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Abstract

Background: As the major histocompatibility complex (MHC), human leukocyte antigens (HLAs) are one of the most
polymorphic genes in humans. Patients carrying certain HLA alleles may develop adverse drug reactions (ADRs) after
taking specific drugs. Peptides play an important role in HLA related ADRs as they are the necessary co-binders of HLAs
with drugs. Many experimental data have been generated for understanding HLA-peptide binding. However, efficiently
utilizing the data for understanding and accurately predicting HLA-peptide binding is challenging. Therefore, we
developed a network analysis based method to understand and predict HLA-peptide binding.

Methods: Qualitative Class I HLA-peptide binding data were harvested and prepared from four major databases.
An HLA-peptide binding network was constructed from this dataset and modules were identified by the fast
greedy modularity optimization algorithm. To examine the significance of signals in the yielded models, the
modularity was compared with the modularity values generated from 1,000 random networks. The peptides and
HLAs in the modules were characterized by similarity analysis. The neighbor-edges based and unbiased leverage
algorithm (Nebula) was developed for predicting HLA-peptide binding. Leave-one-out (LOO) validations and two-
fold cross-validations were conducted to evaluate the performance of Nebula using the constructed HLA-peptide
binding network.

Results: Nine modules were identified from analyzing the HLA-peptide binding network with a highest modularity
compared to all the random networks. Peptide length and functional side chains of amino acids at certain
positions of the peptides were different among the modules. HLA sequences were module dependent to some
extent. Nebula archived an overall prediction accuracy of 0.816 in the LOO validations and average accuracy of
0.795 in the two-fold cross-validations and outperformed the method reported in the literature.

Conclusions: Network analysis is a useful approach for analyzing large and sparse datasets such as the HLA-
peptide binding dataset. The modules identified from the network analysis clustered peptides and HLAs with
similar sequences and properties of amino acids. Nebula performed well in the predictions of HLA-peptide binding.
We demonstrated that network analysis coupled with Nebula is an efficient approach to understand and predict
HLA-peptide binding interactions and thus, could further our understanding of ADRs.
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Background
As the major histocompatibility complex (MHC) in
humans, human leukocyte antigens (HLAs) are impor-
tant immunologic proteins found on the surface of
somatic cells [1]. They can present antigenic peptides
from the infectious agents to T-cells to induce immune
responses [2-5]. People of different ethnicities or from
different regions may carry distinct HLA variations or
alleles [6,7]. According to IMGT/HLA database [6] by
Mar 15, 2015, there are more than 12,000 alleles identi-
fied for HLAs, making the HLAs as one of the most
polymorphic genes in humans. HLA genes contain mul-
tiple loci including A-G. The HLA D locus is classified
as Class II and the rest are categorized as Class I due to
their differences of responding T-cells and functions
[2-5]. Since the binding grooves of Class I HLAs are
determined by one single chain and there are a lot of
peptide binding data and three-dimensional structures
available [8,9], we selected Class I HLAs in this study to
demonstrate the applicability of network analysis to pre-
dict HLA-peptide binding.
Patients carrying certain HLA alleles are more likely

to develop adverse drug reactions (ADRs) after taking
specific drugs. Drug-HLA associations have been identi-
fied between abacavir and HLA-B*57:01 [10-12], fluclox-
acillin and HLA-B*57:01 [13], and carbamazepine and
HLA-B*15:02 [14], etc. Several mechanisms have been
proposed to understand the HLA related ADRs, includ-
ing the hapten concept, the super-antigen model, the
p.i. concept, the altered repertoire model and the danger
hypothesis [15-18]. In all the hypotheses except the
danger hypothesis, the HLAs on the surface of antigen-
presenting cells (APCs) present peptides to T-cell receptors
(TCRs) on the surfaces of T-cells and the drug molecules
interfere with the system through covalent binding to the
peptides, instable interaction, or insertion into the binding
grooves of HLAs. Ultimately, it is beneficial to predict ADR
occurrences of drugs before patients take the drugs. How-
ever, the mechanisms for ADRs are complicated and each
of the players in the system has a large number of varia-
tions in their structures, making it very challenging to
study HLA related ADRs. Our previous molecular model-
ing study showed the drug-HLA binding prediction was
improved when the binding peptide was incorporated in
the modeling system [19]. Therefore, better understanding
and accurately predicting HLA-peptide binding could facil-
itate predicting ADRs related to genetic predisposition.
Various machine learning models have been developed

