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Abstract

Background: The dimension and complexity of high-throughput gene expression data create many challenges for
downstream analysis. Several approaches exist to reduce the number of variables with respect to small sample
sizes. In this study, we utilized the Generalized Double Pareto (GDP) prior to induce sparsity in a Bayesian
Generalized Linear Model (GLM) setting. The approach was evaluated using a publicly available microarray dataset
containing 99 samples corresponding to four different prostate cancer subtypes.

Results: A hierarchical Sparse Bayesian GLM using GDP prior (SBGG) was developed to take into account the
progressive nature of the response variable. We obtained an average overall classification accuracy between 82.5%
and 94%, which was higher than Support Vector Machine, Random Forest or a Sparse Bayesian GLM using double
exponential priors. Additionally, SBGG outperforms the other 3 methods in correctly identifying pre-metastatic
stages of cancer progression, which can prove extremely valuable for therapeutic and diagnostic purposes.
Importantly, using Geneset Cohesion Analysis Tool, we found that the top 100 genes produced by SBGG had an
average functional cohesion p-value of 2.0E-4 compared to 0.007 to 0.131 produced by the other methods.

Conclusions: Using GDP in a Bayesian GLM model applied to cancer progression data results in better subclass
prediction. In particular, the method identifies pre-metastatic stages of prostate cancer with substantially better
accuracy and produces more functionally relevant gene sets.

Introduction

Using high-throughput microarray or massively parallel
RNA sequencing technologies, the expression levels of
several thousand genes can be measured across a number
of samples simultaneously. Analysis of gene expression
data obtained by these technologies is mathematically
challenging because generally the number of samples are
small (usually tens to hundreds) compared to thousands
of variables [1]. Several statistical methods in univariate
analysis framework have been developed to address this
problem [2-6]. However, single gene analysis is unable to
identify weaker associations, especially for complex
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polygenic phenotypes for which the relevant variation is
distributed across several genes [1]. In order to address
these limitations, several approaches for simultaneous
analysis of multiple variables have been developed [7-9].
These approaches require an initial feature selection
method to identify a smaller set of genes with the stron-
gest effect and discriminating power. Some variable
selection methods in a regression framework include
backward elimination, forward selection, and stepwise
selection. One of the shortcomings of these methods is
that they are discrete processes which are very sensitive
to the changes in the data. That is, a minor change in
data can result in very different models [10-12]. Addi-
tionally, the computational complexity of these meth-
ods, when the number of variables is very large make
them less attractive for gene expression analysis [10,11].
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Moreover in this setting, over-fitting is a major concern
and may result in failure to identify important predic-
tors. Thus, the data structure of typical gene expression
experiments makes it difficult to use traditional multi-
variate regression analysis [1].

Several groups have developed methods to overcome
drawbacks of multivariate regression analysis [7,8,10,12,13].
Various methods such as K-nearest neighbour classifiers
[5], linear discriminant analysis [14], and classification trees
[5] have been used for multi-class cancer classification and
discovery [15-17]. However, gene selection and classifica-
tion are treated as two separate steps which can limit their
performance. One promising approach to analyse, predict,
and classify binary or multi-category samples using gene
expression data is Generalized Linear Models (GLM)
[18-20]. However, due to the large number of variables,
maximum likelihood estimates of parameters becomes
computationally intensive and sometimes intractable. Addi-
tionally, since the sample size is much smaller than the
number of variables, the maximum likelihood estimates
may have large estimated variances and thus result in poor
prediction accuracy. Finally, the maximization process may
not converge to maximum likelihood estimates [8].

