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Abstract

Background: Even for moderate size inputs, there are a tremendous number of optimal rearrangement scenarios,
regardless what the model is and which specific question is to be answered. Therefore giving one optimal solution
might be misleading and cannot be used for statistical inferring. Statistically well funded methods are necessary to
sample uniformly from the solution space and then a small number of samples are sufficient for statistical inferring.

Contribution: In this paper, we give a mini-review about the state-of-the-art of sampling and counting
rearrangement scenarios, focusing on the reversal, DCJ and SCJ models. Above that, we also give a Gibbs sampler
for sampling most parsimonious labeling of evolutionary trees under the SCJ model. The method has been
implemented and tested on real life data. The software package together with example data can be downloaded
from http://www.renyi.hu/~miklosi/SCJ-Gibbs/

Background
The minimum number of mutations necessary to trans-
form one genome into another is only one of the statistics
that describe the evolutionary relationship between gen-
omes. By definition, this number is constant for any most
parsimonious rearrangement scenario. On the other hand,
other statistics like the breakpoint reuse [1,2], sizes and
positions of inversions [3,4] vary among the possible solu-
tions, and drawing these values from a single optimal solu-
tion might be statistically biased. Instead of highlighting
one most parsimonious solution, we are interested in
expectations of the above mentioned statistics, for exam-
ple, what is the expected usage of a particular breakpoint,
what is the expected (average) size of reversals. Statistical
samples are needed for hypothesis testing, too, like testing
the Random Breakpoint Model [1,2] or the hypothesis that
there is selection for maintaining balanced replichors [4].
The final goal is to sample rearrangement scenarios

from a statistically well-funded distribution, for example,
from some Bayesian distribution. Some efforts have

been made to develop Monte Carlo methods to sample
from such distributions [5-7].
The theoretical study of the computational efficiency of

the Monte Carlo methods is in its childhood, and the
first attempts use simplifications. A possible simplifica-
tion is to restrict the distribution only for the most parsi-
monious solutions. This restricted distribution will be the
uniform one when the rearrangement model is the rever-
sal model [8] and will be close to the uniform distribu-
tion in case of the DCJ and SCJ models [9]. It is well
known that sampling from a distribution close to the uni-
form distribution and sampling from the uniform distri-
bution have similar computational complexity, since
importance sampling or rejection sampling can be used
to transform one of the problems into the another [10].
Therefore studying the computational complexity of
sampling from the uniform distribution is theoretically
well-funded even for the DCJ and SCJ models.
The general theory of the computational complexity of

counting combinatorial objects as well as sampling from
the uniform distribution of them has been developed
since the late seventies and eighties [11,12]. In this paper,
we give an overview of what we know about sampling
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and counting genome rearrangement scenarios, what are
the proved theorems and what are the conjectures and
open questions. Above that, we give a Gibbs sampler for
sampling uniformly the most parsimonious labeling of
internal nodes of a rooted binary tree under the SCJ
model. This sampling problem has an unknown compu-
tational complexity, and as a first step towards resolving
its computational complexity, we prove the irreducibility
of the Gibbs sampler. The method has been tested on
real life data.

Complexity classes
Below we review the complexity classes needed in this
paper together with the important main theorems. First
we start with the decision problems since the counting
problems are defined via them and also main theorems
on counting complexity classes which use these decision
complexity classes.
Definition 1 A decision problem is in P if a determi-

nistic Turing machine can solve it in polynomial time.
This means that there are efficient algorithms that can
quickly solve such problems.
A decision problem is in NP if a non-deterministic

Turing machine can solve it in polynomial time. An
equivalent definition is that a witness, namely, a solution
that proves the “yes” answer to the question, can be veri-
fied in polynomial time.
Finally, a decision problem is in NP-complete if it is in