to predict HLA-peptide binding for individual HLAs
[20-22]. However, lacking enough experimental HLA-
peptide binding data to train machine learning models
for many HLAs limits the capability of this approach. In
addition, a significant part of machine learning models

uses parameters that are derived from peptides with the
same length but experiments showed the same HLA can
bind peptides with different lengths, making predicting
HLA-peptide binding using these methods very challen-
ging. New methods for accurately predicting HLA-peptide
binding that overcome the challenges of the reported
machine learning models are in urgent need. Therefore, in
this study we conducted network analysis to understand
the binding characteristics between HLAs and peptides
and developed a new method named neighbor-edges
based and unbiased leverage algorithm (Nebula) to predict
HLA-peptide binding.
Through analyzing the HLA-peptide binding network,

we identified nine modules that are densely connected
regions in the network [23]. Modularity is the measure-
ment of goodness of a division of a network into modules
[24] and was used to yield nine modules. The modularity
of the real HLA-peptide binding network was compared
to the modularity values yielded from random networks.
Peptides and HLAs in the same modules shared similar
properties. We further developed Nebula to predict
HLA-peptide binding. To our best knowledge, this study
is the first one to use network analysis for understanding
and predicting HLA-peptide binding.

Methods
Study design
An overview of this study’s workflow is shown in Figure 1.
We first harvested qualitative Class I HLA-peptide binding
data from four major databases that collected and curated
HLA binding assays from the literature. The HLA-peptide
binding network was then constructed from the harvested
data. Thereafter, the fast greedy modularity optimization
algorithm was used to identify modules. The modularity
analysis on 1,000 randomly generated networks was
conducted to verify that the modules yielded from the
HLA-peptide binding network could not be generated by
chance. Finally, we implemented Nebula to make predic-
tions and evaluated its performance via leave-one-out
(LOO) validations.

Data preparation and network construction
Four major databases, IEDB [25], SYFPEITHI [26],
MHCBN [27] and AntiJen [28], contain HLA-peptide bind-
ing data curated from the literature. IEDB, MHCBN and
AntiJen provided qualitative binding categories (positive or
negative), while SYFPEITHI contains all positive bindings.
For IEDB data, “positive-high”, “positive-intermediate” and
“positive-low” were all considered as positives. For AntiJen
data, the “weak binders” are considered as negatives
according to the paper’s description [28].
We harvested the qualitative binding data of Class I

HLA-peptide binding assays from the four databases by
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Aug 25, 2014 and combined all data into a single dataset.
The dataset contains three columns: HLA, peptide and
binding category (positive or negative). For an HLA-pep-
tide pair with multiple entries in the databases, we calcu-
lated the proportion of positives. If the proportion is
larger than or equal to 0.5, then it was stored as a unique
record of positive (otherwise it was labelled as a nega-
tive). We removed the peptides and HLAs that contain
only one binding datum for two reasons: 1) the datum
may be in low quality because only the HLA or the pep-
tide shows binding among such a large number of pep-
tides or HLAs; and 2) it would not be able to be
predicted by Nebula because no data for the HLAs or
peptides could be used for the predictions in the LOO
validations. The data filtering process was run through
several iterations to make sure all the peptides and HLAs
had more than one binding datum. To enable the calcu-
lations in the network analysis, we used 2 and 1 to repre-
sent positive and negative, respectively. Finally, the HLA-
peptide binding network was constructed using the
igraph package (version 0.7.1) in R 3.1.3.