Previously, it was proposed that the prediction accuracy
of GLMs can be improved by setting the parameters
associated with unimportant variables to zero and thus
obtaining more accurate prediction for the significant
variables without over-fitting [11]. Least Absolute Shrink-
age and Selection Operator (LASSO) is a well-known
method for inducing sparseness in the model while high-
lighting the relevant variables [11,12,21]. Later, a Baye-
sian LASSO method was proposed by [22,23] in which
double exponential prior is used on parameters in order
to impose sparsity. However, these procedures may cause
over-shrinkage of large coefficients due to the relatively
light tails of the double exponential prior and introduce
bias [24,25]. A modification of this approach, which uses
normal-Jeffreys prior with heavier tails than double expo-
nential distribution, is able to shrink small coefficients to
zero while minimally shrinking large coefficients redu-
cing bias in the model. However it has no meaning from
an inferential aspect as it leads to an improper posterior
[24]. An alternative class of hierarchical priors proposed
in [15] uses Bayesian adaptive Lasso with non-convex
penalization, but it lacks a simple analytic form. Others
have proposed the Generalized Double Pareto (GDP)
prior distribution, which has several advantages [24]. The
GDP distribution has a spike at zero alongside studentt
like tails. While GDP resembles double exponential den-
sity in the neighbourhood of zero, it has heavier tails
compared to the double exponential, which remedies
unwanted bias resulting from over shrinkage of para-
meters toward zero [24]. In addition, GDP has a simple
analytic form and yields proper posteriors. In many of
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the approaches, the variables are assumed fixed, but in
many cases where the predictor variables are random,
such as gene expression data, assumptions can be made
that result in the same formulation as in fixed case [26].
One such assumptions is a joint multivariate normal dis-
tribution for response and predictors, other is an analysis
of response conditioned upon the random predictors.

In our previous work, we implemented a sparse Baye-
sian generalized linear model with double exponential
prior to classify different subtypes of prostate cancer
using gene expression profiles [27]. Given the limitations
discussed above regarding this prior, in this study we
aimed at using the GDP prior to overcome these issues.
Here, we applied GDP for the first time into the Baye-
sian generalized linear model framework. The model
was utilized to classify multi-category ordinal pheno-
types based on gene expression data. We evaluated the
model based on classification of progressive stages of
prostate cancer using a publicly available microarray
dataset [28]. Our specific objectives were to test if the
model can: 1) result in a smaller subset of genes with
high discriminating power, 2) obtain high classification
accuracy; 3) identify more biologically relevant genes
compared to other classification methods.

Methods

Let [yi, wiy, .., wjpliL; represent the dataset in which y;
stands for response variable of the i subject with possi-
ble values 1, 2, 3,..., kK where k is the number of cate-
gories of the ordinal response variable. In addition, let
w;; represent the value of variable " in sample ‘i’. In the
case of gene expression analysis, gene expression levels
are measured for each sample and w;; represents expres-
sion level of gene j in i sample. We implemented GLM
for ordinal response in Bayesian framework by utilizing
logistic link function and careful introduction of latent
variables [29]. In a Bayesian framework the joint distri-
bution of all parameters is proportional to the likelihood
multiplied by prior distributions on the parameters. This
likelihood function for Bayesian Multinomial model is
presented below. In this formula, 7;; is the probability
that y; equals j and I(y; = j) is an indicator function hav-
ing value one if the sample i’s response variable is in
category j and zero otherwise. It should be noted that
each sample contributes one value in the inner product
to the equation below since the indicator function
returns value of zero if j is not equal to the category of
outcome for the sample.

i=1 | i=1

n k i
L(zly) = T1 [H [n;-‘”:”]}

In order to be able to find the posterior distributions of
parameters, we need to integrate the likelihood function
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multiplied by joint prior distributions of all parameters.
However, this approach will result in an intractable inte-
gration. As explained in [29], in order to be able to set up
the Gibbs sampler, we introduce ‘n’ independent latent
variables [y, I, ..., [,, defined as [; = wiT +¢;. In this for-
mula w; is the vector of gene expressions for sample i
defined as w; = (w;q,..., wip)T and 0 = (64,..., HP)T is the
vector of parameters associated with gene 1 to gene p.
We assume logistic distribuion on error temrs,