NP and any problem in NP is polynomial reducible to it.
Formally, optimization problems as hard as the NP-
complete problems are called NP-hard problems.
Polynomial reducibility means that any problem in NP

could be solved efficiently if any NP-complete problem
was solvable efficiently.
To give examples from the field of genome rearrange-

ments, deciding if k number of reversals is sufficient to
transform a genome into another is in P [13], while decid-
ing if k number of reversals is sufficient to explain the evo-
lutionary history of three genomes is NP-complete and
finding the evolutionary history with the minimum num-
ber of reversals is NP-hard. [14].
Definition 2 A decision problem is in RP if a random

algorithm exists with the following properties: a) the run-
ning time is deterministic and grows polynomially with
the size of the input, b) if the answer is “no,” then the algo-
rithm answers “no” with probability 1, c) if the answer is
“yes,” then it answers “yes” with probability at least 1/2.
We know that P ⊆ RP ⊆ NP. In this paper, we will

assume that RP ≠ NP and thus P ≠ NP.
Now we turn to define counting problems.
Definition 3 A counting problem is in #P if it asks for

the number of witnesses of an NP problem.
A counting problem in #P is in FP if it can be solved in

polynomial time.

A counting problem in #P is in #P-complete if any
problem in #P can be reduced to it by a polynomial time
counting reduction.
Hard decision problems cannot be counted easily.

Although if a decision problem X is in NP-complete, it
does not necessarily imply that the corresponding
counting problem #X is in #P-complete, however, it is
easy to see if #X was in FP that would immediately
imply that P = NP. To highlight this fact with a genome
rearrangement problem, let X be the decision problem if
k reversals are sufficient to explain the evolutionary his-
tory of three genomes, and let #X be the counting pro-
blem how many evolutionary history of three genomes
exist with k reversals. If there was an efficient algorithm
to count the later, the decision problem would be also
easy: when the number of evolutionary histories is 0 for
a particular k and three genomes, the answer would be
“no” for the question whether or not such history exists.
If a decision problem is easy, the corresponding

counting problem might still be hard. In his seminal
paper in which the #P complexity class has been
defined, Valiant proved that counting the number of
perfect matchings in a bipartite graph is #P-complete,
although finding one perfect matching is easy [11].
Counting problems also have random approximation

algorithms. The two main complexity classes are the
following.
Definition 4 A counting problem in #P is in FPRAS

(Fully Polynomial Randomized Approximation Scheme)
if there exists a randomized algorithm such that for any
instance x, and �, δ > 0, it generates an approximation
f̂ for the solution f, satisfying

P
(

f
1 + ε

≤ f̂ ≤ f (1 + ε)
)

≥ 1 − δ, (1)

and the algorithm has a running time bounded by a
polynomial of |x|, 1/�, − log(δ). Such an algorithm is
also called an FPRAS algorithm and we will also say
equivalenty that the problem has an FPRAS
approximation.
Definition 5 A counting problem in #P is in FPAUS

(Fully Polynomial Almost Uniform Sampler) if there
exists a randomized algorithm such that, for any
instance x and � > 0, it generates a random element of
the solution space (the set of solutions) following a distri-
bution p satisfying

dTV(U, p) ≤ ε (2)

where U is the uniform distribution over the solution
space, and the algorithm has a time complexity bounded
by a polynomial of |x|, and − log(�). Here dTV denotes
the total variation distance between two probaility
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distributions over the same finite domain, by definition,
the total variation distance of p and π is

dTV(p,π) :=
1
2

∑
x∈X

|p(x) − π(x)| (3)