Module identification and modularity analysis
We used the fast greedy modularity optimization algo-
rithm by Clauset et al. [24] via the igraph package to iden-
tify modules within the HLA-peptide binding network.
This algorithm is well-known for its advantage to fast
detect modules from large networks [29]. To examine
whether the yielded modules really have binding charac-
teristics for HLAs and peptides or could be generated by
chance, we generated 1,000 random networks using three
criteria: (1) the network topology, both nodes and edges,
in the random networks remain the same as in the real

HLA-peptide binding network; (2) only weights (positive
or negative) were randomly shuffled, while keeping the
same amount of positives and negatives; and (3) the mod-
ules from random networks were generated using the
same algorithm and parameters. The modularity values
[24] were then compared between the real HLA-peptide
binding network and its randomly permutated networks.

Comparative analysis of modules
The modules yielded from modularity analysis of the
HLA-peptide binding network were compared in terms of
both the HLAs and the peptides. To compare the HLAs
across modules, the available protein sequences of all the
HLAs were first downloaded from the IMGT/HLA data-
base [6]. The HLA sequences were then aligned using the
MUSCLE method in MEGA 5.2.1 [30] with default para-
meters. Chelvanayagam [8] identified a uniform list of
HLA residues that specifically interact with each amino
acid (AA) position in 9-mer peptides. These residue num-
bers were given referring to the sequence of A*02:01 (PDB
ID: 3HLA) [9]. For each AA position, we extracted the
corresponding residues from all the HLA sequences and
put them together as position-specific pseudo-sequences.
The pairwise sequence identities of the pseudo-sequences
were calculated using Clustal Omega 1.2.0 [31].

Nebula
Nebula was developed through modification of the colla-
borative filtering algorithm [32] and the network-based
inference (NBI) method [33,34]. The HLA-peptide bind-
ing data can be constructed into a weighted bipartite net-
work, where an edge is drawn between HLA hi and
peptide px if there is a binding datum (positive or

Figure 1 A flowchart of this study’s workflow. Qualitative HLA-peptide binding data were harvested from IEDB, SYFPEITHI, MHCBN and
AntiJen databases. The HLA-peptide binding network was generated from the binding data. The modularity analysis was then conducted on the
HLA-peptide binding network and the 1,000 randomly generated networks. Finally, Nebula was used to predict HLA-peptide binding.
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negative) between them. The edge weight is given by
whi,px in equation (1).

whi,px =
{

2, if positive binding
1, if negative binding

(1)

If HLA hi and peptide px do not have a binding
datum, a prediction value for the edge between hi and
px can be calculated from the edges neighboring to the
edge in prediction using equations (2-6).

Phi,px = whi +

∑
j(whj,px − whi )Shi,hj∑

j

∣∣Shi,hj

∣∣ (2)

whi is the average weight of all edges that connect to
HLA hi, hj is a HLA that connects to peptide px, and
Shi,hj is the Pearson correlation coefficient between hi
and hj and calculated using equation (3).

Shi,hj =

∑
a(whi,pa − whi )(whj,pa − whj )√∑

a (whi,pa − whi )
2 ∑

a (whj,pa − whj )
2
(3)

pa indicates a peptide that connects to both hi and hj.
When hi and hj do not share a connected peptide,
Shi,hj = 0. Likewise, Ppx ,hi can be calculated using equa-
tion (4).

Ppx,hi = wpx +

∑
k(wpk,hi − wpk )Spx,pk∑

k

∣∣Spx,pk

∣∣ (4)

wpx is the average weight of all edges that connect to
peptide px, pk is a peptide that connects to HLA hi, and
Spx ,pk is the Pearson correlation coefficient between px
and pk and calculated using equation (5).

Spx ,pk =

∑
a(wpx ,ha − wpx)(wpk,ha − wpk)√∑

a (wpx ,ha − wpx)
2 ∑

a (wpk ,ha − wpk )
2 (5)

ha is a HLA that connects to both px and pk. When px
and pk do not share a connected HLA, Spx ,pk = 0 .
Nebula treats the contributions from the edges con-

nected to the two nodes of the edge equally in predic-
tion, that is Phi,px and Ppx ,hi . Therefore, the final
prediction value between HLA hi and peptide px as F(hi,
px) is calculated using equation (6).