1
F(e) = Toio= to obtain logistic regression [30]. In

order to be able to set up the Gibbs sampler, we approxi-
mate the logistic distribution on the latent variables with
t-distribution defined as I; ~ ¢, (wiTH). The reason for
choosing t-distribution is that logistic distribution has
heavy tails and normal distribution does not provide a
good approximation [29,31]. Hence, we used the student-
t distribution with » degrees of freedom on latent vari-
ables to provide a better approximation for the distribu-
tion on latent variables. We treat the degrees of freedom
as unknown and estimate it alongside other parameters.
It should be noted that this distribution is a non-central
t-distribution with v degrees of freedom and non-central-
ity parameter w] §. The following relationship is estab-
lished between response and corresponding latent
variable [29].

1lff —OO=y1§li<y2
yi = 2lff 0 =y<li<ys
= .

kiff  yp <1i < ypyq =00

In order to insure that the thresholds are identifiable,
following the guidelines of [29], we fix ¥, at zero and ¥y,
and ¥, are defined according to equation above. In the
context of GLM, we use nonlinear link functions to
associate the nonlinear, non-continuous response vari-
able to the linear predictor wl.TG. It should be noted that
logistic distribution has heavy tails and thus normal dis-
tribution does not provide a good approximation and
hence we used student-t distribution with » degrees of
freedom on latent variables. We treat the degrees of
freedom as unknown and estimate it alongside other
parameters. Using the relations defined above, the prob-
ability of each sample being in category j(j = 1, 2,..., k) is
derived in following equation in which 7; is the prob-
ability of sample i being from category j [29].

1

= POx ) = PO < 71,) = P0+00 < 71,) = Pl < 3y =u16) = -

U

In this way, the linear predictor wiTé) is linked to the
multi-category response variable y;. The function that
links the linear predictor to the response variable is
called a link function and in the multinomial Logistic

Page 3 of 10

model, this link function is cumulative distribution of a
standard Logistic density as defined above [19,20,29]

Prior distributions and Baysian set up

A sparse Bayesian ordinal logistic model was implemen-
ted which takes into account the ordinal nature of can-
cer progression stages and can accommodate a large
number of variables. In order to sample /; from ¢, (wiTH),
we use the following hierarchical model which is equiva-
lent to sampling from the corresponding t-distribution
[18]. This two-level hierarchical form is easier to work
with both analytically and computationally compared to
the original form of the t distribution [18].

1 v D
LiIA;, 0 ~ N (wiTH, Ki) ; Aj ~ Gamma (E, E)

Here the gamma distribution is defined as

ﬂ(l

z(x|la, B) = F(a)x
alized Double Pareto(GDP) priors on all 6s as defined in
[24]. It should be noted that 0, is the parameter asso-
ciated with gene j. This prior distribution has a spike at
zero and light tails which enables us to incorporate
sparsity in terms of number of variables used in the
model [24].

“=lg=hx e put independent Gener-

1 0] —(1+p)
o\, = — 1+— s p, >0
f(01¢, p) 24*(+p5) P ¢

0
Letting 8; ~ GDP (C =-—, p) independently, the joint
p

distribution of s is defined as follows.

p 1 |9| —(1+p)
7r(6')=H —5*(1+7j)
j=1 | 2—
p

The GDP prior can be represented as a scale mixture
of normal distributions leading to computational simpli-
fications that makes Gibbs sampling feasible. The

0
GDP (—,p) prior is equivalent to the following hier-
p

archical representation [24].

