Lemon et al. BMC Bioinformatics 2015, 16(Suppl 13):S5

http://www.biomedcentral.com/1471-2105/16/513/S5

BMC
Bioinformatics

PROCEEDINGS Open Access

Density-based parallel skin lesion border
detection with webCL

James Lemon', Sinan Kockara'’, Tansel Halic', Mutlu Mete?

From 12th Annual MCBIOS Conference
Little Rock, AR, USA. 13-14 March 2015

\

Abstract

Background: Dermoscopy is a highly effective and noninvasive imaging technique used in diagnosis of melanoma
and other pigmented skin lesions. Many aspects of the lesion under consideration are defined in relation to the
lesion border. This makes border detection one of the most important steps in dermoscopic image analysis. In
current practice, dermatologists often delineate borders through a hand drawn representation based upon visual
inspection. Due to the subjective nature of this technique, intra- and inter-observer variations are common.
Because of this, the automated assessment of lesion borders in dermoscopic images has become an important
area of study.

Methods: Fast density based skin lesion border detection method has been implemented in parallel with a new
parallel technology called WebCL. WebCL utilizes client side computing capabilities to use available hardware
resources such as multi cores and GPUs. Developed WebCl-parallel density based skin lesion border detection
method runs efficiently from internet browsers.

Results: Previous research indicates that one of the highest accuracy rates can be achieved using density based
clustering techniques for skin lesion border detection. While these algorithms do have unfavorable time
complexities, this effect could be mitigated when implemented in parallel. In this study, density based clustering
technique for skin lesion border detection is parallelized and redesigned to run very efficiently on the
heterogeneous platforms (e.g. tablets, SmartPhones, multi-core CPUs, GPUs, and fully-integrated Accelerated
Processing Units) by transforming the technique into a series of independent concurrent operations.
Heterogeneous computing is adopted to support accessibility, portability and multi-device use in the clinical
settings. For this, we used WebCL, an emerging technology that enables a HTML5 Web browser to execute code
in parallel for heterogeneous platforms. We depicted WebCL and our parallel algorithm design. In addition, we
tested parallel code on 100 dermoscopy images and showed the execution speedups with respect to the serial
version. Results indicate that parallel (WebCL) version and serial version of density based lesion border detection
methods generate the same accuracy rates for 100 dermoscopy images, in which mean of border error is 6.94%,
mean of recall is 76.66%, and mean of precision is 99.29% respectively. Moreover, WebCL version’s speedup factor
for 100 dermoscopy images' lesion border detection averages around ~491.2.

Conclusions: When large amount of high resolution dermoscopy images considered in a usual clinical setting
along with the critical importance of early detection and diagnosis of melanoma before metastasis, the importance
of fast processing dermoscopy images become obvious. In this paper, we introduce WebCL and the use of it for
biomedical image processing applications. WebCL is a javascript binding of OpenCL, which takes advantage of
GPU computing from a web browser. Therefore, WebCL parallel version of density based skin lesion border
detection introduced in this study can supplement expert dermatologist, and aid them in early diagnosis of skin

* Correspondence: skockara@uca.edu

1Department of Computer Science, University of Central Arkansas, Conway,
AR, USA

Full list of author information is available at the end of the article

© 2015 Lemon et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://

- creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the
(BiolVed Central . ¢ ’

original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/
zero/1.0/) applies to the data made available in this article, unless otherwise stated.

mailto:skockara@uca.edu
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

Lemon et al. BMC Bioinformatics 2015, 16(Suppl 13):S5
http://www.biomedcentral.com/1471-2105/16/513/S5

Page 2 of 16

lesions. While WebCL is currently an emerging technology, a full adoption of WebCL into the HTML5 standard
would allow for this implementation to run on a very large set of hardware and software systems. WebCL takes full
advantage of parallel computational resources including multi-cores and GPUs on a local machine, and allows for

compiled code to run directly from the Web Browser.

Background

Dermoscopy is a prevalent method used by dermatolo-
gists in the diagnosis of melanoma and other pigmented
skin lesions. Dermatologists use a handy, high-resolution
imaging tool called dermatoscope to take dermatoscopic
images. Dermoscopy is now a well-established diagnostic
tool to improve the clinical recognition of a broad spec-
trum of various skin disorders. Skin cancer detection is
the most important indication of dermoscopy. There is
evidence that the use of dermoscopy has increased the
accuracy of diagnosis [1]. Carli et al. (2004) [1] showed
that the examination of a pigmented skin lesion includ-
ing melanoma using dermoscopy allows physicians to
realize morphologic features which are otherwise not
visible to the naked eye. This in turn, comparing to con-
ventional non-dermoscopic examination, allows physi-
cians to reach a more reliable diagnosis of skin lesions.
Thus, recent melanoma guidelines promote the use of
dermoscopy in skin cancer screening and diagnosis [2].

Skin cancer is the most common form of cancer in the
US and over 3.5 million cases are diagnosed annually [2].
The deadliest form of skin cancer is melanoma. Melanoma
is a malignancy of melanocytes which are special cells in
the skin located under the outer surface epidermis. 15% of
melanoma cases are fatal [3,4]. Women at 25-29 years of
age are the most-commonly affected group [5]. Although
melanoma accounts for only 4% of all skin cancers [6], it is
the cause of 75% of skin-cancer-related deaths [1]. Even
with the help of dermoscopy, 70% of melanoma claims are
still a false-negative diagnosis [7]. Melanoma rates are
rising amongst all demographics [8]. With early detection,
melanoma can often be cured with a simple excision
operation.

Dermoscopy is a set of techniques for optical magnifica-
tion of a region-of-interest on skin which makes subsurface
structures more visible than traditionally photographic
techniques [9]. The procedure measures many properties of
a skin lesion, such as color, size, symmetry, border, and
change over time. The odds of successful diagnosis between
naked eye examination and Dermoscopy are 15-6 [10].
Even when dermoscopic images examined by an expert,
diagnosis rates are not completely accurate.

An expert system capable of processing dermoscopic
images could provide an additional diagnosis tool to aid
dermatologist. In many common manual methods of
examining photographs of lesions, a border is drawn by a
dermatologist, and this border is ‘subjectively analyzed by

dermatologist to diagnosis if the lesion is malignant mela-
noma or melanocytic. Similarly, automated systems
designed to processes dermoscopic images usually start
with automatic border detection before examining the
lesions for the features with diagnostic importance such as
color, symmetry, etc. [11]. There are many methods for
detecting the border of a lesion. The blue color channel is
typically examined because empirical evidence suggests it
provides the most accurate results [12]. Reader is referred
to [13] for details on analysis of color models and color
channels on biomedical image processing.

Border detection is usually the first stage of analysis of
dermoscopic images. Our implementation presented here
automatically delineates the lesion border by using density
based clustering technique. In order to get a clear defini-
tion of the lesion, some preprocessing, such as color space
transformations, contrast enhancement, and artifacts
removal are typically applied to the image [14]. Following
this pre-processing, a partitioning of the image occurs in a
process known as segmentation. These disjoint regions are
then examined by computer algorithms and scanned for
lesion data, and combined to detect the border of the
entire lesion.

According to Celebi et al. [15] automated skin lesion
border detection can be divided into four sections: pre-
processing, segmentation, post-processing, and evaluation.
The pre-processing step involves color space transforma-
tions [16], contrast enhancement [17] and artifacts
removal [18]. The segmentation step involves partitioning
of an image into disjoint regions [19]. The post-processing
is used to obtain the lesion border [20]. The evaluation
involves the assessment of the border detection results by
a dermatologist. At the first stage of dermoscopy image
analysis, border detection is usually applied [21] to detect
other features more accurately. An active contour model
is also introduced to detect skin lesion borders in dermo-
scopy images [22]. Many other approaches have been
applied to dermoscopy images for accurately segmenting
the melanocytic skin lesions. Color histogram thresholding
is one of them [23,21]. In Peruch et al. [23] in addition to
thresholding, researchers incorporate cognitive process of
dermatologists for accurate melanocytic skin lesion
segmentation.