Such an algorithm is also called FPAUS and we will
also say that a problem has an FPAUS.
The two counting classes have a strong correspon-

dence. Jerrum, Valiant and Vazirani proved that any
counting problem belonging to a large class of counting
problems is in FPRAS if and only if it is in FPAUS [12].
The proof is constructive, so given one of the algo-
rithms, the other one can be explicitly constructed. This
large class is called self-reducible counting problems.
Here we skip the formal definition. Informally, a self-
reducible counting problem is such that the extension
of any prefix of a partial solution is the solution of
another problem instance (and other mild technical con-
ditions are necessary, the exact definition can be found in
[12]). For example, any genome rearrangement problem
asking for most parsimonious genome rearrangement
scenarios are self-reducible counting problems. Indeed,
assume that a genome G1 has started transforming into
G2 in a most parsimonious way. If a few transformations
tr are applied on G1, then the possible finishing of this
partial scenario are the most parsimonious rearrange-
ment scenarios between G1 * tr and G2, where G1 * tr
denotes the genome we get by applying the transforma-
tions tr on G1. For self-reducible counting problems,
FPRAS algorithms are frequently given via FPAUS, and
FPAUS is given via rapidly mixing Markov chains. We
skip the definition of rapidly mixing Markov chains.
Roughly speaking, a Markov chain is rapidly mixing if it
can be used for an FPAUS algorithm.
It is hard to count, even approximately, the number of

witnesses of a hard decision problem. It is easy to see
that an FPRAS algorithm for a #X counting problem
whose corresponding decision problem X is in NP-com-
plete would imply that RP = NP [15].
Even easy decision problems might be hard to count

approximately. Jerrum, Valiant and Vazirani proved that
an FPRAS algorithm for counting the number of cycles
in a directed graph would imply that RP = NP [12].
On the other hand, there are #P-complete problems

that have FPRAS approximations. An example for this is
counting the number of total orderings of partially
ordered sets, which has an FPAUS algorithm via a
rapidly mixing Markov chain [16] and thus, the problem
is also in FPRAS since it is self-reducible. On the other
hand, it is #P-complete [17].
To summarize, hard decision problems are hard to

count both exactly and approximately, assuming that P
≠ NP and RP ≠ NP. The corresponding counting

problem of an easy decision problem might be i) easy
(in FP), ii) hard to exactly count (#P-complete) but have
a good stochastic approximation (FPRAS) or iii) hard to
count even approximately (not in FPRAS assuming that
RP ≠ NP). Although no strict trichotomy exists, the
majority of the counting problems fall into these three
categories just like the majority of the decision problems
are either in P or in NP-complete.
The interested reader is referred to the survey book by

Mark Jerrum [15], which gives a detailed introduction
on the algorithmics of sampling and counting.

Genome Rearrangement models
Here we consider 3 genome rearrangement models: the
reversal, the DCJ and the SCJ model.
The reversal model
In the reversal model, genomes are represented as
signed permutations. Each number represents a synteny
block in a linear, unichromosomal genome. A reversal
flips a consecutive part of the permutation, it reverses
the order of the number and changes all signs. For
example, a reversal from +3 till +5 on permutation (+2
+3 −1 −4 +6 +5 −8 +7) creates permutation (+2 −5 −6
+4 +1 −3 −8 +7). Polynomial running time algorithms
exist to calculate the minimum number of reversals
transforming a signed permutation into another
[13,18,19]. Such series of reversals are called most parsi-
monious reversal scenarios.
The DCJ model
In the Double Cut and Join model, genomes are edge-
labeled directed graphs, each label is unique, and each
vertex has a total degree (sum of incoming and outgoing
edges) either 1 or 2. Such graphs can be uniquely
decomposed into paths and cycles. Degree 2 vertices are
called adjacencies, degree 1 vertices are called telomeres.
Each edge represents a synteny block, thus in this
model, genomes are mixed multichro- mosomal gen-
omes, namely, the chromosomes may be both linear and
circular. The ends of the edges are called extremities.
Since the edges are directed, the two ends are distin-
guishable. A Double Cut and Join operation takes at
most two vertices and shuffles them into at most two
new vertices meanwhile keeping the labels of the edges.
Finding a shortest DCJ scenario transforming a genome
into another can also be done in polynomial time [20].
The SCJ model
In the Single Cut or Join model, genomes are modeled
exactly in the same way as in the DCJ model. A Single
Cut or Join operation either takes an adjacency and cuts
it into two parts or takes two telomeres and joins them
into an adjacency. In the SCJ model, the simplified repre-
sentation of the genomes, which is the list of adjacencies
that the genome has, is useful. Given a set of common
synteny blocks a set of genomes share, each genome can
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be uniquely represented by its list of adjacencies. With n

common synteny blocks,
(
2n
2

)
possible adjacencies can

be considered, which have
2

⎛
⎝2n
2

⎞
⎠ possible subsets.

