
RESEARCH Open Access

Reconstruction of ancestral gene orders using
intermediate genomes
Pedro Feijão

From 13th Annual Research in Computational Molecular Biology (RECOMB) Satellite Workshop on Compara-
tive Genomics
Frankfurt, Germany. 4-7 October 2015

Abstract

Background: The problem of reconstructing ancestral genomes in a given phylogenetic tree arises in many
different comparative genomics fields. Here, we focus on reconstructing the gene order of ancestral genomes, a
problem that has been largely studied in the past 20 years, especially with the increasing availability of whole
genome DNA sequences. There are two main approaches to this problem: event-based methods, that try to find
the ancestral genomes that minimize the number of rearrangement events in the tree; and homology-based, that
look for conserved structures, such as adjacent genes in the extant genomes, to build the ancestral genomes.

Results: We propose algorithms that use the concept of intermediate genomes, arising in optimal pairwise
rearrangement scenarios. We show that intermediate genomes have combinatorial properties that make them easy
to reconstruct, and develop fast algorithms with better reconstructed ancestral genomes than current event-based
methods. The proposed framework is also designed to accept extra information, such as results from homology-
based approaches, giving rise to combined algorithms with better results than the original methods.

Background
Reconstructing ancestral genomes based on gene order
data is an important problem that has been largely studied
in the past years, especially with the increasing availability
of whole genome DNA sequences. This problem, also
called the small parsimony problem, receives as input a
phylogenetic tree with extant genomes at its leaves, and
asks for the reconstructed gene orders at the internal
nodes of the tree, corresponding to ancestral genomes.
There are two main approaches for solving this problem.

The first is a parsimonious approach, that will be called
event- or distance-based, that assumes a model of rearran-
gement and reconstructs the ancestral genomes that mini-
mize the total number of rearrangement events on the
tree, or said differently, the total tree length, as measured
by the rearrangement distance.
The first proposed method using the distance-based

approach, BPAnalysis [1], used the breakpoint distance.

With the development of better rearrangement models,
such as signed reversals and the Double-Cut-and-Join
(DCJ) distance [2,3], new algorithms have been proposed.
Notable examples of recent distance-based methods
include MGRA [4], PATHGROUPS [5], and GASTS [6],
based on minimizing the DCJ distance, and SCJ Small
Phylogeny [7], based on the Single-Cut-or-Join (SCJ)
model [8]. Since rearrangement distance problems are
usually NP-hard for three or more genomes, these meth-
ods tend to be time consuming, especially when exact
solutions are implemented.
On the other hand, homology methods do not use

rearrangement models, but instead look for conserved
structures between the input genomes, such as conserved
adjacencies or gene clusters, and use this information to
assemble Contiguous Ancestral Regions (CARs), as
pioneered by Ma et al. in InferCARs [9], an approach
explored by many recent algorithms, such as GapAdj [10],
ANGES [11], PMAG [12], MLGO [13] and ProCARs [14].
In this paper, a new approach is proposed, inspired by

combinatorial ideas from rearrangement models, though
Correspondence: pfeijao@cebitec.uni-bielefeld.de
Technische Fakultät and CeBiTec, Universität Bielefeld, Universitätsstr. 25,
33615 Bielefeld, Germany

Feijão BMC Bioinformatics 2015, 16(Suppl 14):S3
http://www.biomedcentral.com/1471-2105/16/S14/S3

© 2015 Feijão. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://
creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/
zero/1.0/) applies to the data made available in this article, unless otherwise stated.

mailto:pfeijao@cebitec.uni-bielefeld.de
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

not directly motivated as a distance-based method.
Specifically, we propose the use of intermediate genomes,
arising from optimal rearrangement scenarios between
two genomes. The motivation is the fact that, if we con-
sider an internal node in a phylogenetic tree, correspond-
ing to a speciation event, then by the parsimony principle,
this internal node should be an intermediate genome in a
optimal rearrangement scenario between the two genomes
at its children nodes. Yet, most current parsimonious
approaches focus only on minimizing events on the tree,
without extra restrictions.
This paper is organized as follows. First, we characterize

all possible intermediate genomes in a parsimonious path
between two genomes, and show that using the restriction
that internal nodes must be intermediate genomes
improves the ancestral reconstruction results, even though
the trees do not minimize the number of events. The pro-
posed framework can easily accept additional information,
such as results from homology-based methods, giving rise
to combined algorithms that have better results than the
original methods.

Preliminaries
We represent multichromosomal genomes using a similar
notation as in previous works [3,15]. A gene is an oriented
fragment of DNA represented by a signed integer, where
the sign denotes the orientation. A chromosome is repre-
sented by a sequence of genes, flanked in the extremities
by telomeres (○) if the chromosome is linear; otherwise, it
is circular. Genomes are sets of chromosomes, where each
gene occurs exactly once. A gene g has two extremities,
the tail (gt) and the head (gh). An adjacency in a genome
is an unordered pair of either consecutive gene extremities
in a chromosome, or a gene extremity with a telomere
(called telomeric adjacency). A genome GA is represented
either by the set of chromosomes, or also by the set of
adjacencies A. For instance, the genome GA of Figure 1
has two linear chromosomes and five genes, with GA =
{(○ 1 −2 3 ○), (○ 4 5 ○)} and A = {○1t, 1h 2h, 2t 3t, 3t○,
○4t, 4h 5t, 5h ○}.
Given two genomes A and B with the same set of

genes, the breakpoint graph [16] of A and B, denoted by
BP(A, B), is a graph G where the vertex set V (G) is the
set of gene extremities, and the edge set E(G) is the set of
non-telomeric adjacencies of A and B, called A-edges and
B-edges, respectively. Adjacencies from A an B are

usually drawn with different colors, as seen in Figure 2.
A connected component in BP(A, B) is always a color
alternating component and will be called AB-component.
The size of an AB-component is the number of vertices it
has. An AB-component is either a cycle, an even path or
an odd path, where the parity of a path is based on the
number of vertices of the path (an isolated vertex is con-
sidered an odd path). Note that the parity is usually
defined on edges, not vertices, but here the vertex parity
is more natural.
The Double-Cut-and-Join (DCJ) [2,3] operation rear-

ranges genes in a genome by cutting two adjacencies and
rejoining the extremities in a different way. For instance,
adjacencies pq and rs become pr and qs, or p○ and qr
become pr and q○. It is also possible to cut an adjacency
pq into p○ and q○, and the reverse operation.
The DCJ distance d(A, B) between genomes A and B is

defined as the minimum number of DCJ operations
needed to transform A into B. A sorting scenario S
between two genomes A and B is an ordered list of
genomes S = (M0 , M1 ,..., Mk) where k = d(A, B), A =
M0 , Mk = B and Mi can be obtained from Mi-1 by apply-
ing a DCJ operation, for i = 1,..., k. Any genome Mi ∈ S is
called an intermediate genome of A and B.
The DCJ distance d(A, B) can be determined using the