Density based clustering algorithms identify regions of
high data density, and require a definition of how dense
the data should be [24]. Density based spatial clustering
of applications with noise, or DBSCAN [24], as its name

Lemon et al. BMC Bioinformatics 2015, 16(Suppl 13):S5
http://www.biomedcentral.com/1471-2105/16/513/S5

indicates, is a prominent density based clustering
method. It is used for spatial data with noise and has the
advantages of being able to find irregularly shaped clus-
ters. DBSCAN also has a sense of border and noise data,
and requires minimal knowledge of dataset [25]. It
requires two inputs: minimum points, a measurement of
how many points need to be grouped; and epsilon (g), a
measurement of how close the points need to be
grouped. In the context of this study, points refer to pix-
els. DBSCAN has many applications, including Internet
traffic classification; war-game frontline prediction; and
facial recognition [25-27].

In DBSCAN, a cluster is a group of points that the
number of points is equal to or greater than the mini-
mum number of points (MinPts) in certain neighbor-
hood of core points. Different point (node) definitions
of DBSCAN are illustrated in Figure 1. The core point
is that the neighborhood of a given radius (¢) has to
contain at least a minimum number of points (MinPts),
i.e., the density in the neighborhood should exceed pre-
defined threshold (MinPts). The definition of a neigh-
borhood is determined by the choice of a distance func-
tion for two points p and q, denoted by dist(p,q). For
instance, when the Manhattan distance is used in 2D
space, the shape of the neighborhood would be rectan-
gular (See Figure 2). Note that DBSCAN works with any
distance function so that an appropriate function can be
designed for some other specific applications. DBSCAN
is significantly more effective in discovering clusters of
arbitrary shapes. It was successfully used for synthetic
dataset as well as earth science, and protein dataset
[28-30]. Once the two parameters ¢ and MinPts are
defined, DBSCAN starts to cluster data points (e.g. pixels
for images) from an arbitrary point. If the neighborhood

Border

Figure 1 Graphically describes the different node definitions of
Density based scanning. In the context of dermoscopy images nodes
(either they are core, border or noise nodes) are referring to pixels.

\

Page 3 of 16

4
3
2
|
0
|
2
3

A=

Figure 2 Manhattan region of radius 4. Each number is the
Manhattan distance from the center point 0.

- J

is sparsely populated, i.e. it has fewer than MinPts points
in the region query, then that point is labelled as a noise.
Points that are causing the cluster to grow called border
points. In the context of this paper, terms “node” and
“point” are used interchangeably with pixel. Pseudocode
of the DBSCAN is given in Algorithm 1.

Algorithm 1 - DBSCAN

Input:

D = Set of all Points
¢ = Max distance between nodes
MinPts = Density of nodes needed

Procedure DBSCAN(D, &, MinPts)

Foreach unvisited point P in dataset D
P is visited
NeighborPoints = regionQuery(P, ¢)
If(sizeof(neighborpoints) < MinPts)

P is noise
Else

P = next cluster

ExpandCluster(P, NeighborPoints)

In our previous study we introduced computationally
more efficient version of DBSCAN [31] for the purpose
of automatic border detection. In that version, we
removed redundant computations that exist in DBSCAN
by only expanding a cluster around a border region since
cluster expands from borders. It was proven in [31] that

Lemon et al. BMC Bioinformatics 2015, 16(Suppl 13):S5
http://www.biomedcentral.com/1471-2105/16/513/S5

this approach is computationally more efficient than the
traditional DBSCAN.

Even computationally improved version of DBSCAN
[31] requires a lot of time for very large datasets. The
need for speeding up DBSCAN is better understood
when considering high resolution dermoscopic images,
which consist of millions of nodes (pixels). Even
improved version of DBSCAN given in [31] takes some
time for generating results. Reader is referred to Table 1
for the timing of density based skin lesion border detec-
tion method’s serial version for different size dermo-
scopy images. Not only image size but also complexity
and irregularity of the skin lesion also reduce the perfor-
mance. Thus, in order to benefiting available ubiquitous

Table 1 Serial vs

Page 4 of 16

high performance computing hardware resources found
in today’s computers, we implement our density based
skin lesion border detection method in a high perfor-
mance parallel computing model called WebCL. WebCL
provides a significant speedup and to provide a high
level of portability for our case of dermoscopic image
processing.

WebCL

This section summarizes WebCL and driving force
behind WebCL. Computing capability of today’s compu-
ters has been evolving with introduction of more compu-
tational cores in chips rather than faster computational
cores. This is because of reaching the physical limits of

Image Resolution Pixel Count for the lesion

C++ Eps 3 Minpts

WebCL Eps 3 Minpts 4 Speedup Factor

629 x 405 30234 12 3.664 30.56769
749 x 497 36726 161 3429 46.95246
624 X 425 37648 151 3383 4463494
577 x 397 40267 199 3.664 5431223
635 X 418 50501 313 3.956 79.12032
1090 x 728 50708 307 3395 904271

605 X 419 57556 407 3.195 127.3865
627 X 420 59535 433 3447 125.6165
744 x 499 60072 435 3471 125.3241
635 X 421 60102 439 3759 116.7864
1024 x 684 67909 568 5.693 99.77165
1322 x 875 68961 584 15.029 38.85821
638 X 426 70022 597 4.733 126.1356
755 x 503 7171 622 3.306 188.1428
1076 x 716 78825 759 6.334 119.8295
1024 x 684 79388 774 5122 151.1128
1024 x 684 79824 779 7114 109.5024
942 X 629 79998 788 597 131.9933
1322 x 875 80352 793 14475 5478411
1024 x 684 82274 832 5335 1559513
754 x 500 82472 826 3499 236.0674
756 x 499 84043 859 3489 246.2024
756 x 497 86201 903 3459 261.0581
1024 x 684 91591 1028 6.778 151.6672
1024 x 684 95193 1109 5513 201.1609
1024 x 684 99547 1217 5.643 215.6654
756 X 494 101558 1256 3344 3755981
738 X 494 102581 1282 3323 385.796
756 x 496 103667 1309 3.163 413.8476
1024 x 684 104865 1347 7.164 188.0235
1024 x 684 11114 1512 7.029 215.1088
1024 x 684 121670 1816 6.879 263.9919
1076 x 716 124107 1880 6479 290.1682