2

Ojltj ~ N(O, 7j); 7j ~ Exp(?j);ij ~ Gamma (p, J)

The hyper parameters p and J control the shape of the
GDP distribution and thus the amount of shrinkage
induced. As ¢ increases, the distribution becomes flatter
and variance increases. As p increases, the tails of distri-
bution becomes lighter, variance becomes smaller, and
the distribution becomes more peaked. Thus, large values
of p may cause unwanted bias for large signals and
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stronger shrinkage for noise-like signals while larger
values of 0 flattens the distribution and we may lose the
ability to shrink noise-like signals. As mentioned in [24],
by increasing p and ¢ at the same rate the variance
remains constant but tails of the distribution become
lighter converging to the Laplace density in limit, leading
to over-shrinkage of coefficients. In the absence of infor-
mation on hyper parameters one can either set them to
default values (p = 0 = 1) or choose a hyper prior distri-
bution and let data speak about the values of these hyper
parameters. We adopt the following prior distributions
for these parameters.

7 (9)

7(p) = 5> 0

c
(1 +cp)

The priors on p and J correspond to generalized Par-
eto priors with location parameter 0, shape parameter 1,
and scale parameters ¢' and ¢"' respectively. For sam-
pling purposes, we do the following transformations that
lead to uniform prior distribution for the new para-
meters [24].

(1 +a0)?

1 1
. Uy =
2 1+c¢o

Defining the parameters as above, the hierarchical
representation of the model is as follows.
c/ c/
70~
(1 +cro) (1 +cr9)
tive uniform prior on ». Using the above mixture repre-
sentation for the parameters and defining the prior
distributions, we obtain following conditional posteriors
that lead to a straightforward Gibbs sampling algorithm

as outlined in Figure 1.

O~

7 and we put non-informa-

1
11Q ~ DTN (wfe, X)

1

In formula above, DTN stands for doubly truqcated
normal distribution with mean wiTH and variance — and
Q represents vector of model parameters plus da{\zii. For
observation ‘I’ with y; = r, /; must be sampled from nor-
mal distribution defined above truncated between %, and
%-+1 in each iteration of the algorithm.

01Q ~ MVN([WTAW + T*|7'WTAL, [WTAW + T*]71)

The normal distribution defined above is a multivari-
ate normal distribution with mean vector and covar-
iance matrix as specified. In the above equation,
T* = diag(z;"', ..., ©, '), A =diag(A1, ... Ap), W is the
n*p matrix in which w;; represents expression level of
gene j in i sample, p is number of genes (variables)
in the model, L = [[y, Iy, ..., [,]T , and 7 is the number
of samples.
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77 1Q ~ Inv — Gaussian

Inv-Gaussia lenotes inverse Gaussian distribution
with location | —L and scale i]-z. In each iteration of the
Gibbs samplin ,%ach A; and A, is sampled from the fol-
lowing fully conditional posterior distributions respec-
tively.

A1Q ~ Gamma(p + 1,6 +9) ;j= 1, .,p

v+1 1
A |Q ~ Gamma | —, 3

— 5l - w'6)” + v]) ir=1,..n

The fully conditional posterior distributions for v, u,
and u, are proportional to [24]:

v
v 05
n ——1 n —2
— A
v|Qa HAi2 exp( > 1) * H 2—1)
i=1 -1 | T (E)

p 1=,
1—u )’ 161 _< cu +)
Q 1+ — 1
uy | oc( o ) *H( +
j=1
—(1+p)
1)

c/uy P p
uzlﬂa(l _uz) *H(l +
j=1

As we can see, the fully conditional distributions of v,
u1, and u, do not have closed form and thus we adopt
the following embedded griddy gibbs sampling to sam-
ple from them [19,24]. On a grid of k values (vy, vy, ...,
Uy ) representing the degrees of freedom we consider,
we perform the following procedure:

[0475)]

1—“2

« Calculate the weights as r; = m(v;|-) using fully
conditional posterior obtained fo,v.
+ Normalize the weights Ti = S
= 1
« Sample one value from (vy, vy, ... lv]k) with probabilities
(r’l\j, rg’, " r}';’) On a grid of values in interval (0, 1) we
use the same procedure to sample one value from u;
and u, to use in the current iteration of Gibbs sam-
pling. The only difference is that at the end of the pro-
cedure we transform u; and u, back to p and J using
1(1 1 (1 .
p=- [— — 1} and § = — [— — 1] respectively. In
Cc | U c/ | Uy
the case of ordinal multinomial response, we assign
independent uniform priors to thresholds and the fully
conditional posterior distribution for thresholds is a
uniform distribution and we sample them in each itera-
tion of Gibbs sampling alongside other parameters in
the model [29].
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Sample Latent variable [,
from associated distribution

v

.