Breakpoint Graph BP(A, B) [3]:

d (A,B) = n − c − o
2

(1)

where n is the number of genes, c and o are the number
of cycles and odd paths in BP(A, B), respectively. The pro-
blem of transforming A into B is then the problem of find-
ing DCJ operations that increase the number of cycles and
odd paths in BP(A, B).
Another way of determining the DCJ distance from BP

(A, B) is considering the sorting cost of each AB-compo-
nent independently [8,15]. An AB-component with n ver-
tices has cost n/2 − 1 if it is a cycle, (n − 1)/2 if it is an
odd path and n/2 if it is an even path. The sorting cost of
a component C will be denoted as d(C). In the example of
Figure 2, using equation (1) gives d(A, B) = 7 − 1 − 2/2 =
5, and summing the contributions of each component
from left to right results in d(A, B) = 2 + 1 + 1 + 1 = 5.
It is sometimes useful to include telomeric adjacencies

in BP(A, B). With similar ideas as used by Braga and
Stoye [15], telomere nodes are added in the Breakpoint

Figure 1 Genome G = {(○ 1 −2 3 ○), (○ 4 5 ○)} with adjacency set A = {○1t, 1h 2h, 2t 3t, 3h ○, ○4t, 4h 5t, 5h○}.

Feijão BMC Bioinformatics 2015, 16(Suppl 14):S3
http://www.biomedcentral.com/1471-2105/16/S14/S3

Page 2 of 13

Graph as follows: for each odd path, add one telomere
and connect both telomeric adjacencies of A and B of
the odd path to this new telomere node. For each even
path, since both telomeric adjacencies are from the
same genome, add two telomere nodes, connecting each
adjacency with a different telomere, also adding and
edge between both telomeres, representing what is
usually called a null chromosome on the other genome.
This extended version can be called Circular Breakpoint
Graph, because it has only cycles, as we can see in
Figure 3. The Circular Breakpoint Graph has the advan-
tage that every AB-component is a cycle (called an AB-
cycle), and any DCJ operation is equivalent to removing
two edges of the same color (same genome) and repla-
cing with two new edges that reconnect the four vertices
in a different way. Another property of the Circular BP
(A, B) is that the sorting cost of each component pre-
served. An odd path with n vertices has cost (n − 1)/2
in the original BP(A, B). With the added telomere, it
becomes a cycle with n+1 vertices, with cost (n + 1)/2 −
1 = (n − 1)/2. Similarly, an even path with n vertices has
original cost n/2, and with the two added telomeres it
becomes a cycle with n + 2 vertices, with cost (n + 2)/2
− 1 = n/2. Therefore, determining the DCJ distance
using the circular BP(A, B) components is slightly sim-
pler, as only cycles are present. Equation (1) can also be
used for the circular BP(A, B), with n increased by 1 for
each pair of telomeres added, since they are new “genes”
in the graph.

During the rest of this paper, the term Breakpoint Graph
or BP(A, B) always refers to the circular version, with
telomeric adjacencies. Also, since edges correspond to
adjacencies, both terms will be used inter-changeably
when in context.

Intermediate genomes
Intermediate genomes are genomes arising in sorting
scenarios between two genomes. Any genome Mi in a
sorting scenario S = (A = M0 , M1,..., Mk = B), where
k = d(A, B), is an intermediate genome of A and B.
The study of intermediate genomes is motivated by

the fact that if genomes A and B share a common
ancestor, by the parsimony principle, it is reasonable to
expect that their most recent common ancestor is an
intermediate genome of A and B. Therefore, when
reconstructing a phylogenetic tree based on gene order
and rearrangement events, one possibility is to enforce
that any genome corresponding to an internal node on
a binary tree must be an intermediate genome of its
two children nodes, in a bottom-up approach. One
difficulty is that the number of intermediate genomes
is potentially huge. To the best of our knowledge there
are no studies about the number of intermediate
genomes, but the number of possible DCJ sorting
scenarios has been determined [15,17], growing expo-
nentially with the distance between the genomes, so
one would expect that a similar behavior occurs with
intermediate genomes.

Figure 2 Breakpoint graph BP(A, B) of A = {○1t, 1h 2t, 2h 3t, 3h 4t, 4h ○, ○5t, 5h6t, 6h 7t, 7h ○} and B = {1h 2h, 2t 3h, 3t 4t, 4h 1t, ○6t, 6h 5t,
5h 7h, 7t○}. A-edges are drawn in green, and B-edges in blue.

Figure 3 Circular BP graph BP(A, B) of the genomes in Figure 2, with telomeric adjacencies. A-edges are drawn in green, and B-edges in
blue.

Feijão BMC Bioinformatics 2015, 16(Suppl 14):S3
http://www.biomedcentral.com/1471-2105/16/S14/S3

Page 3 of 13

Nevertheless, intermediate genomes have nice combina-
torial properties, and approaches exploiting this properties
can be both simple and fast, at the same time producing
better results than previous methods, as it will be shown
in the Results section.