Lemon et al. BMC Bioinformatics 2015, 16(Suppl 13):S5 Page 5 of 16

http://www.biomedcentral.com/1471-2105/16/5S13/S5

Table 1 Serial vs (Continued)
756 x 497 124623 1893 3.243 583.7188
1024 x 684 126503 1954 6.123 319.1246
1024 x 684 130883 2084 6 347.3333
1076 x 716 136201 2273 6.513 348.9943
756 x 495 136977 2295 3211 714.7306
1024 x 684 137177 2308 6.72 3434524
1024 x 684 138373 2347 5422 432.8661
1076 X 716 138756 2356 6.291 374.5033
1024 x 684 141824 2442 6429 379.8413
1024 x 684 142650 2503 5.303 471.997
1349 x 900 143189 2518 14.124 178.2781
1024 x 684 144278 2557 5625 4545778
1024 x 684 150913 2777 6.368 436.0867
1024 x 684 151001 2807 5238 535.8916
1017 x 683 151703 2826 7.551 374.2551
1076 X 716 152530 2843 6.447 440.9803
1076 x 716 152932 2863 6.591 434.3802
1076 x 716 153182 2869 6.466 443.7055
1076 x 716 154154 2905 6.466 4492731
1024 x 684 157797 3028 6463 4685131
1024 x 684 160899 3167 5.695 556.1018
1024 x 684 161260 3197 5343 598.353
1076 x 716 164723 3317 6.377 520.1505
1024 x 684 165204 3332 5561 599.1728
1024 x 684 165366 3373 6.313 534.2943
1076 x 716 166850 3397 6.379 532.5286
1024 x 684 171738 3613 6.945 520.2304
1024 x 684 172285 3617 6.008 602.0306
1024 x 684 179413 3972 5822 682.2398
1024 x 684 185213 4233 6.566 644.6847
1873 x 1225 185675 4242 28.134 150.7784
1024 x 684 196606 4732 5432 871.134
1089 x 730 196951 4738 8.677 546.0413
1024 x 684 199503 4856 5572 871.5004
1024 x 684 200329 4929 6.893 715.0733
1256 x 825 202803 5067 1261 401.8239
1024 x 684 204368 5128 5.653 907.129
1024 x 684 205127 5157 6.771 761.6305
1024 x 684 206826 5255 5171 1016.244
954 X 634 208317 5335 7406 720.3619
1024 x 684 210117 5397 5.636 957.594
1897 x 1267 210989 5472 30.121 181.6673
1024 x 684 213697 5610 5.767 972.7761
1024 x 684 214272 5654 6.746 838.1263
1350 x 903 222613 6076 15.258 398.2173
1024 x 684 226198 6263 5.756 1088.082
1076 x 716 229012 6409 6.38 1004.545

Lemon et al. BMC Bioinformatics 2015, 16(Suppl 13):S5 Page 6 of 16

http://www.biomedcentral.com/1471-2105/16/513/S5

Table 1 Serial vs (Continued)
1828 x 1216 239035 7026 28.852 243.5186
1891 x 1261 249382 7653 29352 260.7318
1024 x 684 249704 7614 5.89 1292.699
1024 x 684 259701 8222 5.989 1372.85
1329 x 909 264550 8564 15.001 570.8953
1149 x 767 284292 9920 9.168 1082.024
1913 x 1280 296438 10633 2933 362.5298
1389 x 929 301804 11055 11.028 1002448
2469 x 1602 370476 16793 51.145 328.341
1819 x 1213 415339 21219 27538 770.5353
1881 x 1260 452778 25159 30.992 811.7901
1813 x 1217 508230 31735 26.739 1186.843
1879 x 1261 577752 41069 30444 1349.001
1915 x 1256 636255 49630 25341 1958486
1849 x 1233 698408 60037 29.487 2036.05
1024 x 684 212484 5540 5672 976.727
1024 x 684 92093 1041 6.771 153.743
1352 x 899 107441 1415 7.245 195.307
1867 X 1266 328997 13629 13.984 974613
635 x 419 9424 10 3123 32

WebCL parallel version: Speedup factors of 100 dermoscopy images.

silicon chip, excessive heat dissipation causing noise and
high voltage requirement in increasing clock frequency of
integrated circuits. As a result, we use multicore and mul-
tiprocessors that consists of many computing chips in one
single integrated circuit (e.g. multicore CPUs or GPUs).
This trend in chip advancement can also be seen in mobile
platforms such as smart phones and tablets. Therefore, the
performance improvement in any applications, especially
applications with high demand in computation power, can
be only realized with the use of parallel computation.
Although application parallelism for desktop applications
is achievable at some degree for quite a while, up until
introduction of WebCL web-based client-side applications
were not able to use available parallel hardware resources
such as multicores and GPUs at the client-side.

Lack of parallelism creates the main limiting factors for
many potential web applications. Web applications work
solely on the user device and although the device has
enough computing ability, application cannot utilize the
underlying multi-core and multiprocessor device (e.g.
such as IPhone). This is due to the limitations placed on
the current Web browsers’ designs and lack of any mid-
dleware software layer. But with the recent technology
called WebClL, it is now possible to design and develop
parallel algorithms that could effectively use the parallel
hardware. Specifically, WebCL is a recently introduced
(first version released in March 2014) open web based
standards for heterogonous parallel computing. As it is

an open specification, it has been gaining wide accep-
tance nationally and internationally. WebCL specification
has been accepted and driven by Khronos Group
(Khronos is an open consortium funded by major software
and hardware companies such as Apple, Google, IBM,
NVIDIA, Samsung, Qualcomm, PIXAR, Texas instrument
etc.). WebCL mainly introduces a new software middle-
ware layer aims at directly accessing to the parallel hard-
ware within the web browsers.

With WebCL, It is now possible to develop high perfor-
mance web applications such as data visualization, video
processing, 3D gaming, interactive simulations, image pro-
cessing and segmentation that would not be possible
before. The Web applications that can now effectively use
these computing capabilities of any mobile devices as
tablets (e.g. IPad, Android, and Windows based tablets),
smartphones (e.g. [IPhone, Windows, Firefox OS based
phones etc.) and also prospective devices that will be
available in everyday use such as smart watches, smart
glasses, and smart devices in smart homes.

The significance of using WebCL is that it removes any
device dependency and provides true platform indepen-
dence. We can design and develop computation intensive
web applications that are accessible by any device regard-
less of their hardware and software platform. This also
enables WebCL application portable, mobile, and future
compatible; meaning that the application can adopt com-
puting capability of upcoming devices in the future.

Lemon et al. BMC Bioinformatics 2015, 16(Suppl 13):S5
http://www.biomedcentral.com/1471-2105/16/513/S5

Any algorithm developed with WebCL needs to adopt a
single instruction multiple sata (SIMD) approach. In
SIMD, there is a single execution task working on its own
portion of data called kernel. Therefore, kernel can operate
in multiple cores at the same time simultaneously and
independently which significantly increases the perfor-
mance of the application.

WebCL is fast and portable. It takes full advantage of
parallel architecture in new computing devices. It currently
runs on Firefox, Safari, and Chrome web browsers [32].
It can provide instant high performance computing to a
desktop, laptop, a tablet, or a smartphone. Compared to
java-script, the most popular language for web-based com-
putation, WebCL is 100x faster [32]. In the future, this
technology will be implemented on more mobile phones
and tablets, allowing for fast computing to be available any-
where, loaded straight from the internet.

WebCL is a parallel programming environment that also
takes advantage of general purpose processing for graphics
processing units (GPGPU). A GPU has more transistors
than a consumer level CPU, and can be considered a more
powerful processor [33]. GPUs also produce more FLOPS/
watt than CPUs, making them energy efficient alternatives
over CPUs [34]. This makes GPUs find application areas
in medicine [35]. GPUs use a SIMD programming para-
digm. It computes a kernel, or an algorithm, on a stream,
or ordered sequence of the same type of data, in parallel.
A kernel operates on an entire stream.

WebCL is a proposed standard, first announced in
March 2011, designed to provide higher performance
client side computation [36] for web interfaces. WebCL
was noted by the NSF Cross-layer Power Optimization
and Management workshop for increasing performance,
productivity, and portability [37]. WebCL is a set of
JavaScript bindings to OpenCL. OpenCL is a high level
abstraction that allows for high performance code to
run on a large variety of devices [38]. It is an open spe-
cification [39]. WebCL is currently in the API definition
phase, and has three popular open source implementa-
tions; Samsung, Nokia, and Motorola [36]. For our pur-
pose of parallel skin lesion border detection, we use
Nokia’s WebCL implementation.