Sample @ from the associated multivariate normal ]

v

7

Sample 7; from the associated Inverse Gaussian
distribution

\

-

Sample Aj from the associated Gamma distribution

v

Sample A, from the associated Gamma distribution

v

Sample v, uy, u, from their associated distributions

v

Sample y, from associated uniform distribution

-

If iteration< 60000

Figure 1 Flow chart of Gibbs sampling procedure for SBGG. Here j =1, 2., pandr=1,2.,nand s =2, 3, ., k where n is the number of
samples, p is the number of covariates in the model, and k is the number of categories of response variable.

n
7s1Q CXH[I(}’i =s= 1) #1(ps—y <l < ps) +1(yi =) = 1(ys < li < ps5,1)]

i=1

The conditional posterior distribution of y; can be seen
to be Uniform(d,, d,) in which 6, = max[max;[l]y; = s - 1],
Ys-1] and 9 = min[min;[l;|y; = s], 5. It should be noted
that () is the indicator function and its value is one if its
argument is true and is zero otherwise [29].

Dataset and Feature Selection
The method was applied to a published dataset on prostate
cancer progression downloaded from Gene Expression

Omnibus at NCBI (GSE6099) [28]. The dataset contains
gene expression values for 20,000 probe sets and 101 sam-
ples corresponding to five prostate cancer progressive
stages (subtypes): Benign, prostatic intraepithelial neoplasia
(PIN), Proliferative inflammatory atrophy (PIA), localized
prostate cancer (PCA), and metastatic prostate cancer
(MET) [28]. Since there were only two samples for PIA, we
removed these samples from further analysis. Sample
accession number and tumor types are listed in Additional
file 1. Probes with null values in more than 10% of the
samples were removed from the dataset. For the remaining
probes, the null values were imputed by using the mean
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value of the probe across samples with non-null values.
Before applying our model to this dataset, for each gene we
performed logistic regression for ordinal response. This
method enables us to take into account the ordinal nature
of the response variable in the analysis and preparation of
a gene list used as input to the model. Genes were ranked
based on the p-value associated with the hypothesis Hy : 6;
= 0 from the most significant to least significant. Here 6; is
the parameter associated with gene i. We performed Benja-
mini and Hochberg FDR correction [32]. An FDR cut-off
value of 0.05 resulted in a list of 398 genes. Thus, the input
to our model was 398 variables (genes) for 99 samples cor-
responding to four different prostate cancer subtypes
(Additional files 1 and 2). The Gibbs sampling algorithm
was implemented in R software and the program ran for
60k iterations and the first 20k was discarded as burn-in.

Simulation and Cross-validation Procedure

The dataset was randomly divided into training (N = 50) and
test (N = 49) groups so that each group contained an equal
number of prostate cancer subtypes Benign, PIN, PCA and
MET. Genes were ranked based on the posterior mean of
parameters and the top 10 or 50 genes obtained from the
model were used for classification. In order to make
the model more robust we performed 50 re-samplings on
the selection of training and test groups and re-ran the
model. Sample accession numbers for training and test sets
for each of the 50 runs are listed in Additional file 3. The
average performance of SBGG was compared to three well-
known classification methods: Support Vector Machine
(SVM), Random Forest, and the Sparse Bayesian General-
ized Linear Model obtained by imposing double exponential
prior (SBGDE) on parameters that we developed previously
[27]. SVM was implemented in R software using Kernlab
library [33]. Specifically, ksvin (y., data = dataset, kernel =
“rbf dot", type =" nu — svc', prob.model = T RU E, kpar ='
automatic') with automatic sigma estimation was used to fit
SVM model. The Random Forest was implemented in R
using default parameters in randomForest library [34], We
implemented the SBGDE according to [25,27] in R software.