However, not all these subsets represent a genome. We
say that two adjacencies are in conflict (or they are con-
flicting adjacencies) if they share an extremity. It is easy
to see that conflict-free sets of adjacencies are exactly the
sets of adjacencies that represent genomes [21]. Finding a
shortest SCJ scenario is also an easy computational task
[21].

Results
State-of-the-art of sampling and counting genome
rearrangement scenarios
We consider the reversal (REV), DCJ and SCJ models in
this section. For each model, five specific questions are
considered:

• Pairwise rearrangement problem Given two gen-
omes, G1 and G2, and one of the rearrangement
models, M , how many most parsimonious rearran-
gement scenarios exist that transform G1 into G2?
We will denote this number by nM (G1, G2) and the
counting problem to estimate this number by #M,
where M ∈ {REV, DCJ, SCJ}.
• Most parsimonious median problem Given a ser-
ies of genomes, G1, G2...Gk , and one of the rearran-
gement models, M , how many genomes Gm exist

that minimize
∑k

i=1
dM (Gi, Gm) , where dM(G, G’)

denotes the minimum number of operations needed
to transform G into G’ under the model M. We will
call each Gm an optimal median. This set will be
denoted by OM(G1,G2, ...Gk).
• Most parsimonious median scenarios Given a
series of genomes, G1, G2...Gk, and one of the rear-
rangement models, M , how many optimal median
scenarios exist. That is, count for all optimal med-
ians the number of possible rearrangement scenar-
ios. With a formula, we are looking for

∑
Gm∈OM(G1,G2,...Gk)

k∏
i=1

nM (Gi, Gm) .

• Most parsimonious labeling of evolutionary
trees Given one of the rearrangement models, M , a
rooted binary tree, T (V, E), where V is the disjoint
union of leaves L and internal nodes I. Furthermore,
given a function f : L → G that labels the leaves,
where G denotes the set of possible genomes. We

are looking for how many functions g : V → G exist
such that for any v ∈ L, g(v) = f (v) and g minimizes∑
(u,v)∈E

dM
(
g(u), g(v)

)
.

We will denote this set of functions by O′
M

(
T, f

)
.

• Most parsimonious scenarios on evolutionary
trees Given one of the rearrangement models, M , a
rooted binary tree T (V, E) and a labeling function f
as described above, we are looking for∑
g∈O′

M(T ,f)

∏
(u,v)∈E

nM
(
g(u), g(v)

)
.

For each model, we introduce the state-of-the-art of
our knowledge. It is also summarized in Table 1.
The reversal model
The reversal model is the computationally most compli-
cated among the three considered models. Finding one
optimal median is NP-hard [14], therefore even an FPRAS
approximation is not possible for counting the optimal
medians assuming that RP ≠ NP. Similarly, counting the
optimal medians is not in FP, assuming that P ≠ NP. It is
easy to see that finding an optimal median of three gen-
omes is polynomially reducible to finding most parsimo-
nious labelings for evolutionary trees. Indeed, given three
genomes G1, G2 and G3, label the leaves of a rooted binary
tree with three leaves with G1, G2 and G3, and any most
parsimonious labeling of the internal nodes will provide
an optimal median: the genome labeling the internal node,
which is not the root, is an optimal median. Therefore
finding a most parsimonious labeling of evolutionary trees
under the reversal model is also NP-hard, and thus, count-
ing the solutions does not admit an FPRAS approximaion
assuming that RP ≠ NP and it is not in FP assuming that P
≠ NP. Similarly, any most parsimonious median scenario
provides a most parsimonious median, as well as, any
most parsimonious scenario on an evolutionary tree pro-
vides a most parsimonious labeling, therefore these pro-
blems are also NP-hard, and the number of solutions does
not have FPRAS approximations assuming that RP ≠ NP
and not in FP assuming that P ≠ NP.
The only open question is the complexity of #REV,