Properties of intermediate genomes
Braga and Stoye showed that it is possible to sort genomes
with DCJ operations acting on each component of the
Breakpoint Graph independently [15], and from the two
possible ways of applying a DCJ in two edges of a compo-
nent, one is optimal, reducing the distance between the
genomes, and the other is not, as shown in Figure 4.
A scenario that follows this strategy will be called indepen-
dent component scenario. There are scenarios where DCJ
operations act on two different components, but these are
extremely rare and even non-existing in some cases [15],
so they will not be considered here.
It is interesting to notice that, since the optimal DCJ

breaks a cycle in two, the newly created edges do not
intersect. Conversely, in the non-optimal operation, the
edges do intersect. This leads to the intuition that the
edges of any intermediate genome M of A and B, when
drawn on BP(A, B), do not cross and do not touch two dif-
ferent components. Such a scenario is shown in Figure 5.
This is indeed a general property of intermediate genomes,
summarized in the following Theorem.
Theorem 1 A genome M is an intermediate genome of

A and B in an independent component scenario if and

only if all edges of M are non-crossing chords in the AB-
cycles of BP(A, B), covering all vertices of BP(A, B).
Therefore, the presence of only non-crossing chords is a

necessary and sufficient condition for an intermediate
genome, in scenarios without component recombination.
A similar statement was proven by Ouangraoua and
Bergeron [17], where it was shown that optimal DCJ
scenarios sorting an AB-cycle are maximal chains in the
lattice of non-crossing partitions of the cycle.
The proof of Theorem 1 will be derived from a series of

small lemmas. The first two prove the necessary condition
of the theorem.
Lemma 1 If M is an intermediate genome of A and B,

there is no DCJ operation that reduces the distance
between M and one of the genomes without increasing
the distance to the other.
Proof Assume w.l.g. that there is a DCJ operation

transforming M into M’ such that d(M’, A) <d(M, A)
and d(M’, B) ≤ d(M, B). Then

d(M′,A) + d(M′,B) < d(M,A) + d(M,B) = d(A,B)

breaking the triangle inequality. □
Lemma 2 If M is an intermediate genome of A and B in

an independent component scenario, all edges of M are
non-crossing chords in the AB-cycles of BP(A, B), covering
all vertices of BP(A, B).
Proof If S = {A = M0 , M1 ,..., Mk = B} is an independent

component scenario, there is no Mi in S that has

Figure 4 Possible ways of applying a DCJ operation on adjacencies pq and rs. (a) The initial BP(A, B); (b) Applying DCJ {pq, rs} ® {ps, qr} on
genome A; (c) Applying {pq, rs} ® {pr, qs} on genome A; The DCJ in (b) is optimal, increasing the number of cycles by one. The DCJ in (c) is not,
and introduces crossing edges.

Feijão BMC Bioinformatics 2015, 16(Suppl 14):S3
http://www.biomedcentral.com/1471-2105/16/S14/S3

Page 4 of 13

edges between two AB-components. Also, since each
intermediate genome is obtained from the previous one by
a DCJ operation, which always removes two edges and
creates two new ones with the same vertices, the edges of
any Mi cover all vertices of BP(A, B).
Now, suppose there is an intermediate genomes in S

with crossing edges. Then, since M0 = A has no crossing
edges, there exists a genome Mi , i <k, where the first
crossing occurred. Let pr and sq be such crossing edges.
Since this is the only crossing, between each of the pair
of consecutive vertices p, q, r, s in the AB-cycle there is
an even number of vertices, otherwise the edge adjacent
to the odd vertex would have to cross pr or sq. Then, w.
l.g, p, q, s, r have to appear consecutively in a AM-cycle,
while p, s, q, r appear consecutively in a BM-cycle, as
shown in Figure 6. Applying the DCJ {pr, qs} ® {pq, sr}
on Mi , the AM-cycle is split in two, while the BM-cycle
remains, with different vertex ordering. This means that
there is a DCJ operation that decreases d(Mi, A) while
not increasing d(Mi, B), and by Lemma 1 Mi is not an
intermediate genome between A and B. □

The next two lemmas prove the sufficient condition of
Theorem 1.
Lemma 3 Given an AB-cycle of size 2n with n noncross-

ing M-edges covering all vertices, the sum of AM-cycles and
BM-cycles is n + 1.
Proof The proof is by induction on n, the number of

M-edges. Let C denote the complete component with the
AB-cycle and the M-edges, and let CA and CB denote the
number of AM-cycles and BM-cycles in a component C,
respectively. If n = 1, then CA = CB = 1, and the lemma
holds, as seen in Figure 7(a).
For n > 1, since the edges of M are non-crossing chords

covering the entire cycle, M has always an edge in
common with one of the genomes. W.l.g, let’s assume an
A-edge e = pq is common between A and M , and let’s call
r and s the vertices adjacent to p and q, belonging to
B-edges rp and qs, as shown in Figure 7(b). Removing the
edges rp and qs and creating a new B-edge rs, the
AM-cycle pq is isolated and a new component C’ with an
AB-cycle of size 2(n − 1) and n − 1 M-edges is created, as
shown on Figure 7(c). By the inductive hypothesis, since

Figure 5 Scenario S = {A = M0 , M1 , M2 , M3 = B} transforming A (green edges) into B (blue edges) with DCJ operations, shown in BP
(A, B). Intermediate genomes Mi are drawn at each step with orange edges. At each step, a DCJ operation is applied on the edges labeled with
*. Orange edges never cross in the intermediate genomes.

Feijão BMC Bioinformatics 2015, 16(Suppl 14):S3
http://www.biomedcentral.com/1471-2105/16/S14/S3

Page 5 of 13

C’ has n − 1 M-edges, C′
A + C′

B = n . By construction of C’ ,
we know that C has one extra AM-cycle pq, therefore CA

+ CB = n + 1.
Lemma 4 If the edges of a genome M are noncrossing

chords in the AB-cycles of BP(A, B) covering all vertices of
BP(A, B), M is an intermediate genome of A and B.
Proof From Lemma 3, we know that CA + CB = |C|/2

+ 1, where CA and CB denote the number of AM - and
BM -cycles in a given component C, and |C| is the
number of vertices in C. Let cAM and cBM denote the
total number of AM - and BM -cycles in all components
of BP(A, B). Then,

cAM + cBM =
∑

C∈BP(A,B)
(CA + CB)

=
∑

C∈BP(A,B)

(|C|
2

+ 1
)
= n + c

where n is the number of genes and c the number of
AB-cycles in BP(A, B). Then,

d(A,M) + d(B,M) =n − cAM + n − cBM =

=2n − (n + c) = d(A,B)

and M is and intermediate genome of A and B. □
Using Lemmas 4 and 2, Theorem 1 is proved.

