes enough for the overlapping analysis from
public datasets, and it is also difficult to get RNA-seq
datasets under the same biological condition. Levin et.al.
built a compendium of yeast libraries using several strand
specific protocols and a non-strand specific protocol, and
sequenced them to deep coverage [26]. All these libraries
were constructed under the same biological condition.
Comparisons of the performance between these libraries
showed that the dUTP second strand marking method
(dUTP in short) performed reasonably and had the best
quality measures of the strand specificity [26]. Therefore
we applied our method on the nonST data to infer
expression levels of overlapping genes and used the

dUTP dataset to test the validity of the method. All
sequencing reads in fastq format were aligned to the
yeast reference genome using Bowtie software [37].
RSEM program [38] was used to deal with multiple map-
pings, and the posterior probabilities assigned were taken
into account when estimating transcript abundance.
Simulated RNA-seq dataset
As there is few expression data for overlapping genes, we
performed simulation experiments to further study the
performance of IAOseq. UTRs are important parts of the
transcribed sequences; we therefore extend all the anno-
tated yeast gene loci 250nt on both sides. RSEM program
[38] was used to generate a set of 1.3 million RNA-Seq
fragments in a non-strand specific manner from the yeast
transcriptome. The expression levels estimated from
dUTP data are taken as input abundance estimates, and
sequencing model parameters are set same as those
obtained from nonST data.

Gene annotations
Yeast genome annotations were downloaded from SGD
database. SGD classifies yeast ORFs into three categories:
verified, uncharacterized and dubious ORFs [39]. Though
dubious ORFs are unlikely to encode a protein [39], we
observed expression evidence for some of them from the
dUTP data (Additional file 1: Figure S2). Furthermore,
many ORFs classified as “dubious” overlap with ORFs of
the class “verified” or “uncharacterized”, we therefore
used all annotated genes to test the method in this study.
Of the overlapping groups analyzed in this study, forty-
seven groups contain non-coding genes.
All the data were converted into a common version for

comparison. The annotated yeast transcribed regions were
classified into two categories: regions covered by overlap-
ping genes and regions comprising only one single gene.
Those transcribed regions of overlapping genes were
further split into parts based on their overlapping patterns.

Results
There are two principal types of overlapping transcripts:
the same strand overlapping type in which the genes
involved are transcribed from the same strand, and the
different strand overlapping type in which at least two
genes are transcribed from different strands [3]. Of the
overlapping genes in yeast genome, around 76% are dif-
ferent strand type (Additional file 1: Table S2).
As strand specific RNA-seq could not distinguish tran-

scripts from same strand overlapping genes, we therefore
tested our method on two overlapping genes transcribed
from different strand in the first place, then applied the
method to the inference of expression levels of same strand
overlapping genes, and then to the multi-overlapping genes
constituted by more than two overlapping genes with a
mixture of overlapping types. Short overlapping regions,
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where reads are much longer and would be mapped to the
overlapping junctions, have little impact on the inference
of strand information. IAOseq was thus trained on overlap-
ping genes with overlapping length greater than 150bp.
Expression levels are measured in fragments per kilobase

of exon model per million mapped reads (FPKM). The
logarithm base 2 of estimated abundance ratio (LEARatio
in short) was introduced as a measure to evaluate the per-
formance, which is based on the expression level deduced
from nonST data divided by the expression level from
dUTP data. The LEARatio close to zero reflects the more
accurate inference. To evaluate IAOseq, we compared its
performance to five other commonly used quantification
methods, i.e. Cufflinks [30], Isoem [40], RSEM [38],
eXpress [41] and Bitseq [42]. As small difference was
observed between values inferred using Isoem and using
RSEM (data not shown), average abundance over the
values estimated by the four methods (Cufflinks, RSEM,
eXpress and Bitseq) from dUTP data was used as the
denominator of the LEARatio.

Application on real RNA-seq data
We first applied the five commonly used methods to esti-
mate transcript abundances, and compared the expression
level deduced from the nonST data with that deduced
from the dUTP data. The scatter plots showed two distinct
pattern, with a group of dots concentrated around the
diagonal and another group of points scattered around the
left-vertical line (Additional file 1: Figure S3), indicating a
strong overestimation of expression levels especially for
those genes with relatively low transcription levels.

Estimating expression levels of lowly expressed genes
would be much more affected by the inclusion of reads
transcribed from the opposite strand.
In contrast with the five methods, IAOseq greatly

reduced overestimation of transcription levels for lowly
transcribed overlapping genes (Figure 2A). Considering
correlation between expression levels deduced from nonST
and dUTP data, we got a square of correlation coefficient
of 0.61 using IAOseq, which is much greater than that by
other five methods (Additional file 1: Table S3).
Compared with the five widely used methods, LEARatios

of IAOseq were mostly concentrated in a narrow range
close to zero with significantly lower standard deviation
(Table 1 Figure 2B). IAOseq significantly reduced the
overestimation of expression levels affected by the inclu-
sion of reads transcribed from the opposite strand.
Around 37% of overlapping genes are overestimated more
than two-fold using IAOseq, which is much less compared
with other four methods, where the percentage of genes
with more than two-fold overestimation is 43% using Cuf-
flinks, 47% using RSEM, 43% using eXpress and 48% using
Bitseq. The results indicated validity of our method in the
improvement of RNA-seq data analysis

Application on same strand overlapping genes
In yeast genome, more than three hundred genes have
same strand overlapping transcripts (Additional file 1:
Table S2). When dealing with transcription signals
mapped to the overlapping regions of the same strand
overlapping gene pairs, most commonly used high-
throughput methods for measuring gene expression, i.e.