F(hi, px) =
Phi,px + Ppx ,hi

2
(6)

F(hi,px) is a continuous value which is converted into a
categorical prediction value C(hi,px) in Nebula using the
unbiased leverage (UL) as presented by equation (7).
Since we assigned the weights for positive binding as

2 and negative as 1, the UL was set to be 1.5.

C(hi, px) =
{

positive, if F(hi, px) ≥ UL
negative, if F

(
hi, px

)
< UL

(7)

Evaluation of Nebula performance
To evaluate the performance of Nebula, we used LOO
validations. Each of the edges was taken out one at a time
from the HLA-peptide binding network, and the remain-
ing network was used to predict the weight of the taken-
away edge. A receiver operating characteristic (ROC)
curve was generated using the continuous final prediction
values F(hi,px) against the binding labels using AUC pack-
age in R (version 0.3.0). Sensitivity, specificity and accuracy
were calculated by comparing the categorical prediction
values C(hi,px) against the labels determined from HLA-
peptide binding assays. We did a similar evaluation for
NBI method [34] as a comparison. The author of NBI, Dr.
Feixiong Cheng, provided the NBI codes to us.
Two-fold cross-validations were also conducted to elimi-

nate potential over-fitting from the LOO validations. Each
time the entire HLA-peptide binding network was
randomly divided into two even portions and each portion
was used to predict HLA-peptide binding in the other
portion. We ran 100 iterations and calculated the sensitiv-
ity, specificity, accuracy and area under the ROC curve
(AUC) values to measure the performance of Nebula.

Results and discussion
Modularity analysis
After data pre-processing, we obtained 118,959 binding
data points (39.6% positives and 60.4% negatives) between
18,630 peptides and 211 Class I HLAs for network con-
struction and modularity analysis (Supplementary Table
S1 in Additional file 1). Nine modules were identified
from the HLA-peptide binding network using the fast
greedy modularity optimization algorithm as shown in
Figure 2a. A modularity value of 0.489 was found. The cal-
culated results of the peptides and HLAs in the nine mod-
ules are given in Table 1. The sequences of the peptides
and HLAs in the nine modules are listed in Supplementary
Table S2 and S3, respectively, in Additional file 1.
Using the same modularity analysis algorithm, we ana-
lyzed the 1,000 randomly generated networks. The 1,000
modularity values were plotted as a histogram shown in
Figure 2b. All the 1,000 modularity values are lower
than the modularity yielded from the real HLA-peptide
binding network (the red arrow in Figure 2b), indicating
the nine modules harvested by the algorithm is not
likely some result obtained by chance. In order to dis-
cover potential signals buried in the nine modules, we
analyzed the peptide and HLA properties across the
modules.
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In this modularity comparison, we used very strict cri-
teria to generate the random networks not even altering
the topology of the original network. Another way is to
generate random networks by reconnecting edges while
keeping the same amount of nodes, positive and negative
edges, which resulted in modularity values with even larger
differences (data not shown).

Peptide analysis across the modules
The distributions of peptides and HLAs in the nine mod-
ules are listed in Table 1. For peptides with a specific
length such as 8-mers, the peptide distribution across the
modules is also shown in Table 1 by column with the
column sum equal to 100%. Using 10% as a cutoff, we
found 8-mer and 11-mer peptides are more likely to
appear in modules 4-7, while 9-mers and 10-mers
majorly exist in modules 1-4. Modules 1-3 and 5-7 show
a higher specificity on peptide lengths while module 4 is

a mixture of 8-mers, 9-mers and 11-mers. The results
indicate peptides in different modules may have different
binding interactions with HLAs.
Modules 1-7 are the major modules that contain more

than 1,000 peptides and 9-mers are the majority of pep-
tides (68.8%). We further analyzed 9-mer peptides across
these modules to explore HLA-peptide binding character-
istics of the modules. According to Hong et al. [35], the
common 20 amino acids (AAs) can be categorized into
3 groups: (1) polar charged (Arg, Asp, Glu, His and Lys),
(2) polar uncharged (Asn, Cys, Gln, Gly, Ser, Thr and
Tyr), and (3) apolar (Ala, Ile, Leu, Met, Phe, Pro, Trp and
Val). For each module, we categorized the AA residues
within the 9-mer peptides into the three groups from
Position 1 to 9. The result is shown in Figure 3.
We found the distributions of AA residue categories are