A goal of WebCL is to provide a platform for a large
variety of high performance web applications to run on
multicore devices [40]. To run a WebCL program, a
computer needs a modified web browser, OpenCL hard-
ware capable hardware, and OpenCL driver software
[40]. WebCL programs start on the JavaScript applica-
tion level. WebCL kernel is built from source to be opti-
mized on the local device that it will run. Jobs are
created by matching a kernel with a datastream, and are
executed by queuing the job in the command queue.
Jobs on the command queue executes directly on the
device. When a job is complete, a JavaScript event may

Page 7 of 16

be created to signal its completion, which can be used
to process output or as a barrier for tasks that need to
be serialized. WebCL has a high interoperability with
WebGL, similarly to how OpenCL has high interoper-
ability with OpenGL [32].

Nokia’s implementation of WebCL is a Firefox exten-
sion. WebCL support can be added to Firefox by installing
OpenCL drivers for a local device, and installing Nokia’s
WebCL add-on. Samsung’s WebCL implementation runs
on Safari, and is built on top of WebKit. It must be
installed from source code, and also relays on OpenCL
drivers for a local device. The two implementations agree
upon a single API, which is currently a working draft.
Both of these implementations are capable of supporting
applications in their current state. For our purpose, we use
Nokia’s Firefox Add-on for WebCL due to ease of deploy-
ment, portability across platforms, and access to developer
add-ons native to Firefox. Although WebCL has many
benefits such as accessibility, portability, and performance,
it requires significant design and development time, and
more importantly expertise in parallel computation and
web application development. This is due to the fact that
WebCL can only benefit from the simultaneously execu-
tion of application tasks on multiple hardware computa-
tion cores. For any application a new novel parallel
algorithm needs to be developed designated for WebCL
execution scheme and parallel hardware.

Our implementation uses Manhattan Distance to calcu-
late the distance between two pixels. It has two large
advantages leading towards a small computational com-
plexity: it maps easily to integer space which performs
quickly on a GPU, and it maps naturally onto an image
[41]. Manhattan Distance is the change in x plus the
change in Y. Distance based calculations are very common
in density based clustering. Figure 3 illustrates a sample
radius 4 Manhattan region with the region’s center being
0. Next section introduces WebCL implementation details
of the density based skin lesion border detection method.

Methodology

To take full advantage of the acceleration available
through WebCL, our previous density based skin lesion
border detection method was implemented in data-par-
allel. Nodes are divided into geographic regions, with
some redundancy in the area covered in order to limit
the cross thread communication requirements. Each
node is assigned to a thread, creating up to millions of
threads, and the distance is calculated between nodes in
the same previously created geographic regions. Using
the transitive property, the output of each thread is
combined using a tree reduction algorithm. A border is
detected by noticing a drop in density amongst the
nodes. After the image has been scanned, a line is
drawn displaying the border of the lesion. After the

Lemon et al. BMC Bioinformatics 2015, 16(Suppl 13):S5
http://www.biomedcentral.com/1471-2105/16/513/S5

Page 8 of 16

Figure 3 Each shingle has a redundant zone with the shingle
to its immediate right, the shingle immediately below it, and
the shingle to its bottom-right. This allows for partition merging
using the transitive property.

image has been processed, it is drawn in an HTML5 can-
vas with border regions represented in a color that con-
trasts with the lesion image, thus delivering the border.
This is illustrated in Figure 4.

C++ Implementation

A serial version of density based skin lesion border detec-
tion method was implemented in C++. Following that, a
parallel WebCL version was designed and implemented,
taking full advantage of the speedups made available by
the WebCL framework. The serial C++ implementation
reads a dermoscopy image, and generates every pixel’s
cluster id along with whether that pixel is border, core,
or noise. The serial C++ version of the implementation
uses the pseudocode mentioned in Algorithm 1.

WebCL implementation

The WebCL implementation accepts a dermoscopy
image file as an input. The input file is divided into
sizes capable of being stored inside the GPU. More spe-
cifically, a dermoscopy image partitioned on to a smaller
pieces to be concurrently executed on the GPUs. For
effective image partitioning available memory spaces in
the GPUs are considered. Nokia’s Firefox implementa-
tion currently has a tight memory limit. Thus, we had
to incorporate this limitation along with the available
memory space in the GPUs. Each image partition is
then scanned using the parallel implementation of den-
sity based skin lesion border detection (see Algorithm
2). The output of each scan (Region Query in Algorithm
2) is merged in to a global memory in the GPU such a

Figure 4 Automatically generated border of skin lesion
displayed on an HTML5 canvas created by a WebCL kernel.

way as to combine clusters span that across multiple parti-
tions/borders. How image data is partitioned and how bor-
ders on different image partitions are merged are
explained in the following section. More specifically, next
section explains how merge operation is designed and
implemented. Due to the nature of independent concur-
rent threads running the image partitions, the same clus-
ters falling in to different partitions may be labelled
differently. In order to eliminate that problem after parallel
threads executions on different image partitions, we need
an additional operation called merging.

Algorithm 2 - Parallel version of DBSCAN for each
image partition using density based clustering to
find the data density around a certain location

Input:

N = Contains a location in an.Image Partition
Partition.Image = A 2D array, each location may be
a node

Eps = The distance from the center of N to be
searched

Lemon et al. BMC Bioinformatics 2015, 16(Suppl 13):S5
http://www.biomedcentral.com/1471-2105/16/513/S5

Output:

Neighbors = A list of all Nodes within Eps distance
of N

Procedure RegionQuery()

For each Location T inside an Image Partition
If T is a node
If The distance between N and T <= Eps
Neighbors.add(T)

1) Shingled partitioning

Many devices have memory limitations. Thus, partitioning
an image is necessary if the image size is larger than the
available memory space. This is better understood when
virtual slides are considered. For instance, virtual slides
with 10 GB size are quite common. For these very large
images, partitioning the image and processing the parti-
tioned image inside the GPU is necessary. Not only that,
image partitioning is also important for scalability and
portability. A modern day GPU typically can support 2 GB
of data. Image partitioning increases the portability,
because a device queue can be created to determine a
maximum partition size. So that later data can be parti-
tioned and processed in the GPU’s device queue. This
allows for an application to be optimized for high-end
hardware, while still running on lower end or mobile hard-
ware. So, when data is partitioned dynamically according
to the available resources and data size, the application
can also be dynamically scaled up or down. Algorithm 3
summarizes image partitioning data structure. Xoffset and
Yoffset in Algorithm 3 are determined dynamically with
an image size and the available resources in the GPU.

Algorithm 3 - Image Partitioning Data Structure
DataStrcture Partition

Image[][] = 2D array, each position (pixel) is a node
Xoffset = Where this partition starts on the x axis of
the whole image

Yoffset = Where this partition starts on the Y axis of
the whole image

Because density based skin lesion border detection uses
the density of a point’s (a pixel) e-neighborhood, true
partitioning, wherein any given pixel must reside in one
and only one partition, would not be satisfied. This is due
to the fact that for a point to be properly categorized as a
core node, a border node, or a noise node along with a
proper cluster ID, the algorithm must be able to examine
that point’s neighborhood within a radius of €. This is
not a problem for the points falling inside the partition.
However, there is a need for a special care for the points

Page 9 of 16

(pixels) lying on the edge of a partition (e.g. a neighbor of
another partition). This special care is handled by exam-
ining the edge points with a large portion of their ¢-
neighborhood missing (residing in the adjacent partition).
More specifically, to deal with the edges of a partition, it
becomes necessary to have some redundancy in the bor-
der regions of partitions. We call these redundant regions
together with the partition that owns the redundant
region as shingles. More specifically, in our implementa-
tion, each shingle is composed of a core partition plus a
lap region which overlays a portion of the core regions of
the shingles to its right and bottom. For instance, core
partition of partition 1 with the length of ¢ is illustrated
as a red region in Figure 3. The lap region is 2e+1 pixels,
as needed to accurately measure the density of a point
residing near a border.