namely, counting the most parsimonious scenarios
between two genomes. No polynomial time algorithm
exists for #REV. Siepel [22] developed a method to
count all optimal next steps, namely, what are the rever-
sals r for which

dREV(G1ρ,G2) = dREV(G1,G2) − 1,

but this cannot give a polynomial time algorithm to
calculate the number of most parsimonious sorting

Miklós and Smith BMC Bioinformatics 2015, 16(Suppl 14):S6
http://www.biomedcentral.com/1471-2105/16/S14/S6

Page 4 of 14



scenarios between G1 and G2. Since nobody was able to
come up with a fast counting algorithm in the last 15
years, #REV is conjectured to be in #P-complete.
Several attempts have been made to develop a rapidly

mixing Markov chain converging to the uniform distribu-
tion of the most parsimonious scenarios. Such a Markov
chain would provide an FPAUS algorithm, and since
#REV is self-reducible, this would immediately imply that
#REV is in FPRAS. Unfortunately, the only theorem
proved here is a negative result: Miklós et al. [23] proved
that the most commonly used window-resampling Mar-
kov chain [5-7] is torpidly mixing. The high level expla-
nation why the window-resampling Markov chain is
torpidly mixing is the following. There exist (an infinite
series of) genomes G1 and G2 having large subsets of
most parsimonious rearrangement scenarios R1 and R2

such that for any r1 ∈ R1 and r2 ∈ R2 scenarios it
is impossible to transform r1 into r2 by changing only an
o(|r1|)[= o(|r2|)] window in each step. With other words,
“big jumps” are necessary to move from R1 to R2. These
big jumps happen to have exponentially small acceptance
ratios in the Metropolis-Hastings algorithm for almost all
r1 and r2, making the Markov chain torpidly mixing.
However, this does not imply that #REV is not in

FPRAS, since other methods might lead to rapidly mix-
ing Markov chains. Miklós and Darling [24] and Miklós
and Tannier [9] developed parallel Markov chain meth-
ods as candidates for rapidly mixing Markov chains for
#REV. It is still open whether or not these Markov
chains are rapidly mixing.
The DCJ model
Finding an optimal DCJ median is also NP-hard, there-
fore - similar to the reversal model - four of the listed
problems do not have an FPRAS approximation assum-
ing that RP ≠ NP. On the other hand, Miklós and Tan-
nier [25] proved that #DCJ is in FPRAS and in FPAUS.
They used a Markov chain that walks on subsets of DCJ

scenarios and rapidly converges to the distribution pro-
portional to the size of the sets. Each set is such that
sharp uniform sampling from them is possible in poly-
nomial time. Combining the rapidly mixing Markov
chain and uniform sampler from the sets provides an
FPAUS algorithm. Since the #DCJ problem is self-redu-
cible, it also gives an FPRAS algorithm.
A simpler Markov chain directly converging to the

uniform distribution of all DCJ scenarios is also possible.
Braga and Stoye [26] proved that any DCJ scenario can
be obtained from any other DCJ scenario by successive
transformations where each transformation changes only
two consecutive DCJ operations. Therefore a Markov
chain that randomly changes two consecutive DCJ
operations in a DCJ scenario explores the entire solution
space and, using standard Metropolis-Hastings techni-
ques [27,28], it will converge to the uniform distribu-
tion. Since this Markov chain uses small perturbations,
it is easy to see that the chain has a small diameter (O
(n2) perturbations is sufficient to get from any DCJ sce-
nario to any other), this chain is also a candidate for
rapid mixing and thus for an FPAUS algorithm. How-
ever, giving a formal proof of rapid mixing of this chain
seems to be surprisingly hard and is still a remaining
problem to be solved.
Ouangraoua and Bergeron [29] and Braga and Stoye