Figure 2 Performances on different strand overlapping genes. Scatterplot of the expression levels estimated using IAOseq from nonST data
and the average expression levels using other four methods from dUTP data (A), and percentage of genes within LEARatio intervals for the
comparison between IAOseq and the five commonly used methods (B).
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microarray or strand specific RNA-seq, could rarely dis-
tinguish which strand was present in the original mRNA
template. Our proposed computational pipeline is not
restricted to the overlapping types and can be applied to
correct expression levels of same strand overlapping
genes.

As transcripts from same strand overlapping genes
have identical sequences, even the strand specific RNA-
seq library construction method cannot distinguish from
which gene template the transcripts were transcribed. It
is reasonably that little difference was observed between
the expression levels deduced from nonST data and

Table 1 Summary of LEARatios for the IAOseq and the five commonly used quantification methods performed on
different strand overlapping genes

Mean Median Standard deviation P value
(Wilcoxon test)

P value
(Ansari-Bradley test)

IAOseq 0.53 0.05 5.70 — —

Cufflinks 1.87 0.13 5.50 2.3e-08 3.6e-03

Isoem 3.22 0.65 3.70 2.2e-16 2.1e-09

RSEM 3.21 0.69 3.64 2.2e-16 9.8e-10

eXpress -0.13 0.33 14.4 2.2e-16 4.2e-03

Bitseq 2.80 0.53 3.68 2.6e-10 1.9e-07

To test the significance of performance difference between IAOseq and the five commonly used quantification methods, we used Wilcoxon rank test for the
median difference and Ansari-Bradley two-sample test for the variance difference of LEARatios.

Figure 3 Performances on same strand overlapping genes. Scatterplot of the expression levels estimated by IAOseq and the average
expression level estimated by other four methods from nonST data (A), overestimation on expression levels of all genes (B) and of genes in
different levels of abundance by the commonly used methods (C). Overestimation is defined as the average expression level deduced by other
four methods divided by the expression level deduced by IAOseq.
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from dUTP data using the five methods (Additional
file 1: Figure S4). In contrast, IAOseq results showed
that the expression levels of same strand overlapping
genes were much lower than average abundance over
the values estimated by the four methods (Cufflinks,
RSEM, eXpress and Bitseq) (Figure 3A, Wilcoxon test,
W = 29579, p-value = 5e-07). We estimated that the
direct method for inferring gene expression levels gave
an excessive overestimation of the expression levels of
same strand overlapping genes with median of 1.61
(Figure 3B), and the overestimation is more obvious in
genes with low expression levels (Figure 3C).
Our method could also be performed on the tran-

scribed genomic regions covered by more than two
overlapping genes with a mixture of overlapping types
(Additional file 1: Figure S5).

IAOseq performance on simulated data
As there are limited data from which to evaluate the
accuracy of the quantification of overlapping gene
expression, we further tested IAOseq on simulated
data. More genes are excessive overestimated more
than five folds by other five methods (Additional file 1:
Figure S6A). Furthermore, for those overlapping genes
which are simulated with no expression estimates,
IAOseq show much better performance, more than
72% genes are estimated with low level, whereas over-
estimation is pronounced using other five methods
(Additional file 1: Figure S6B).

Conclusion
In summary, the output of this project provides a useful
tool for inferring overlapping transcription levels, which
aims to help us gain comprehensive understandings of
the complex regulatory mechanism mediated by overlap-
ping transcripts. IAOseq not only has a good perfor-
mance on the adjustment of expression levels of
different strand overlapping genes from nonST data, but
also could be used to estimate expression levels of same
strand overlapping genes, which is more interesting as
most high-throughput protocols have the problem with
same strand overlapping genes. IAOseq is as fast as
other commonly used quantification methods. Overlap-
ping expression is a universal feature of eukaryotic gen-
omes and antisense mediated regulation could be an
ancient mechanism to enhance gene expression
response to genetic and environmental variation. In
such scenario, the task of inferring expression levels of
overlapping genes should be integrated into gene
expression profile analysis.

Availability
IAOseq is freely available at xxxx.

Additional material

Additional file 1: This file contains Figures S1-S7 and Tables S1-S3.
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nonST: non-strand specific RNA-seq dataset; LEARatio: the logarithm base 2
of estimated abundance ratio.
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