Counting intermediate genomes
Restricted to a given AB-cycle of size 2n, the possible
choices for the adjacency edges of an intermediate
genome M correspond to all the ways of finding n
non-crossing chords in a cycle of size 2n. Interestingly,
this is given by the ubiquitous Catalan number

Cn =
1

n + 1

(
2n
n

)
, as found in sequence A000108 of the

Figure 6 (a) A genome M , in orange, with exactly two crossing edges in BP(A, B), with A in green and B in blue. (b) A DCJ operation
{pr, sq} ® {pq, rs} on M that uncross the edges breaks one AM-cycle in two, keeping the other BM-cycle, meaning that M is not an intermediate
genome, as shown in Lemma 2.

Figure 7 Number of AM- and BM-cycles in an AB-cycle of size 2n with n non-crossing M-edges. A-, B- and M -edges are drawn in green,
blue and orange, respectively. (a) An AB-cycle of size 2 has one AM- and one BM-cycle. An AB-cycle of size n, shown in (b), has one more AM-
cycle than an AB-cycle of size n − 2, with the same number of BM-cycles, shown in (c).

Feijão BMC Bioinformatics 2015, 16(Suppl 14):S3
http://www.biomedcentral.com/1471-2105/16/S14/S3

Page 6 of 13

On-Line Encyclopedia of Integer Sequences [18]. There-
fore, the number of possible intermediate genomes for
two genomes A and B, denoted here as IG(A, B), is
given by

IG (A,B) =
∏

K∈BP(A,B)
C|K|/2 (2)

where K ∈ BP(A, B) represent all AB-cycles in BP(A, B),
and |K| is the number of vertices in a cycle K.

Intermediate genomes for ancestral
reconstruction
Given a tree T with n extant genomes at the leaves, the
ancestral genome reconstruction problem asks to recon-
struct the ancestral genomes corresponding to the internal
nodes of the tree.
One proposed solution to this problem, in the context of

a rearrangement distance model, is to find ancestral
genomes such that the total length of the tree, defined as
the sum of all rearrangement distances on the edges, is
minimized. This is sometimes called the small phylogeny
problem, since the tree T is given, in contrast to the large
phylogeny problem, where no tree is given and the aim is
to find, from all possible topologies, a tree with minimum
length.
In particular, for three genomes A, B and C, this

becomes the well studied genome median problem, where
the aim is to find a genome M minimizing d(A, M) +
d(B, M) + d(C, M). The median problem is used by many
ancestral reconstruction methods as an intermediate step
in an iterative approach. Although it is NP-hard for DCJ
and many models, it is widely studied, with several exact
and heuristic methods already proposed [19,20]. On the
other hand, some authors have recently conjectured that it
might not be the best option for ancestral inference, since
in many instances the solution is one of the input
genomes, giving no new information for ancestral recon-
struction [21].
Using the concept of intermediate genomes, the follow-

ing alternative problems are proposed:
Problem 1 (Intermediate Genome Small Phylogeny)

Given a binary tree T with n extant genomes at the leaves,
find ancestral genomes corresponding to the internal nodes
of the tree such that the tree length is minimized, with the
restriction that each internal node is an intermediate
genome of its children.
Problem 2 (Intermediate Genome Median) Given two

genomes A and B, and an outgroup genome C, find M, an
intermediate genome of A and B that minimizes d(C, M).
Problem 2 is similar to the median problem, but since d

(A, M) + d(B, M) = d(A, B) is constant, it can be left out of
the objective function. Therefore, this is the problem of
finding an intermediate genome between A and B that is

closest to C. A similar problem was studied by Swenson
and Moret [22], where they try to find intermediate gen-
omes that are simultaneously in scenarios from A to C
and from B to C, and are as far as as possible to C, mean-
ing that they are close to the input genomes A and B. In
order to do that, it is necessary to find the common inter-
mediate genomes in both scenarios, and this usually leads
to an exponential number of scenarios to be considered.
Therefore, exact solutions are only found for small gen-
omes, and heuristics have to be used for larger genomes.
The approach proposed here has the advantage that

we can detect intermediate genomes without the need
to find rearrangement scenarios. The number of inter-
mediate genomes is still exponential, but the use of
additional information from the outgroup genome or
external input can greatly reduce the search space, as
we will see in the next section.
It is likely that the intermediate genome problems

proposed here are NP-hard, as their original counterparts,
but this remains an open question. Similarly as previous
algorithms, one can develop an approach to solve Problem
1 by solving iteratively several instances of Problem 2. But,
as a simpler first approach, the solution for the small phy-
logeny problem presented here is based on a bottom-up
procedure, where at each step an internal node is recon-
structed as an intermediate genome between its two
children, who must be leaves in the tree. In order to do
that, instead of minimizing the distance as in Problem 2,
we will use the concept of adjacency guides.

Adjacency guides
We propose to solve the following problem:
Problem 3 (Guided Intermediate Genome) Given a

set of adjacencies G, called the adjacency guide, and
two genomes A and B, find an intermediate genome M
of A and B using the adjacencies G as a guide.
This is intentionally a very open definition. What does

it mean to use G as a guide? One could maximize the
number of adjacencies of G that are present in M , for
instance, giving rise to a maximum cardinality indepen-
dent set problem in a circle graph, that can be solved
polynomially. A similar idea was used by Swenson et al.
[23] in the context of finding the maximum number of
non-interfering reversals in the breakpoint graph.
But, more simply, just consider each adjacency a ∈ G

sequentially, adding a if both vertices belong to the
same AB-cycle in BP(A, B), and it does not cross with
previously added adjacencies. Also, a has to respect the
parity constraint, as seen in Lemma 2, where each edge
in M has to split an AB-cycle in two cycles with even
number of vertices.
This problem can be solved independently and recur-

sively for each AB-cycle. For an added adjacency a, the
AB-cycle is divided in two and the algorithm is then

Feijão BMC Bioinformatics 2015, 16(Suppl 14):S3
http://www.biomedcentral.com/1471-2105/16/S14/S3