[26] gave polynomial algorithms to count the number of
DCJ scenarios for co-tailed genomes or when the num-
ber of even length paths in the adjacency graph is lim-
ited. However, when the number of even length paths in
the adjacency graph is not bounded, there is no fast
algorithm to count the number of DCJ scenarios, and
thus #DCJ is conjectured to be #P-complete.
The SCJ model
The Single Cut or Join model is computationally the
simplest genome rearrangement model [21]. The deci-
sion/optimization counterpart of all the listed five

Table 1 The computational complexity of five specific counting problems under three different rearrangement models
as described in details in the text.

Reversal DCJ SCJ

Pairwise rearrangement C: #P-complete C: #P-complete T: in FP [30]

C: in FPRAS T: in FPRAS [25]

Median T: not in FP‡ T: not in FP‡ T: in FP*

T: not in FPRAS‡ T: not in FPRAS‡

Median scenario T: not in FP‡ T: not in FP‡ T: #P-complete[32]

T: not in FPRAS‡ T: not in FPRAS‡ U: in/not in FPRAS

Tree labeling T: not in FP‡ T: not in FP‡ U: FP/#P-complete

T: not in FPRAS‡ T: not in FPRAS‡ U: in/not in FPRAS

Tree scenario T: not in FP‡ T: not in FP‡ T: #P-complete[32]

T: not in FPRAS‡ T: not in FPRAS‡ T: not in FPRAS [30]

Notations: T: theorem, C: conjecture, U: unknown complexity, and there is no evidence to set up a conjecture favoring one of the possibilities. All theorems are
referenced except: ‡: based on the fact that the corresponding optimization problem is NP-hard, *: proved in this paper. In all cases, “not in FP” should be
considered under the assumption that P ≠ NP. Similarly, “not in FPRAS” should be considered under the assumption that RP ≠ NP.
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problems are in P, therefore computational intractability of
the counting versions cannot be directly concluded from
the complexity of decision/optimization problems. Some
of the counting problems under the SCJ model are easy
(are in FP), some of them are computationally intractable
(are in #P-complete and have no FPRAS approximations
assuming that RP ≠ NP), and some of them have unknown
computational complexity as described below.
Counting the number of most parsimonious SCJ opera-

tions is in FP as proved in [30]. Feijão and Meidanis [21]
proved that there is a unique optimal SCJ median for 3 gen-
omes. Their proof trivially extends to show that the optimal
median remains unique for an arbitrary odd number of gen-
omes: the optimal median contains the set of adjacencies
that can be found in the majority of the genomes. Indeed,
the SCJ distance between two genomes G1 and G2 is simply
|Π1ΔΠ2|, where Πi is the set of adjacencies in Gi. The key
observation is that it is impossible that two conflicting adja-
cencies are present in more than half of the genomes, there-
fore the genome that contains exactly the adjacencies that
are present in the majority of the genomes is a valid
genome.
When the number of genomes is even, each extremity

is in at most two adjacencies that are present in exactly
half of the genomes. It is easy to see that an optimal
median contains the set of adjacencies that are present
in more than half of the genomes and any conflict-free
subset of the adjacencies that are present in exactly half
of the genomes. The number of optimal medians can be
counted in the following way.
Given a set of genomes G = {G1, G2, ...G2k} having

the same synteny blocks, we define the conflict graph C
(V, E) in the following way: The vertex set V is the set
of extremities present in G and there is an edge
between v1 and v2 if and only if the adjacency (v1, v2) is
present in exactly half of the genomes.
Observation 1 The maximum degree of any vertex in

C is 2.
Proof This follows from the fact that any extremity

can be in at most two adjacencies which are present in
exactly half of the genomes.
The consequence of Observation 1 is that C can be

decomposed into isolated vertices, paths and cycles. Any
conflict-free subset of the adjacencies is a matching (non-
necessary maximum and possibly empty) of C. The num-
ber of matchings is the product of the number of match-
ings on each component. Therefore it suffices to count
this number. It is well-known [31] that the number of
matchings in a length n path is

⌊n
2

⌋
∑
k=1

(
n − k
k

)

and the number of matchings in a length n cycle is

⌊n
2

⌋
∑
k=1

n
n − k

(
n − k
k

)
.