Results

We derived the fully conditional posterior distributions
for all parameters in a multi-level hierarchical model in
order to perform the fully Bayesian treatment of the
problem. The Gibbs sampling algorithm was used to
estimate all the parameters of the model [35,36], taking
into account the progressive levels of the response vari-
able. The top 398 genes ranked base on p-values
obtained in initial feature selection step were used as
input to our model. The posterior mean of #s for each
gene is represented in Figure 2. This result shows that
there is no relationship between & and the p-value rank-
ing from the initial feature selection methodology.
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Figure 2 Posterior mean of fs associated with gene 1 to gene
398. The x-axis represents the list of 398 differentially expressed
genes obtained after Benjamini and Hochberg FDR correction of the
results of single gene analysis using classical multi-category logistic
regression. The y-axis represents the posterior mean of 6 associated
with each gene. While some signals are reduced toward zero, other
signals stand out which turn out to be biologically more relevant to
prostate cancer progression subtypes.

We used the top 50 genes to test the classification accu-
racy of the SBGG on 50 resampled training and test groups.
In order to have a balanced dataset, each training and test
group had an equal number of the four prostate cancer
subtypes: benign, prostatic intraepithelial neoplasia (PIN),
localized prostate cancer (PCA), and metastatic prostate
cancer (MET). We found that the average overall classifica-
tion accuracy of the SBGG model was 94.2% when using
50 marker genes (Table 1). The performance of SBGG
model was substantially better than SVM and SBGDE, but
was comparable to Random Forest classifier. Next, we
examined the performance of SBGG model with regard to
classifying the different subtypes of prostate cancer in com-
parison to SVM, Random Forest, and SBGDE (Table 2).
SBGG outperforms SBGDE, and SVM in correctly

Table 1. Overall average accuracy and associated
standard deviations (in parentheses) of SBGG, SBGDE,
SVM and Random Forest models using 10 and 50 marker
genes

Model P-10 P-50
SBGG 825 (6.8) 94.9 (3.08)
SBGDE 804 (6.2) 82.3 (64)
SVM 536 (5.7) 67 (4.9)
Random Forest 83 (5.2) 84.6 (3.5)
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Table 2. Average classification accuracy and associated
standard deviations (in parentheses) of prostate cancer
subtypes in the test group using SBGG, BBGDE, SVM and
Random Forest models for 50 marker genes

Sample Type SBGG SBGDE SVM Random Forest
Benign 954 (307) 996 (1.9) 90.1 (1.7) 968 (1.3)

PIN 806 (008) 534 (14) 38282 52(1)

PCA 989 (19) 654 (72) 458 (62) 848 (54)

MET 96.8 (4.6) 954 (63) 818 (1.6) 836 (7.09)

classifying all sample subtypes and outperforms random
forest in all categories except benign by a narrow margin.
From a clinical stand point, it is extremely valuable to be
able to correctly identify pre-metastatic stages of prostate
cancer (PIN, PCA). SBGG performs better than the other
three methods in correctly identifying pre-metastatic stages
of prostate cancer (Table 2). Also for clinical purposes, it is
desirable to be able to perform correct classification based
on a smaller number of marker genes. Average classifica-
tion accuracy of SBGG was 82.5 when using 10 marker
genes which was only 0.5% lower that random forest, the
closest competitor (Table 1). Additionally, using only 10
marker genes, SBGG outperforms the other three methods
in correctly classifying pre-metastatic stages of prostate
cancer, which demonstrates consistent performance of the
model across different number of marker genes (Table 3).
Figure 3 represents the average classification accuracy of
all four models using 5, 10, 25, 50, 75, and 100 genes.
SBGG classification accuracy is slightly lower when using
5 marker genes compared to random Forest. However,
SBGG outperforms the other three methods when using
25, 50, 75, and 100 markers genes for classification.