Page 7 of 13

executed on both cycles. This is the Guided IG function
from Algorithm 1, with a small example shown in
Figure 8.
An interesting property of this algorithm is that it can

introduce new adjacencies, other than the ones from the
guide G, when this is the only option for an intermedi-
ate genome. Specifically, for any AB-cycle of size 2,
either from the original BP(A, B) or coming from the
recursion, the corresponding adjacency is chosen, since
there is no other option, as M has to be an intermediate
genome. For instance, in Figure 8, although only two
adjacencies from the guide are used, it is possible to
infer three more, because of the three cycles of size 2.
The next question is then, what to do with the larger

AB-cycles? One can think of two ways to answer this
question, based on the different approach between
homology-based and distance-based algorithms.
As an homology-based algorithm, after the guide is

processed, no new adjacency is added in M , since the aim
is to reconstruct contiguous ancestral regions (CARs),

without the need for a complete genome, and there is not
enough information to choose new adjacencies. If we
think as a distance algorithm, trying to minimize the tree
length, it is not a good idea to have a fragmented genome,
and completing the adjacencies in any non-crossing way
builds an intermediate genome M , minimizing d(A, M) +
d(B, M). Since at this point in the algorithm we have no
extra information, one way would be to just choose non-
crossing edges randomly. In practice the adjacencies were
chosen all from the same colored edges, either all A-edges
or all B-edges, in an attempt to maximize the common
adjacencies with input genomes A and B. The number of
common adjacencies does not correspond directly to the
number of A- or B-edges in a component, since the recur-
sion produces new A- and B-edges that might not be pre-
sent in the original genomes. From the two possible ways
to do that (all A- or all B-edges), we choose the one with
more common adjacencies. For instance, on the AB-cycle
of Figure 8, we can choose either the two green or two
blue edges, but both blue ones are original from B, and

Figure 8 Solving the Guided Intermediate problem for BP(A, B) with two AB-cycles, and guide G = {pq, rs, uv}. At each step, an
adjacency from G is taken, and if accepted its vertices and incident edges are removed, and two new edges are added to complete the
resulting two smaller AB-cycles. The problem is then recursively solved on the smaller cycles. (a) Initial BP(A, B), where adjacency pq is accepted.
(b) Second adjacency rs is also accepted. (c) The adjacency uv covers two components, because it crosses with a previously added adjacency,
and it is rejected. (d) In the end of the algorithm, three extra adjacencies (shown as dotted orange edges) are added for each AB-cycle of size 2,
since this is the only choice for a non-crossing edge belonging to an intermediate genome M. The final output is then the adjacency set {pq, rs}
plus the three adjacencies corresponding to the dotted orange edges.

Feijão BMC Bioinformatics 2015, 16(Suppl 14):S3
http://www.biomedcentral.com/1471-2105/16/S14/S3

Page 8 of 13

only one green is from A, therefore we choose the blue
adjacencies. If there is no difference, one option is picked
randomly.
A pseudo-code of the main functions of the ancestral

reconstruction algorithm is shown in Algorithm 1.
Finding adjacency guides
How do we find adjacency guides? The simplest answer is
to search directly in the tree, traversing it from the internal
node being reconstructed. For each leaf found, from
closest to farthest, its adjacencies are added to the guide. It
is a very naive algorithm but, somewhat surprisingly, it can
give good results. This guide will be called leaf guide.
Better adjacency guides potentially improve the recon-

struction, and there is already a good amount of well
designed algorithms for finding those guides. Namely, the
output of any homology algorithm, such as InferCARs [9],
ANGES [11], SCJ [7] or Pro-CARs [14], can be directly
used as a guide. It does not mean that all adjacencies from
the homology algorithm are automatically added to the
ancestral genome; each adjacency is still going to be con-
sidered and possibly rejected if it breaks any intermediate
genome property. This type of guide is the ancestral guide.
Any combination of ancestral guides and leaf guide

could potentially be used. In the Results section a more
detailed description of the combinations tested in this
work is given.

Results
The proposed algorithms were implemented in Python
and tested on simulated datasets, where a tree with
genomes at the leaves is given as input, and the algorithms
try to reconstruct the ancestral genomes at internal nodes
of the tree. The amount of correct adjacencies, missing
adjacencies and wrong adjacencies for each ancestral
genome is then measured.
To compare the proposed algorithms, as the homology

methods representatives we ran SCJ [7] and Pro-CARs
[14]. SCJ was chosen because since it is a very conserva-
tive method, it has a very low false positive rate [7],
providing an almost error-free set of adjacencies that
the intermediate genomes method can improve upon.
ProCARs was chosen because it was the easiest of the
homology methods to run, and according to its authors
it has similar results when compared to ANGES, Infer-
CARs and GapAdj [14]. For the distance methods,
PATHGROUPS [5] and GASTS [6] were chosen, as
these are the most recent methods for DCJ-based small
phylogeny.
For the Intermediate Genomes algorithm, four variations

of ancestral guides were tested: no ancestral guide, SCJ,
ProCARs and perfect. The perfect guide is a “cheating
algorithm” that uses as guide the correct ancestral gen-
ome, from the simulation. This is done to determine some
form of “upper bound” on the proposed IG algorithms, as

we can measure how many adjacencies are rejected by the
algorithm, even though they are present in the correct
ancestral genome. On all four types, after all adjacencies
from the ancestral guide are applied, the leaf guide is used.
These four variants will be called IG-Pure, IG-SCJ, IG-
ProCARS and IG-perfect, depending on the ancestral
guide.
For each of these four guide options, two variants were

tested: the homology approach, were no extra adjacencies
are added in the guided IG problem, for components lar-
ger than 2; and the distance approach, were adjacencies
are added, and since there is some randomization in the
choice, the algorithm runs 50 times, with the shortest DCJ
distance tree chosen as the output.
1: function IG_SMALL_PHYLOGENY (T, G)
2: while |T| > 2 do
3: n1, n2 ¬ find closest_leaves(T)
4: p ¬ parent(n1, n2)
5: G ¬ GET_NODE_GUIDE (p)
6: G [

p
]
¬ GUIDED_IG(G, G [n1], G [n2])