For instance, Figure 3 illustrates shingle 1 as partition 1
along with the redundant zone (lap region) which is illu-
strated as a shaded area. Notice that, width of that
shaded region is selected as ¢ for not to miss g-neighbors
of the edge points in the red area (core partition). So
that, clusters in partition 1 including edge points/nodes
ensured that they will have the same cluster IDs with
partitions 2, 4, and 5. This happens when partition 1’s
edge points’ e-neighbor region query determines that
points in partitions 2, 4, and 5 fall in to the same cluster.

Serial image partitioning implementation is a simple O
(P) operation where P is the number of partitions. In
our parallel implementation, partitioning is also done in
concurrently. So that, each thread creates its own
unique partition. Uniqueness is guaranteed by unique
thread offset which is calculated from thread IDs. Creat-
ing partitioning concurrently in different threads
reduces computation complexity for partitioning to O
(1). The x and vy offsets along with the number of rows
and columns of partitions are calculated from the core
partition size, while the total partition height and width
are 2e+1 pixels larger than their respective core sizes
due to the inclusion of the lap region. Pseudocode for
image partitioning is given in Algorithm 4. Once image
is partitioned then next stage is processing these parti-
tions concurrently with density based skin lesion border
detection method.

Algorithm 4 - Method for creating list of partitions

Input:

Partitionwidth = width of a partition
Partitionheight = height of a partition
Height = height of image
Width = width of image

Output:

partitionList = List of Partitions

Lemon et al. BMC Bioinformatics 2015, 16(Suppl 13):S5
http://www.biomedcentral.com/1471-2105/16/513/S5

Procedure createPartitions()

partsPerRow = width / partitionwidth
PartRows = height / Partitionheight
For each row in partsRow
For each partition in partsPerRow
xOffset = indexof partition in Row
PartitionWidth
yOffset = indexof row in partsRow * Height
partition = new Part(xOffset, yOffset)
partitionList.add(partition)

%

2) Partition processing

Partition processing also occurs in parallel inside a WebCL
device. Partition processing finds clusters within a single
partition. In this stage each pixel of a partition in the
image is given a single thread. The thread checks whether
the node (pixel) is a core/border/noise node. Then every
node in a cluster negotiates a cluster id, agreeing upon the
smallest pixel id as a cluster id. The negotiation process is
run iteratively until all elements agree. Partition processing
summarized in Algorithm 5 and 6 accordingly.

Algorithm 5 - Partition processing. It is performed
for every pixel in parallel. This scans for the mini-
mum neighbor ID.

Input:

Partition = A partition to process, a global variable
Output:

NodeList = A list of all nodes in a partition
C=an integer value of the cluster ID

Procedure PartitionProcessing() //create 1 thread per
pixel in parallel

Sum =0 Sum2 =1
While(Sum !=Sum2)
Sum2 = Sum
Sum =0
NodeList = Scan(Partition);//scans for mini-
mum cluster ID among &-neighbors
Foreach Node N in NodeList
Sum += N.C

Algorithm 6 - Scan operates on the data stream of
an image, segmented and loaded as a partition. The
partition is loaded into the constant memory.

Input:

Partition = A partition to search for clusters in, a
global variable

Page 10 of 16

minPts = A measure of minimum cluster density, a

global variable
Output:

NodeList = A list of all nodes and an associated
integer value C or cluster ID, a global variable.
Procedure Scan()//1 thread per pixel in parallel
Pixel n = partition.image(x][y];
If(n is a node)//core or noise or border
Neighbors = Region Query// e-neighbors
If(Neighbors.size >= minPts)
n.C = Smallest C of all Neighbor’s Cs
Else if(p is within the range of a core node)
n.C = Smallest C of all Core nodes in n’s
neighbors
NodeList.add(n);

Figure 5 illustrates an exemplary scanning process step
by step for e=2 and minpts = 2 in a binary image. Initi-
ally integers are pixel IDs. In each iteration pixel IDs are
changed to the minimum cluster ID of the e-neighbor.
In each iteration, e=2 neighbors’ IDs changed to the
minimum cluster ID.

The longest path of the merged region determines
how many iterations of scan must be completed before
each node in a cluster is associated with the same clus-
ter ID. Figure 6 illustrates the longest path as a
grey area for the clustered group of pixels in Figure 5.
Figure 7 illustrates the worst case scenario.

3) Partition merging

Partition merging works by using the transitive property.
Areas of the image that are on the border of a partition
are scanned twice. If this node is found in two clusters,
than the transitive property demonstrates that the two
clusters are actually the same cluster. Nodes clustered in
two partitions can be found on the border of a single
partition, within 1 &€ + 2 of an edge of a partition. This
process is completed by merging each partition with a
list of all partitions already merged. Algorithms 7 and 8
summarize the merge operation.

Algorithm 7 - shows the high level process of split-
ting an image into smaller pieces and combining the
output of the smaller pieces.

Output:

GlobalNodeList - A list of all nodes in the entire
image

Procedure MergeClusters()

PartitionList = CreateParititons()
For each partition in PartitionList

Lemon et al. BMC Bioinformatics 2015, 16(Suppl 13):S5
http://www.biomedcentral.com/1471-2105/16/513/S5

Page 11 of 16

Figure 5 An exemplary iterative scanning process for eps 2.

NodeList = ParitionProcessing(partition)
PartitionMerge(NodeList, GlobalNodeList)

Algorithm 8 - Partition merge operation: shows
how clusters spanning multiple partitions are
detected.

Input:

NodeList - A list of all nodes in a partition
GlobalNodeList - A list of all nodes in the entire
image

Procedure PartitionMerge()

For each node in a cluster in Partition
GlobalNodeList.add(node)
For each node in GlobalNodeList Within Eps of a
Parition border
if two nodes are in the same location
Merge the clusters associated with each node

Figure 8 illustrates how partitions processed by different
threads are merged in later stages of the computation.

Lemon et al. BMC Bioinformatics 2015, 16(Suppl 13):S5
http://www.biomedcentral.com/1471-2105/16/513/S5

Page 12 of 16

0 1 3 3 4 5 6
7 8 9 10 |11 |12 [13
19 |20
26 |27
33 |34
40 |41
47 |48

Figure 6 The longest path, the gray pixels. If k = longest path +
1 then number of iterations = (k / eps).

In this specific example, regions with cluster IDs 4 and 0
are merged.

4) Finding the border

Density based clustering can classify nodes into three
separate categories, core, border, and noise. A core node
has high neighbor density that means that the node has
more than MinPts number of neighbors. A border node
is inside the neighborhood of a core node, but it does not
have a neighbor density greater than MinPts. A noise
node has sparse neighbor density, and is not neighbor
with any core nodes. We use these definitions to deter-
mine the border of a skin lesion, and use it to handle
noise values. After each node is classified, we can use the
X, Y data of each node to draw the core and border
nodes onto an HTML5 canvas. We draw border nodes
using a color with high contrast to the color we draw
border nodes with (see Figure 2 for an example). This
allows for the border to be easily visible. Algorithm 9
demonstrates the step by step procedure of classifying
each node into three categories: core, border, and noise.