Since obtaining the conflict graph, decomposing it
into paths and cycles, counting the number of match-
ings on each component and multiplying these numbers
all can be done in polynomial time, we can announce
the following theorem:
Theorem 1 The number of optimal medians under the

SCJ model is in FP.
Although calculating the number of optimal medians is

easy, recently Miklós and Smith [32] proved that the
number of most parsimonious median scenarios is in #P-
complete. The proof uses a technique (modulo prime
number calculations) that is typically used in those #P-
complete problems that admit an FPRAS approximation.
Define a simple Markov chain that walks on the optimal
median genomes by adding or removing a random adja-
cency and converges to the distribution proportional to
the number of scenarios that the median genome has by
applying the Metropolis-Hastings algorithm [27,28]. Mik-
lós and Smith proved that this Markov chain is torpidly
mixing even if the number of genomes are fixed to 4, and
only the size of the genomes are allowed to grow (unpub-
lished result). Therefore it is absolutely unclear whether
the number of most parsimonious median scenarios
under the SCJ model has an FPRAS approximation or an
FPRAS approximation would imply RP = NP. If the pro-
blem is in FPRAS, one will need a deeper understanding
of the solution space to employ a more a sophisticated
Markov chain method.
The number of most parsimonious scenarios on evo-

lutionary trees under the SCJ model is known to be
computationally intractable. Miklós and Smith [32]
proved that it is #P-complete and Miklós, Tannier and
Kiss [30] proved that it does not have an FPRAS
approximation assuming RP ≠ NP. On the other hand,
counting the number of most parsimonious labelings of
evolutionary trees has an unknown computational com-
plexity. One optimal labeling can be found by applying
the Fitch algorithm [33] on each adjacency and choosing
the absence of the adjacency at the root when the Fitch
algorithm says that both the presence and absence of
the adjacency give the minimum number of necessary
SCJ mutations for that particular adjacency. Feijão and
Meidanis [21] proved that the so-obtained genomes will
always be valid. It is known that the Fitch algorithm
cannot find all most parsimonious solutions for a parti-
cular character. The Sankoff-Rousseau algorithm [34] is
a dynamic programming algorithm that is capable of
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finding all optimal solutions for a particular character, in
the case of the SCJ model. However, it is easy to show
that some solutions might be invalid, as conflicting adja-
cencies might be assigned to a genome labeling an inter-
nal node (making the genome and thus the solution
invalid). Therefore, the solution space of optimal label-
ings is only a subset of the set that the Sankoff-Rous-
seau algorithm gives. It is known, when there is no
constraint among the characters, the number of optimal
labelings is in FP [35] and the number of most parsimo-
nious scenarios is not in FPRAS assuming that RP ≠ NP
[30]. Therefore the computational intractability of
counting the number of most parsimonious scenarios
on binary trees under the SCJ model by no means
implies that counting the most parsimonious labelings
would be a hard computational problem. On the other
hand, the constraints among the adjacencies make the
counting problem more complicated than the con-
straint-free version. It is unclear if this particular counting
problem is in FP or #P-complete and, if it is in #P-com-
plete, whether or not it has an FPRAS approximation.
In the next section we give a Gibbs sampler, exploring

the solution space of the most parsimonious labelings,
that seems to be rapidly mixing on some real life data.
However, these examples can give only experimental
evidence of rapid mixing suggesting that the problem
might have an FPRAS approximation.