7: T.prune(n1, n2) ⊲ p becomes a
leaf.
8: return G
9: function GUIDED_IG(G, A, B)
10: I ¬ ∅
11: for C ∈ BP(A, B) do
12: I ¬ I ∪ GUIDED_IG_C(G, C)
13: return GENOME(I)
14: function GUIDED_IG_C(G, C)
15: if C = ∅ then: return ∅
16: n ¬ |C|
17: if n = 2 then: return C
18: while G ≠ ∅ do
19: pq ¬ pop_first_element(G)
20: if p ∉ or q ∉ C then: continue
21: i ¬ C.idx(p)
22: j ¬ C.idx(q)
23: if (j − i) mod 2 = 0 then: continue
24: A1 = GUIDED_IG_C(G, C[i + 1,..., j − 1])
25: A2 = GUIDED_IG_C(G, C[1,..., i−1]∪C[i+1,..., n])
26: return {pq} ∪ A1 ∪ A2

27: if HOMOLOGY then: return ∅
28: S1 ¬ {{C[1], C[2]}, {C[3], C[4]},... {C[n − 1], C[n]}}
29: S2 ¬ {{C[2], C[3]}, {C[4], C[5]},... {C[n], C[1]}}

30: return argmax
S∈{S1,S2}

(|S ∩ A| + |S ∩ B|)
Algorithm 1: Ancestral Reconstruction with Inter-

mediate Genomes. The main function is IG_SMALL_-
PHYLOGENY, that receives a tree T and a genome list
G , at the leaves of T , and returns a new list with
added ancestral genomes. In a bottom-up approach, it
chooses two leaves, to reconstruct the ancestral parent
node. First, it builds an adjacency guide with ancestral
and/or leaf guides, as described in the text. Then it calls

Feijão BMC Bioinformatics 2015, 16(Suppl 14):S3
http://www.biomedcentral.com/1471-2105/16/S14/S3

Page 9 of 13

GUIDED_IG, that will build a set of adjacencies of the
ancestral genome by calling GUIDED_IG_C for each
component of BP(A, B), which in turn calls itself recur-
sively each time an adjacency is applied in a component.
When there are no adjacency guides for a component,
in the homology approach no new adjacency is returned;
in the distance approach, two sets are built, with all
adjacencies from the same color, and the one with more
common adjacencies with the input genomes is
returned. After an ancestral genome is reconstructed, its
leaves are pruned so it becomes a leaf and the main
loop continues until all the ancestral genomes have
been reconstructed.

Simulated datasets
For each simulation, similarly as previous works [24], a
birth-death model with a birth rate of 0.001 and a death
rate of 0 generates an ultrametric tree with a chosen num-
ber of leaves. To modify the branch lengths, for each
branch a real number d is uniformly chosen from the
interval [−c, +c], and the branch length is multiplied by ed

. For this experiments, c = 2. The branch lengths are then
rescaled so the tree has a target diameter D. At the root of
the tree, a genome is generated and evolved through the
tree, applying l rearrangements in each branch, where l is
the branch length. The rearrangement events are ran-
domly chosen between reversals (90%), transpositions (5%)
and translocations (5%). We generated 2 main datasets,
one with 20 leaf genomes with 500 genes, and another
with 12 leaf genomes with 5000 genes. Also, the diameter
D varies from 1n to 4n, where n is the number of genes.
For each D, 10 simulations were generated. The leaf gen-
omes and the tree topology is then given as input for the
ancestral reconstruction methods.

Discussion
The simulation results are summarized in Figure 9, for the
homology algorithms, and in Figures 10, 11 and 12, for the
distance algorithms. More detailed results are shown in
Table 1 and running times for two different datasets are
displayed in Table 2.
For each internal node of the tree, given the recon-

structed genome R and the simulated ancestral S, three
measurements were made: correct adjacencies (true posi-
tives in Table 1), adjacencies in R also present in S;
missing adjacencies (false negatives in Table 1), present
in S but not in R; and wrong adjacencies (false positives
in Table 1), present in R but not in S. The percentage of
all adjacencies in each category, for each different tree
diameter D, is shown in the figures and table. For the
distance methods, the total DCJ length of the tree is
also measured, as well as the DCJ error, the distance
between R and S, and the total sum of these values is
shown on Figure 10.

The homology algorithms have a very low error rate,
because they tend to choose adjacencies only when there
is good information for doing it. In contrast, distance algo-
rithms usually have a higher number correct adjacencies,
at the cost of a much larger error rate, since they have to
build more complete genomes that minimize distances,
filling the missing adjacencies.
For the homology algorithms comparison, we can see

that the IG-Pure algorithm already has good results in
terms of correctly reconstructed adjacencies, almost the
same as ProCARs. When combined with SCJ and Pro-
CARs as ancestral guide, the IG algorithm improves on

Figure 9 Percentage of correct adjacencies found by the
Homology algorithms, for each tree diameter.

Figure 10 Percentage of correct adjacencies found by the
Distance algorithms, for each tree diameter.

Feijão BMC Bioinformatics 2015, 16(Suppl 14):S3
http://www.biomedcentral.com/1471-2105/16/S14/S3

Page 10 of 13

both original algorithms, with only a slight increase in
wrong adjacencies.
Compared to the distance methods, the IG algorithms

have better results in almost all measurements, especially
as the tree diameter increases. While the DCJ tree length
from PATHGROUPS and GASTS is always smaller on
average, which is expected since they are distance minimi-
zers, the IG algorithms are quite close, even though they
are not designed to minimize the tree length, and in a few
instances the IG-ProCARs algorithm even returned a
smaller tree. More interestingly, the DCJ error between
the reconstructed and real ancestral genomes is smaller in

the IG methods, significantly more as the diameter
increases, raising the question: is it the best choice to find
a genome median, minimizing the length of the tree, when
this median is actually more distant to the true ancestral
genome?
On the other hand, if we focus on the IG-perfect results

shown in Table 1 we can identify the proportion of adja-
cencies from the true ancestral genomes that were rejected
because they are not part of the intermediate genome
being reconstructed. The more distant the genomes are,
the more adjacencies are rejected, with almost 30% of the
adjacencies of the true ancestors being rejected when the
diameter is 4n. This shows that even though restricting
intermediate genomes on internal nodes seems to enhance
results over the unrestricted versions, there is still much to
be improved. An open question is whether a mixed
approach can be developed, allowing some flexibility on
departing from the intermediate genome restriction,
potentially obtaining better results and, perhaps the more
challenging aspect, how can we detect when to do it?