Algorithm 9 - Node classification
Input:

GlobalNodeList = A list of all nodes in the image
MinPts = Minimum density to be determines a cluster

Output:

CoreNodeList = A list of nodes that are at the core
of a cluster

18 |19 |20 |21 |22 |23 |24 |25 |26

27 (28 |29 |30 |31 |32 |33 |34 |35

36 |37 |38 |39 |40 |41 [42 |43 |44

45 |46 |47 |48 |49 |50 |51 |52 |53

54 |55 |56 |57 |58 |59 |60 |61 |62

63 |64 |65 |66 |67 |68 |69 |70 |71

72 |73 |74 |75 |76 |77 |78 |79 |80

Figure 7 The worst case scenario: the longest possible path

with an € of 1. It will require 44 iterations, one for each pixel.

BorderNodeList = A list of nodes that are at the border
of a cluster

NoiseList = A list of nodes that are not in any
cluster

Procudure ClassifyNodes()

For each Node N in GlobalNodeList
ClusterCount = Number of Nodes A where A.C
=N.C
If ClusterCount < MinPts
NoiseList.add(N)
Else if RegionQuery(N, GlobalNodeList).size <
MinPts
BorderNoeList.add(N)
Else
CoreNodeList.add(N)

Results and discussion

Amdahl’s law [42] for a maximum theoretical speedup
states that an algorithm can be accelerated by the por-
tion of the algorithm that is parallelizable plus the por-
tion of the algorithm that is serial. In the serial version
of density based skin lesion border detection, each pixel
needs to look up &* other pixels to determine density.
Drawing the image is done in linear time big O(#pixels).
The serial time is e**#pixels, or O(e®). The speedup

Lemon et al. BMC Bioinformatics 2015, 16(Suppl 13):S5
http://www.biomedcentral.com/1471-2105/16/513/S5

Page 13 of 16

Partition 1 Partition 2
Xoffset =0 Xoffset =3
Yoffset =0 Yoffset=0
Image = Image = Partition 2 Merging with Partition 1 in PartitionMer
0 0 0 0
4 |4 4 4 0 0 0 4 4 4 4&10 0
0
4 4 0 0 4 4 &[0
0

Figure 8 shows how shingling partition overlapping can be used to identify clusters the span multiple partitions.

achievable according to Amdahl’s law is ¢ / #pixels, or
big O(g). This turns the time complexity from quadratic
based on ¢ and pixel count to a linear based on &. This
assumes that each pixel can be assigned a thread that is
run concurrently. Our implementation does not achieve
Amdahl’s law because of communication overhead. How-
ever, the parallel WebCL version of density based skin
lesion border detection algorithm achieves an average of
around ~491.2 speedup over the serial version on 100 der-
moscopy images. See Table 1 for a list of speedup factors
for 100 dermoscopy images along with the resolution of
each image. While parallel version has obtained consider-
able speedups, it had exactly the same accuracy ratios of
the serial version given in our previous work [31] in which

mean of border error is 6.94%, mean of recall is 76.66%,
and mean of precision is 99.29% respectively. Schaefer et
al. [43] is the first study that uses border error (XOR) mea-
sure for dermoscopic image analysis.

To determine that parallel version of the algorithm is
generating the same accuracies with the serial version for
the same images; we conduct controlled experiments on
the same images. Controlled experiments mean that
whatever the order of randomly selected pixels in the
serial version is, we used the same order for the pixels in
the parallel version. With these controlled experiments,
we obtained the same accuracy ratios as given in Table 2
for both the serial and parallel versions. Table 2 shows
precision, recall, and border error for 100 dermoscopy

Table 2 Border error, precision, and recall measures for each image in the dataset.

Img. ID Border Error Precision Recall Img. ID Border Error Precision Recall
1 8.2% 0.98 0.79 51 5.1% 1.00 081
2 8.0% 093 0.86 52 6.9% 1.00 0.80
3 4.9% 0.89 0.85 53 74% 1.00 0.78
4 6.2% 1.00 0.82 54 1.5% 1.00 095
5 54% 1.00 0.88 55 4.2% 1.00 0.88
6 4.6% 1.00 0.83 56 14.9% 1.00 0.60
7 3.9% 0.96 091 57 9.4% 1.00 0.77
8 32% 1.00 0.87 58 5.9% 1.00 0.82
9 34% 1.00 0.82 59 4.6% 1.00 0.75
10 22% 1.00 091 60 2.9% 1.00 081
11 0.9% 1.00 091 61 6.5% 0.90 0.74
12 6.5% 1.00 061 62 5.8% 1.00 0.74
13 10.0% 1.00 0.70 63 5.6% 1.00 0.77
14 14.8% 1.00 0.70 64 2.9% 1.00 0.82
15 5.9% 1.00 067 65 2.2% 0.94 0.84
16 6.8% 1.00 0.76 66 8.3% 0.89 0.79
17 6.0% 1.00 067 67 6.3% 098 083
18 4.0% 1.00 0.86 68 32% 1.00 0.79
19 6.4% 1.00 071 69 24% 1.00 0.79
20 8.0% 1.00 0.80 70 4.6% 1.00 0.74
21 8.8% 1.00 078 71 8.8% 1.00 0.71
22 12.6% 1.00 073 72 3.5% 0.94 0.84

Lemon et al. BMC Bioinformatics 2015, 16(Suppl 13):S5
http://www.biomedcentral.com/1471-2105/16/513/S5

Page 14 of 16

Table 2 Border error, precision, and recall measures for each image in the dataset. (Continued)

23 8.6% 1.00 0.76 73 1.8% 0.99 0.86
24 9.0% 1.00 0.72 74 2.9% 1.00 0.90
25 5.7% 1.00 0.79 75 5.9% 1.00 071
26 33.9% 1.00 051 76 9.2% 1.00 0.74
27 9.0% 1.00 0.74 77 33% 1.00 072
28 8.0% 1.00 0.65 78 13.6% 1.00 061
29 10.6% 1.00 0.75 79 10.4% 1.00 0.71
30 11.3% 1.00 0.74 80 6.7% 1.00 0.65
31 9.7% 1.00 0.72 81 1.8% 1.00 0.65
32 10.8% 1.00 0.77 82 7.5% 1.00 0.82
33 3.3% 1.00 0.86 83 9.9% 1.00 0.54
34 4.2% 1.00 0.88 84 3.1% 1.00 0.74
35 2.7% 1.00 0.88 85 6.4% 1.00 0.79
36 6.0% 1.00 0.79 86 7.5% 0.98 0.79
37 4.0% 1.00 0.85 87 7.2% 1.00 0.73
38 8.0% 1.00 0.71 88 5.1% 1.00 0.59
39 34% 1.00 0.76 89 5.5% 0.91 0.82
40 3.6% 1.00 0.82 90 17.0% 1.00 0.56
41 8.0% 1.00 0.73 91 8.1% 1.00 061
42 3.2% 1.00 0.85 92 4.3% 1.00 0.89
43 7.3% 1.00 0.74 93 1.7% 1.00 093
44 17.7% 1.00 0.70 94 14.6% 1.00 0.66
45 3.6% 1.00 0.84 95 3.0% 1.00 0.68
46 5.2% 1.00 0.88 96 7.8% 1.00 0.75
47 2.5% 1.00 0.91 97 21.8% 1.00 0.66
48 3.0% 1.00 0.87 98 4.0% 1.00 0.85
49 10.9% 1.00 0.68 99 11.5% 1.00 0.65
50 12.0% 1.00 0.68 100 3.1% 1.00 0.66

images. However, both serial and parallel versions of the
algorithm each time randomly select the pixels for pro-
cessing, then results may not have exactly the same
accuracies. By the way, discrepancy of accuracies will be
unnoticeable (e.g. 99.13089% vs. 99.13091%). This unno-
ticeable discrepancy is even true for the serial version;
when serial version runs on the same image at different
times (means that generates different order of randomly
selected pixels). Thus, it cannot generate exactly the
same results.