We next asked if SBGG gene rankings were more or
less relevant to the biological mechanisms associated
with prostate cancer progression. In order to evaluate
the biological relevance for the top ranked genes in the
models, we used a literature based method called Gene-
Set Cohesion Analysis Tool (GCAT) [37]. GCAT is a
web-based tool that calculates the functional coherence
p-values of gene sets based on latent semantic analysis
of Medline abstracts [37-39]. Table 4 shows the average
GCAT literature derived p-values (LPv) for the top 100
genes obtained from 50 runs of SBGG, Random Forest,

Table 3. Average classification accuracy and associated
standard deviations(in parentheses) of prostate cancer
subtypes in the test group using SBGG, BBGDE, SVM and
Random Forest models for using 10 marker genes

Sample Type SBGG SBGDE SVM Random Forest
Benign 894 (6.1) 95.1 (6) 844 (53) 911 (45)
PIN 62.5 (1.6) 61728 9(7.2) 614 (1.9
PCA 98.7 (0.7) 869 (1.1) 374 (9 86.7 (2.1)
MET 594 (2.06) 56 (3.2) 553 (12) 828(7.3)
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Figure 3 Accuracy plot of four models using different number
of genes for classification of prostate cancer subtypes. The
accuracy values are the average classification accuracy across 50
runs and the vertical lines show their associated standard deviations.

Table 4. Literature based functional cohesion p-values
(LPv) and associated standard deviations (in parentheses)
of the top 100 genes obtained from SBGG, SBDE, logistic
regression, and Random Forest models

Sample Type Lpv

SBGG 2.0E-4 (1.7E-5)
SBGDE 0.007 (0.001)
Ordinal Logistic Regression 0.047
Random Forest 0.131 (0.07)

and SBGDE. In addition, we compared the average func-
tional cohesion of the top 100 genes produced by SBGG
to the top 100 genes ranked by single gene analysis p-
values obtained by ordinal logistic regression. We found
that, on average, SBGG produced more functionally
cohesive gene lists (LPv = 2.0E-4) compared to SBDE
(LPv = 0.007), ordinal logistic regression (LPv = 0.047)
and Random Forest (LPv = 0.131). Notably, 100% of the
SBGG runs had smaller LPv than 0.047, which was pro-
duced by ordinal logistic regression using single gene
analysis. The literature p-value for the median run of
SBGG was 4.50E-06 compared to 1.90E-04 for SBGDE
and 2.85E-02 for Random Forest. Thus, while Random
Forest was the closest competitor to SBGG in terms of
classification accuracy, the genes obtained from Random
Forest are less biologically relevant. Based on these
results, we conclude that SBGG produces higher classifi-
cation accuracy than other methods, and identifies more
biologically relevant gene markers.

Discussion
Microarray gene expression technology is commonly
used to gain insights into the mechanisms of human
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disease and to develop classifiers for prediction of out-
comes [40,41]. Gene expression based classifiers can be
used for diagnosis of disease as well as for specifically tai-
loring treatments for individuals [42,43]. Developing
robust classifiers is hampered because gene expression
experiments measure thousands of genes across a few
number of samples, known as the “large p, small n” situa-
tion in statistical modeling. Previous studies have shown
that the correct selection of subsets of genes from micro-
array data is important for accurate classification of dis-
ease phenotypes, [44,45]. However, statistical classifiers
are prone to over-fitting to the specific cohort under
investigation and may not be generalizable to other
cohorts [46,47]. From a biological perspective, classifiers
are more generalizable if they focus on specific pathways
that are mechanistically related to the disease phenotype.
In this study, we have developed a sparse Bayesian gener-
alized double pareto model which addresses the “large p,
small n” problem and produces a more functionally cohe-
sive set of genes.