Conclusion
A new approach for ancestral reconstruction of gene
orders is proposed. The key aspect is the restriction that
each ancestral genome must be an intermediate genome
of its children. This would seem like a basic assumption in
parsimonious methods, but it was not used in previous
methods. The results of this paper indicate that, even with
naive approaches, simple algorithms based on intermedi-
ate genomes are fast and obtain good results. Furthermore,
they are easily combined with homology-based algorithms,
enhancing their results.
There are many directions for improving the current

approach, as many simple algorithm design decisions were
made in this first study. For instance, the order of the adja-
cencies in the guides is definitely important in the recon-
structed ancestral genomes, as it potentially changes
which adjacencies are accepted or rejected. A better logic
in selecting which adjacencies are used and in which order
they should be considered might increase the number of
correctly reconstructed adjacencies. For the distance-based
approach, when adjacencies have to be included without
guide information, instead of the simple approach pre-
sented here, a better option would be to choose intermedi-
ate genomes that try to respect the distance given by the
tree branch lengths, if available.
In a more high level view, it would be interesting to

investigate the concept of intermediate genomes in
more complex DCJ models, that include insertion and
deletions events [25,26], to develop more complete
ancestral reconstruction methods, that can accept gen-
omes with different sets of genes, a limitation of any
parsimonious method based on the basic DCJ distance.

Figure 11 Total DCJ tree length for the distance algorithms.

Figure 12 Total DCJ distance between the simulated and
reconstructed ancestors for the distance algorithms.

Feijão BMC Bioinformatics 2015, 16(Suppl 14):S3
http://www.biomedcentral.com/1471-2105/16/S14/S3

Page 11 of 13

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
I would like to thank João Meidanis for the fruitful discussions and useful
suggestions, and Priscila Biller for the ideas about the search for alternatives
to median genomes.
Publication of this article was funded by the German Research Foundation
(DFG) and the Open Access Publication Fund of Bielefeld University.
This article has been published as part of BMC Bioinformatics Volume 16
Supplement 14, 2015: Proceedings of the 13th Annual Research in
Computational Molecular Biology (RECOMB) Satellite Workshop on
Comparative Genomics: Bioinformatics. The full contents of the supplement
are available online at http://www.biomedcentral.com/bmcbioinformatics/
supplements/16/S14.

Published: 2 October 2015

References
1. Sankoff D, Blanchette M: Multiple genome rearrangement and breakpoint

phylogeny. Journal of Computational Biology 1998, 5(3):555-570.
2. Yancopoulos S, Attie O, Friedberg R: Efficient sorting of genomic

permutations by translocation, inversion and block interchange.
Bioinformatics 2005, 21(16):3340-6.

3. Bergeron A, Mixtacki J, Stoye J: A unifying view of genome
rearrangements. Lecture Notes in Computer Science 2006, 4175:163-173.

4. Alekseyev MA, Pevzner PA: Breakpoint graphs and ancestral genome
reconstructions. Genome Research 2009, 19(5):943-57.

5. Zheng C, Sankoff D: On the PATHGROUPS approach to rapid small
phylogeny. BMC bioinformatics 2011, 12(Suppl 1):4.

6. Xu W, Moret B: GASTS: Parsimony scoring under rearrangements.
Proceedings of the 11th International Workshop on Algorithms in
Bioinformatics (WABI 2011) 2011, 351-363.

7. Biller P, Feijão P, Meidanis Ja: Rearrangement-based phylogeny using the
single-cut-or-join operation. IEEE/ACM Transactions on Computational
Biology and Bioinformatics 2013, 10(1):122-134.

8. Feijao P, Meidanis J: SCJ: a breakpoint-like distance that simplifies several
rearrangement problems. IEEE/ACM Transactions on Computational Biology
and Bioinformatics 2011, 8:1318-1329.

9. Ma J, Zhang L, Suh BBB, Raney BJBJ, Burhans RC, Kent WJJ, Blanchette M,
Haussler D, Miller W: Reconstructing contiguous regions of an ancestral
genome. Genome Research 2006, 16(12):1557-1565.

10. Gagnon Y, Blanchette M, El-Mabrouk N: A flexible ancestral genome
reconstruction method based on gapped adjacencies. BMC bioinformatics
2012, 13(Suppl 1(Suppl 19)):4.

11. Jones BR, Rajaraman A, Tannier E, Chauve C: ANGES: reconstructing
ANcestral GEnomeS maps. Bioinformatics (Oxford, England) 2012,
28(18):2388-2390.

Table 1 Summary of the results for each algorithm, in the 20 genomes with 500 genes dataset.

Diameter D = 1n D = 2n D = 3n D = 4n

Results (%) TP FN FP TP FN FP TP FN FP TP FN FP

Homology methods

SCJ 77.5 21.5 0.0 61.0 38.0 0.0 48.9 50.1 0.0 38.7 60.3 0.1

ProCARs 90.2 8.8 0.4 77.6 21.4 0.7 63.7 35.3 1.2 48.6 50.4 1.9

IG-Pure 90.3 8.7 0.2 76.6 22.4 0.5 62.8 36.2 1.0 47.5 51.5 1.9

IG-SCJ 91.4 7.6 0.2 78.1 20.9 0.5 64.7 34.3 1.1 48.8 50.2 1.9

IG-ProCARs 92.3 6.7 0.3 80.3 18.7 0.7 66.3 32.7 1.6 50.7 48.3 2.8

IG-Perfect 95.4 3.6 0.1 90.5 8.5 0.2 82.0 17.0 0.3 71.7 27.3 0.5

Distance methods

GASTS 95.6 3.4 3.4 87.3 11.7 11.7 73.8 25.2 25.2 57.3 41.7 41.7

PATHGROUPS 94.7 4.3 4.7 82.6 16.4 16.9 69.0 30.0 30.5 54.2 44.8 45.3

IG-Pure 94.7 4.3 4.3 87.1 11.9 12.1 75.7 23.3 23.6 62.2 36.8 37.2

IG-SCJ 95.4 3.6 3.7 88.3 10.7 10.9 77.0 22.0 22.2 63.1 35.9 36.3

IG-ProCARs 95.8 3.2 3.3 89.3 9.7 9.9 78.8 20.2 20.4 65.1 33.9 34.2

IG-Perfect 96.7 2.3 2.4 93.3 5.7 5.8 86.0 13.0 13.3 75.4 23.6 24.0

Each number is the average of 10 simulations, for 4 different tree diameters. The columns show the percentage of true positives (correctly reconstructed
adjacencies), false negatives (missing adjacencies, present in true ancestral but not on the reconstructed genome) and false positives (wrong adjacencies, present
in the reconstructed genome but not on the true ancestral).