Table 1 summarizes all the results obtained for
100 dermoscopy images for both serial and WebCL par-
allel versions. It also shows speedup factors for each
dermoscopy image. Figure 9 plots speedup factors of
100 dermoscopy images with varying resolutions.
Figure 10 plots speedup factors of 100 dermoscopy
images by the size of the lesion (number of pixels in the
lesion) in order.

As seen from Figure 10, in some cases even though
lesion size is smaller for some images, they have lower

speedup factors or vice versa. In some cases; however,
lesion size is large but speedup is large too. This is
because: the lesion’s shape is highly irregular so either
causing many region queries or there are many merge
operations in the parallel version. Depends on the shape of

Speedup Factor

2500
2000
1500

m Speedup Factor
1000

o~ o
© o~

il

Figure 9 plots speedup factors of 100 dermoscopy images.

50: --.nlln.llm‘llMHHHH“H HHIHHHH

HAHN®O WM AN®O]
o - NS

v oo
0 o0

al [
n ~

97

Lemon et al. BMC Bioinformatics 2015, 16(Suppl 13):S5
http://www.biomedcentral.com/1471-2105/16/513/S5

Speedup Factor
2500
2000
1500
1000 I m Speedup Factor
o Amnlll1I|!I|H|”|”||”|”||”||” ”MH ’ | ‘ Il ‘
< 0 = o o O W WS N OO
NOWO\O\ Nv\ﬂmwr\woommm
vnmmmwwmm-—«mwmvovN
PR3BRFSIBIAEBIIIRE
A H H A A A AN NN D
Figure 10 plots speedup factors of 100 dermoscopy images by
the size of the lesion in order.

_

Figure 11 An exemplary artificial lesion shape (black) with 4
parallel partitions separated by red lines.

a lesion, many merge operations may occur even for small
size lesions in parallel version. See Figure 11 for an artifi-
cially created example. For instance, in this case assume
that there are 4 parallel sections which are illustrated by
red lines in Figure 11. All of these parallel sections will
run concurrently. Thus, each of these concurrent tasks
will find too many clusters in their local partitions.
However, as can be seen from Figure 11, all of these clus-
ters eventually fall in to the same global cluster. Therefore,
image resolution or lesion size may not always be a good
indicator for a speedup.

Conclusions
Using a parallel version of density based skin lesion border
detection can provide quick skin lesion boarder detection

Page 15 of 16

for dermoscopic images while keeping the accuracy of the
serial version. Automated border detection can supple-
ment expert dermatologist, and aid them in diagnosis of
melanoma or other pigmented skin lesions. While WebCL
is currently an emerging technology, a full adoption of
WebCL into the HTML5 standard would allow for this
implementation to run on a very large set of hardware and
software systems through web browsers. WebCL takes full
advantage of parallel computational resources on a local
machine, and allows for compiled code to run directly
from the Web Browser. This makes it a good candidate
for computationally expensive algorithms to be placed in a
web browser.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

SK made the overall design of the study. MM provided insights and analysis
of the density-based algorithms. JL implemented the WebCL version as a
graduate student under SK's supervision. SK developed the general
comparison testbed, performed data analysis, algorithm testing, and
statistical measurements. JL made benchmarking. TH helped develop design
parallel algorithm along with the help of implementing the algorithm in
WebCL. JL, SK, and TH contributed to the writing of this manuscript. All of
the authors read and approved the manuscript.

Acknowledgements

This research was partially supported by Arkansas Science and Technology
Association Award# 15-B-25 and NSF REU Award# 1062838: “REU Site:
HIT@UCA: Applied Research in Health Information Technology”. We also
would like to thank Mr. Reigada from SUNY Binghampton and Mr. Kruger
from Northeastern State University for being part of the NSF REU program.
This article has been published as part of BMC Bioinformatics Volume 16
Supplement 13, 2015: Proceedings of the 12th Annual MCBIOS Conference.
The full contents of the supplement are available online at http://www.
biomedcentral.com/bmcbioinformatics/supplements/16/513

Authors’ details

'Department of Computer Science, University of Central Arkansas, Conway,
AR, USA. 2Departmem of Computer Science and Information Systems, Texas
A&M University-Commerce, Commerce, TX, USA.

Published: 25 September 2015

References

1. Carli P, De Giorgi V, Chiarugi A, Nardini P, Weinstock MA, Crocetti E,
andGiannotti B: Addition of dermoscopy to conventional naked-eye
examination in melanoma screening: A randomized study. Journal of the
American Academy of Dermatology 2004, 50(5):683-689.

2. Pliddemann A, Heneghan C, Thompson M, Wolstenholme J, and Price CP:
Dermoscopy for the diagnosis of melanoma: primary care diagnostic
technology update. The British Journal of General Practice 2011,
61(587):416-417.

3. NL Hufford D: Etiological Factors in Skin Cancers: Environmental and
Biological. In In Cancer of the Skin.. 2 edition. London: Elsevier,R. DS 2010

4. AmericanCancerSociety: Cancer Facts&Figures 2010 [http://www.cancer.org/
acs/groups/content/@nho/documents/document/acspc-024113.pdf],
Available online (Accessed April 2015).

5. CJ Riegel DS: Malignant melanoma: prevention, early detection, and
treatment in the 21st century. CA Cancer J Clin 2000, 5:21.

6. AmericanCancerSociety: Melanoma Skin Cancer Overview 2010 [http://www.
cancer.org/acs/groups/cid/documents/webcontent/003063-pdf.pdf],
Available online (Accessed April 2015).

7. Troxel DB: Pitfalls in the Diagnosis of Malignant Melanoma: Findings of a
Risk management panel study. Am J Surg Pathol 2003, 27:1278-1283.

http://www.biomedcentral.com/bmcbioinformatics/supplements/16/S13
http://www.biomedcentral.com/bmcbioinformatics/supplements/16/S13
http://www.ncbi.nlm.nih.gov/pubmed/15097950?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15097950?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21801535?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21801535?dopt=Abstract
http://www.cancer.org/acs/groups/content/@nho/documents/document/acspc-024113.pdf
http://www.cancer.org/acs/groups/content/@nho/documents/document/acspc-024113.pdf
http://www.cancer.org/acs/groups/cid/documents/webcontent/003063-pdf.pdf
http://www.cancer.org/acs/groups/cid/documents/webcontent/003063-pdf.pdf
http://www.ncbi.nlm.nih.gov/pubmed/12960813?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12960813?dopt=Abstract

Lemon et al. BMC Bioinformatics 2015, 16(Suppl 13):S5
http://www.biomedcentral.com/1471-2105/16/513/S5

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

David E: Skin cancer. Melanoma and other specific nonmelanoma skin
cancers. Cancer 1995, 75(51):245-259.

Soyer HP, Kenet RO, Wolf IH, Kenet BJ, Cerroni L, et al: Clinicopathological
correlation of pigmented skin lesions using dermoscopy. £/D 2000,
10(1):22-28.

Vestergaard ME, Macaskill PHPM, Holt PE, Menzies SW: Dermoscopy
compared with naked eye examination for the diagnosis of primary
melanoma: a meta-analysis of studies performed in a clinical setting.
British Journal of Dermatology 159(3):669-676.