The Generalized Double Pareto (GDP) prior distribution
was proposed, in linear regression framework, as an alter-
native to induce sparseness in situations when we are faced
with large number of variables compared to sample size
[24]. This prior has a simple analytic form, yields a proper
posterior and possesses appealing properties, including a
spike at zero, Student t-like tails, and a simple characteriza-
tion as a scale mixture of normals leading to a straightfor-
ward Gibbs sampler for posterior inferences that makes
Bayesian shrinkage estimation and regularization feasible
[24]. Utilizing this prior in a more general framework of
generalized linear models, we presented a Bayesian hier-
archical model to handle multi-category outcome situations
when the number of variables is much larger that sample
size. While shrinking small effects toward zero and produ-
cing sparse solutions, the over shrinkage problem caused
by using light-tailed priors is remedied by the heavier tails
obtained via mixing over the hyper parameters [24].

We used the Sparse Bayesian Generalized Linear
Model (SBGG) model to do prediction of tumor type on
the test dataset. We showed that the average classifica-
tion accuracy of SBGG using 50 marker genes was sub-
stantially higher than other competing methods. In
clinical applications, it is desirable to reduce the number
of marker genes and be able to perform predictions
based on a smaller set of markers. Using ten marker
genes, average classification accuracy using SBGG was
higher than SVM and SBGDE and slightly lower (0.5%)
than random forest. It is important to note that SBGG
performs substantially better in correctly identifying pre-
metastatic (PIN, PCA) stages of prostate cancer which
can prove extremely useful for diagnostics and therapeu-
tics in clinical settings. SBGG substantially outperforms
the other 3 methods in correctly identifying pre-
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metastatic stages of prostate cancer regardless of the
number of marker genes utilized for prediction
purposes.

As seen in Figure 3, SVM performance is lower than
the other three methods. In multi-class classification
with k categories, “ksvm” uses one-against-one approach
in which &;1) binary classifiers are trained. The
appropriate class is found by a voting scheme. The class
that gets maximum votes is the winning class. In this
paper, we declared a winning class when votes exceeded
50%, which is quite stringent. After closer examination,
we found that in some cases SVM identified the correct
class, but the number of votes was below the 50%
threshold. This result indicates that SVM is less sensi-
tive than the other methods.

Importantly, SBGG identified more biologically rele-
vant gene sets in addition to showing better classifica-
tion performance (Table 4). This result indicates that by
having heavier tails in the prior distributions, SBGG is
able to identify weaker gene expression changes that
have more functional relevance to the phenotype of
interest. Thus, we posit that SBGG may be a better
approach to simultaneously identify marker genes for
classifications as well as gaining insights into the mole-
cular mechanisms of the phenotype under investigation.

It is important to note that the classification accuracy
of all three models were compared using a selected set
of 398 genes which were obtained based on p-value of a
single gene analysis using an ordinal regression model.
Hence, this may bias the initial gene selection process.
It is possible that some biologically relevant genes to the
prostate cancer progression might have been missed by
this analysis due to low signal. One way to perform an
initial gene selection could be to consider gene pathway
information as described previously by others [48]. Our
future plan is to evaluate SBGG performance using
pathway driven feature selection methods while consid-
ering more complex covariance matrix structure which
takes into account gene-gene interactions. Also, we plan
to incorporate literature information into the prior dis-
tributions in order to design literature informed priors
that would potentially enable us to obtain machine
learning models with high classification accuracy which
provide a very enriched set of markers with high biolo-
gical relevance to the phenotype under study.

Additional material

Additional File 1: Samples. This excel file named samplesxIsx contains
the sample accession numbers and and tumor type for all 99 samples.

Additional File 2: Input gene list. This excel file named InputGenelist.

xIsx contains the list of 398 genes obtained after Benjamini and
Hochberg FDR correction.
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