similar across different modules for most positions. How-
ever, two positions showed very distinct characteristics
across modules. For position 2 (P2), while module 4 con-
tains 80.8% apolar AA residues and module 6 includes
93.2% apolar AA residues, module 7 has a dominant
proportion of polar charged AA residues (up to 98.1%).
For the last position (PΩ, or P9 for 9-mer peptides), while
module 3 showed a majority of polar charged AA residues
(79.0%), modules 4, 6 and 7 had 87.5%, 78.4% and 81.4%
of apolar AA residues, respectively. Detailed information
regarding AA residue distributions at Position 2 and 9 in
each module compared to their overall distributions
among all nine modules is attached in Supplementary
Table S4 in Additional file 1. Similar results were also
observed for other lengths of peptides (results not shown).
Therefore, we found differences in peptide lengths and
properties across the modules.
It has been reported that position 2 (P2) and, especially

the last position (PΩ), of peptides have critical effects on
drug binding inside the HLA binding grooves which may
affect the occurrence of HLA related ADRs [16,36]. Our

Figure 2 Results of modularity analysis. Nine modules were generated from the HLA-peptide binding network and plotted via Cytoscape
3.2.0 (a). The HLAs are shown in red, peptides in cyan and edges in grey. Modularity values of 1,000 randomly permutated networks are given
in the histogram (b). As a comparison, the modularity value yield from the real HLA-peptide binding network is indicated by the red arrow.

Table 1 Statistics of peptides and HLAs in the nine
modules

Module Peptides HLA
count

7-mer 8-mer 9-mer 10-
mer

11-
mer

>11-
mer

Total

1 0.0% 3.2% 15.8% 11.0% 2.5% 0.3% 2578 25

2 0.0% 7.3% 30.2% 5.3% 7.8% 0.3% 4175 43

3 14.3% 0.5% 14.7% 29.7% 4.6% 0.3% 3356 12

4 0.0% 21.0% 17.6% 29.8% 9.5% 0.5% 3797 7

5 85.7% 35.6% 8.6% 6.3% 29.7% 91.2% 1936 86

6 0.0% 18.7% 5.5% 7.6% 20.1% 2.3% 1187 13

7 0.0% 13.7% 5.3% 10.0% 25.8% 5.3% 1295 22

8 0.0% 0.0% 2.2% 0.4% 0.0% 0.0% 303 2

9 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 3 1

Total 7 219 12819 4906 283 396 18630 211

Peptide length distributions are presented as percentages for each model.
Percentages equal to or larger than 10% are highlighed in bold.
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network analysis differentiated peptides with specific
amino acid properties into different modules and clus-
tered those similar ones together in certain modules,
which could be useful to further our understanding of
HLA related ADR mechanisms.

HLA sequence analysis across the modules
Since Class I HLA alleles are highly similar, the sequences
of their peptide-binding regions (residues 2 to 182, Chain
A) aligned well without a single gap. These partial HLA
sequences are given in Supplementary Table S3 in Addi-
tional file 1. To assess the sequential differences of HLAs
across the modules, we plotted the available sequences in
Figure 4 to highlight the residues that are different from
the most frequent residue for each position. The different
residues are colored according to the three AA categories
mentioned above.
We observed some HLA sequence differences in the

modules at certain sequence positions. For example, in
module 7, the residues at position 24 and 67 are apolar
and the residues at position 45 are polar charged, which
showed a uniformity and difference against the rest of
the modules. Since these three HLA residues are reported
to interact with position 2 of 9-mer peptides [8], combin-
ing the peptide sequence analysis results that indicated
the position 2 of 9-mer peptides in module 7 is dominant

by polar charged residues (98.1%), we think the peptides
and HLAs in the same modules are concordant to form
specific binding patterns.
We also analyzed the identities of HLA pseudo-

sequences that specifically interact with each AA position
of 9-mer peptides, and the results for positions 2 and 9 are
given in Supplementary Table S5 in Additional file 1. For
positions 2 and 9, we found the pseudo-sequence identi-
ties within the modules are generally significantly higher
(p < 0.05) than those between modules. Especially, for
position 2 pseudo-sequences, module 7 had the highest
average identity within the module and lowest average
identity between the modules.
In summary, this study revealed that not only the pep-

tides, but also HLA sequences showed more similarities
and concordant properties within the modules than
between the modules. Modularity analysis of the HLA-
peptide binding network is helpful to understand HLA-
peptide binding interactions that, in turn, could facilitate
understanding of HLAs related ADRs.