Celebi ME, lyatomi H, Schaefer G, Stoecker WV: Lesion border detection in
dermoscopy images. Comput Med Imaging Graph 2009, 33:148-531, Mar.
Kerri-Ann Norton, lyatomi Hitoshi, E Celebi Emre, Ishizaki Sumiko,

Sawada Mizuki, Suzaki, Reiko, Kobayashi Ken, Tanaka Masaru, Ogawa Koichi:
Three-phase general border detection method for dermoscopy images
using non-uniform illumination correction. Skin Research and Technology
2012, 18:290-300.

Celebi ME, Kingravi HA, and Celiker F: Fast colour space transformations
using minimax approximations. /ET Image Processing 2010, 4:70-80.
Abbas Qaisar, Celebi E. Emre, Garcia Irene Fonddn, Rashid Muhammad:
Lesion border detection in dermoscopy images using dynamic
programming. Skin Research and Technology 2011, 17:91-100.

Celebi ME, lyatomi H, Schaefer G, Stoecker WV: Lesion border detection in
dermoscopy images. Comput Med Imaging Graph 2009, 33:148-53.

Pratt WK: Digital image processing. PIKS Scientific inside. 4 edition.
Hoboken, N.J.: Wiley-Interscience; 2007.

Gomez D. D, Butakoff C, Ersboll B. K, and Stoecker W: Independent
histogram pursuit for segmentation of skin lesions. IEEE Trans Biomed Eng
2008, 55:157-61, Jan.

Celebi ME, Kingravi HA, lyatomi H, Aslandogan YA, Stoecker WV, Moss RH,
Malters JM, Grichnik JM, Marghoob AA, Rabinovitz HS, and Menzies SW:
Border detection in dermoscopy images using statistical region
merging. Skin Res Technol 2008, 14:347-53, Aug.

Sonka M, Hlavac V, Boyle R: Image processing, analysis, and machine
vision. PWS publishing Pacific Grove, CA; 19992.

Celebi ME, Aslandogan YA, Stoecker WV, lyatomi H, Oka H, Chen X:
Unsupervised border detection in dermoscopy images. Skin Res Technol
2007, 13:454-62, Nov.

Celebi ME, Wen Q, Hwang S, lyatomi H, Schaefer G: Lesion Border
Detection in Dermoscopy Images Using Ensembles of Thresholding
Methods. Skin Res Technol 2013, 19(1):.e252-8.

Mete M, Sirakov NM: Lesion detection in demoscopy images with novel
density-based and active contour approaches. BMC Bioinformatics 2010,
11:523.

Peruch F, Bogo F, Bonazza M, Cappelleri VM, Peserico E: Simpler, Faster,
More Accurate Melanocytic Lesion Segmentation Through MEDS. /EEE
Transactions on Biomedical Engineering 2014, 61(2):557-565.

Martin Ester, Kriegel Hans-Peter, Sander J, Xu Xiaowe: A density-based
algorithm for discovering clusters in large spatial databases with noise.
Proceedings of 2nd International Conference on Knowledge Discovery and
Data Mining (KDD-96) 1996, 226-231.

Caihong Yang, Wang , Fei , Huang Benxiong: Internet traffic classification
using DBSCAN. Information Engineering, 2009 ICIE'09. WASE International
Conference; 2009, 163-166.

John Rushing, Tiller, John McDowell, Drew, Tanner Steve: Adaptive
Artificial Intelligence for Next Generation Conflict. Final Tech Report,
TILLER (JOHN) MADISON AL 2004.

Xueping Su, Peng, Jinye, Feng, Xiaoyi, Wu, Jun, Fan Jianping: Linking
names and faces by person-based subset clustering. Proceedings of the
Third International Conference on Internet Multimedia Computing and Service
2011, 120-123.

Mete M, Tang F, Xu X, Yuruk N: Finding Functional Modules. In Systems
Biology for Signaling Networks Springer New York; 2010, 253-273.

Mete M, Tang F, Xu X, Yuruk N: A structural approach for finding
functional modules from large biological networks. BMC Bioinformatics
2008, 9:519.

Ertoz L, Steinbach M, Kumar V: Finding Clusters of Different Sizes, Shapes,
and Densities in Noisy, High Dimensional Data. In Proceedings of Second
SIAM International Conference on Data Mining 2003.

Mete M, Kockara S, Aydin K: Fast density-based lesion detection in
dermoscopy images. Comp Med Imag and Graph 2011, 35(2):128-136.

Page 16 of 16

32. Tasneem Brutch, Bourges-Sevenier Mikael: Khronos WebCL: Accelerating Web

Applications 2013.

33. David Luebke, Harris , Mark , Govindaraju , Naga , Lefohn , Aaron , Houston,

Mike, Owens, John, Segal, Mark, Papakipos, Matthew, Buck lan: GPGPU:
general-purpose computation on graphics hardware. Proceedings of the
2006 ACMY/IEEE conference on Supercomputing, ACM 2006, 208.

34. Jeon Won, Gibbs Simon: WebCL for Hardware-Accelerated Web
Applications. Tizen Developer Conference 2012.

35. Erik Smistad, Elster Anne C, Lindseth Frank: Fast Surface Extraction and
Visualization of Medical Images using OpenCL and GPUs. The Joint
Workshop on High Performance and Distributed Computing for Medical
Imaging 2011.

36. Jeon W, Brutch T, Gibbs S: WebCL for hardware-accelerated web
applications. WWW'12 Dev Lyon, France; 2012.

37. Massoud Pedram, Brooks, David, Pinkston, Timothy: Report for the NSF
Workshop on Cross-layer Power Optimization and Management. NSF
Workshop on Cross-Layer Power Optimization and Management 2012.

38. Stone John E, Gohara, David, Shi Guochun: OpenCL: A parallel
programming standard for heterogeneous computing systems.
Computing in science & engineering 2010, 12(3):66.

39. Munshi Aaftab: The OpenCL Specification. Khronos OpenCL Working Group

2011, 1.1, doc. revision 44.
40. Brutch Tasneem: WebCL Overview Roadmap. DevCon 5 2011.

41, Wang Jigang, and Cooper, Leon N: Improving nearest neighbor rule with

a simple adaptive distance measure. Pattern Recognition Letters 2007,
28(2):207-213.

42, Amdahl GM: Validity of the single processor approach to achieving large

scale computing capabilities. AFIPS spring joint computer conference 1967,
483-485.

43, Schaefer G, Rajab MI, Celebi ME, lyatomi H: Colour and contrast
enhancement for improved skin lesion segmentation. Computerized
Medical Imaging and Graphics 2011, 35:99-104.

doi:10.1186/1471-2105-16-513-S5
Cite this article as: Lemon et al.. Density-based parallel skin lesion
border detection with webCL. BMC Bioinformatics 2015 16(Suppl 13):S5.

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

* Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

(BiolMed Central

http://www.ncbi.nlm.nih.gov/pubmed/8000999?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8000999?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10694293?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10694293?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19121917?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19121917?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22092500?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22092500?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21226876?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21226876?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19121917?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19121917?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18232357?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18232357?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19159382?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19159382?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17908199?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22676490?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22676490?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22676490?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24081839?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24081839?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21037981?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21037981?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21035303?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21035303?dopt=Abstract

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	WebCL
	Methodology
	C++ Implementation
	WebCL implementation
	1) Shingled partitioning
	2) Partition processing
	3) Partition merging
	4) Finding the border

	Results and discussion
	Conclusions
	Competing interests
	Authors’ contributions
	Acknowledgements
	Authors’ details
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 500
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 500
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