Table 2 Average running time of 10 runs of each algorithm, for different tree diameters in two different simulated
datasets.

Dataset 20 genomes, 500 genes 12 genomes, 5000 genes

Diameter D = 1n D = 2n D = 3n D = 4n D = 1n D = 2n D = 3n D = 4n

SCJ 3 s 3 s 4 s 4 s 7 s 9s 11 s 11 s

PATHGROUPS 18 s 40 s 57 s 1 m18 s 22 m16 s 1 h21 m42 s 1 h16 m34 s 31 m13 s

GASTS 22 s 1 m6 s 2 m46 s 4 m41 s 1 h14 m6 s 12 h27 m13 s 19 h8 m55 s 22 h2 m32 s

ProCARs 14 m9 s 30 m10 s 36 m28 s 1 h9 m5 s - - - -

IG-Pure 2 s 3 s 3 s 3 s 1 m38 s 2 m23 s 2 m44 s 1 m53 s

IG-SCJ 2 s 3 s 4 s 4 s 1 m4 s 1 m41 s 2 m8 s 1 m26 s

IG-ProCARs 3 s 3 s 4 s 4 s - - - -

In the combined IG algorithms, only the IG time is shown, without the homology method time (SCJ or ProCARs). Also, for the IG-methods ran as distance-based
algorithms, the time is roughly 50× more, since the algorithms were repeated 50 times and the smallest tree was chosen.

Feijão BMC Bioinformatics 2015, 16(Suppl 14):S3
http://www.biomedcentral.com/1471-2105/16/S14/S3

Page 12 of 13

http://www.biomedcentral.com/bmcbioinformatics/supplements/16/S14
http://www.biomedcentral.com/bmcbioinformatics/supplements/16/S14
http://www.ncbi.nlm.nih.gov/pubmed/9773350?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9773350?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15951307?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15951307?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19218533?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19218533?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21342571?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21342571?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23702549?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23702549?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21339538?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21339538?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16983148?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16983148?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23281872?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23281872?dopt=Abstract

12. Yang N, Hu F, Zhou L, Tang J: Reconstruction of ancestral gene orders
using probabilistic and gene encoding approaches. PloS one 2014,
9(10):108796.

13. Hu F, Lin Y, Tang J: MLGO: phylogeny reconstruction and ancestral
inference from gene-order data. BMC bioinformatics 2014, 15(1):354.

14. Perrin A, Varré J-s, Blanquart S, Ouangraoua A: ProCARs : Progressive
Reconstruction of Ancestral Gene Orders. BMC Genomics 2015, 16(Suppl
5):6.

15. Braga MDV, Stoye J: The solution space of sorting by DCJ. Journal of
Computational Biology 2010, 17(9):1145-65.

16. Tannier E, Zheng C, Sankoff D: Multichromosomal median and halving
problems under different genomic distances. BMC bioinformatics 2009,
10:120.

17. Ouangraoua A, Bergeron A: Combinatorial structure of genome
rearrangements scenarios. Journal of computational biology : a journal of
computational molecular cell biology 2010, 17(9):1129-1144, doi:10.1089/
cmb.2010.0126.

18. The On-Line Encyclopedia of Integer Sequences. 2010, Accessed: 2015-
06-14.

19. Xu AW: The median problems on linear multichromosomal genomes:
graph representation and fast exact solutions. Journal of Computational
Biology 2010, 17(9):1195-211.

20. Zhang M, Arndt W, Tang J: An exact solver for the DCJ median problem.
Pacific Symposium on Biocomputing 2009, 138-49.

21. Haghighi M, Sankoff D: Medians seek the corners, and other conjectures.
BMC bioinformatics 2012, 13(Suppl 1(Suppl 19)):5.

22. Swenson KM, Moret BME: Inversion-based genomic signatures. BMC
bioinformatics 2009, 10(Suppl 1):7, doi:10.1186/1471-2105-10-S1-S7.

23. Swenson KM, To Y, Tang J, Moret BME: Maximum independent sets of
commuting and noninterfering inversions. BMC bioinformatics 2009,
10(Suppl 1):6, doi:10.1186/1471-2105-10-S1-S6.

24. Lin Y, Hu F, Tang J, Moret B: Maximum Likelihood Phylogenetic
Reconstruction from High-Resolution Whole-Genome Data and a Tree of
68 Eukaryotes. Pacific Symposium on Biocomputing 2013, 285-296.

25. Braga MDV, Willing E, Stoye J: Double cut and join with insertions and
deletions. Journal of Computational Biology 2011, 18(9):1167-84,
doi:10.1089/cmb.2011.0118.

26. Compeau PE: DCJ-Indel sorting revisited. Algorithms for molecular biology :
AMB 2013, 8(1):6, doi:10.1186/1748-7188-8-6.

doi:10.1186/1471-2105-16-S14-S3
Cite this article as: Feijão: Reconstruction of ancestral gene orders
using intermediate genomes. BMC Bioinformatics 2015 16(Suppl 14):S3.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Feijão BMC Bioinformatics 2015, 16(Suppl 14):S3
http://www.biomedcentral.com/1471-2105/16/S14/S3

Page 13 of 13

http://www.ncbi.nlm.nih.gov/pubmed/25376663?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/25376663?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/26040958?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/26040958?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20874401?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19386099?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19386099?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20874400?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20874400?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20874404?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20874404?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19209699?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23281922?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19208174?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19208163?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19208163?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23424133?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23424133?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23424133?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21899423?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21899423?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23452758?dopt=Abstract

	Abstract
	Background
	Results

	Background
	Preliminaries
	Intermediate genomes
	Properties of intermediate genomes
	Counting intermediate genomes

	Intermediate genomes for ancestral reconstruction
	Adjacency guides
	Finding adjacency guides

	Results
	Simulated datasets

	Discussion
	Conclusion
	Competing interests
	Acknowledgements
	References