Validations for Nebula
To evaluate the performance of Nebula, LOO valida-
tions were conducted in which each of the 118,959
HLA-peptide binding data was left out for prediction by
the network constructed from the rest of the 118,958

Figure 3 The distribution of amino acid residues by position from 9-mer peptides in each module. Each bar chart shows the 9-mer
peptides from a module indicated at the top of the bar chart. The x-axis marks P1 to P9 represent positions 1 to 9 in 9-mers. At each position,
20 possible amino acid residues were categoried into three groups: polar charged (green), polar uncharged (red) and apolar (blue). The
percentages of the three groups are shown at each position.
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binding data points. The results were plotted as a ROC
curve shown in Figure 5a. AUC was calculated to be
0.868. The sensitivity, specificity and accuracy are 70.8%,
88.7% and 81.6%, respectively.
As a comparison, the performance of NBI for predicting

HLA-peptide binding in the same dataset was evaluated
using the same LOO validations. The results were given in
Figure 5b, with a lower AUC of 0.799. The sensitivity, spe-
cificity and accuracy are 33.2%, 94.4% and 68.1%, respec-
tively. The results indicated that Nebula generally
outperformed NBI and holds a promising application in
analyzing big and sparse datasets such the HLA-peptide
binding dataset used in this study.
In order to reduce the potential over-fitting from the

LOO validations, we conducted 100 iterations of two-fold
cross-validations for Nebula. The results were shown in
Figure 5c. The sensitivity, specificity, accuracy and AUC
values are 69.2% ± 0.2%, 86.3% ± 0.2%, 79.5% ± 0.1% and
0.830 ± 0.001, respectively, slight lower than the LOO vali-
dations as expected, indicating over-fitting is not a big
concern for Nebula.
Machine learning methods such as artificial neuron

network (ANN) [37] and support vector machine (SVM)

[38] were used for HLA-peptide binding predictions.
However, most conventional machine learning methods
have been applied for a limited number of HLAs and
peptides of specific lengths because they require a large
enough amount of data to train a reliable prediction
model. Moreover, the independent variables used in most
reported HLA-peptide binding prediction models were
derived from peptides with a fixed length unless an extra
process [39] was implemented to process peptides with
different lengths. As demonstrated by the results, Nebula
not only achieved good prediction accuracy, but also
does not require a large amount of experimental data for
an HLA allele or a fixed length for peptides.

Conclusions
We identified nine modules in the HLA-peptide binding
network using the fast greedy modularity optimization
algorithm. The modules showed distinct distributions
and properties for both peptides and HLAs across the
modules, indicating network analysis is a promising
approach to understand structures and characteristics of
big and sparse data. We developed Nebula for predic-
tion based on network analysis and used HLA-peptide

Figure 4 The HLA sequence difference across the modules colored by residue category. HLA sequences from seven major modules are
shown. Each line is an HLA partial sequence (residues 2 to 182 on Chain A) of the peptide-binding region. Each column represents a residue at
the same position across all the HLAs. For each column, if a residue has their highest frequency within the column, it is not shown (white color).
Otherwise, it is colored according to the three categories as explained in the legend to Figure 3.
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binding dataset as a case study to demonstrate it is reli-
able and practicable for big data analysis. Our results
suggest that the network analysis methods such as Neb-
ula are applicable and effective to interpret and predict
large and sparse datasets such as the HLA-peptide bind-
ing dataset used in this study. We showed such methods

could accurately predict HLA-peptide binding that, in
turn, could improve predictions of HLA related ADRs
to better implement precision medicine.
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