Gibbs sampling of most parsimonious labeling of
evolutionary trees under the SCJ model
Gibbs sampling is a special version of Markov chain
Monte Carlo when the multivariate target distribution is
hard to sample from, however, the conditional distribu-
tion of each variable is easy to sample [36]. This is
exactly the case for the most parsimonious labelings of
an volutionary tree under the SCJ model, as we show
below.
Description of the Gibbs sampler
Let a rooted binary tree, T (V, E) be given, together with
a function f mapping genomes under the SCJ model to
the leaves of the tree, L. We assume that all genomes
appearing as an image for some leaf have the same
labels for their edges. Let A represent the set of all
adjacencies in ∪v∈Lf (v). Let an arbitrary indexing on A
be given, then each genome G can be represented as a
0-1 vector x where xi is 1 if and only if ai ∈ A is in G.
A length |A | 0-1 vector, x, is called valid if for all pairs
of coordinates satisfying xi = xj = 1, adjacencies ai and
aj do not share an extremity. Each valid vector repre-
sents a valid genome.
Genomes labeling the vertices of T are represented by

such 0-1 vectors, and the Gibbs sampler works on these
representations. The target distribution is the uniform
distribution of the possible most parsimonious labelings.

Consider any most parsimonious labeling as a set of
vectors representing the genomes labeling the vertices of
T. Choose one coordinate, i, then Gibbs sampling is to
sample uniformly from all possible most parsimonious
labelings that match the current labeling in all coordi-
nates except coordinate i.
Formally, given a most parsimonious labeling of the

internal nodes, a Gibbs sampling step is the following:

1 Draw a random coordinate i uniformly from 1,
2,...|A |.
2 Consider the ith coordinates of the vector repre-
sentations of the genomes labeling the leaves, and
on these 0-1 characters, do the Sankoff-Rousseau
dynamic programming algorithm. For each leaf l,
assign the value s(l, k) = 0 if k is the character
assigned to l and s(l, k) = ∞ otherwise.

For each vertex v with children u1 and u2, the recur-
sion is

s(v, 0) = min{s(u1, 0), s(u1, 1) + 1}+
min{s(u2, 0), s(u2, 1) + 1} (4)

s(v, 1) = min{s(u1, 0) + 1, s(u1, 1)}+
min{s(u2, 0) + 1, s(u2, 1)} (5)

3 Create a directed metagraph M whose vertices are
s(v, 0) for each vertex v of the tree and also those s
(v, 1) for which writing 1 into the ith coordinate of
the vector representing the genome labeling vertex v
still a valid vector. Draw a directed edge from s(u, k)
to s(v, k’) if s(u, k) gives the minimum for s(v, k’) in
Equations (4) and (5). See also Figure 1c) and 1d).
4 Do an enumeration dynamic programming on M.
Let m(w) = 1 if w = s(l, k), k ∈ {0, 1} and l is a leaf.
For other nodes, do the following. Let w = s(v, k), k
∈ {0, 1}, and let the two children of v in the tree T
be u1 and u2. Let U1 denote the set of in-neighbors
of w that are of the form s(u1, k) for k ∈ {0, 1} and
U2 denote the set of in-neighbors of w that are of
the form s(u2, k) for k ∈ {0, 1}. Then

m(w) =

( ∑
z1∈U1

m(z1)

)
·
( ∑
z2∈U2

m(z2)

)
(6)

where m(w) is called the weight of w.

5 If there is only one vertex in the metagraph M that
is s(root, k), k ∈ {0, 1}, choose that one at the root.
Otherwise, choose randomly from the two vertices
following the distribution proportional to their
weights. For the chosen vertex w, m(w) is not 0,
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therefore it has at least 1 in-neighbor from both U1

and U2 . From both in-neighbor sets, choose a ran-
dom vertex from the distribution proportional to
their weight, or the only one if only one vertex is in
a set. Propagate down this process along the tree,
thus one vertex from M is selected for each vertex
of the tree T. Update the ith coordinates of the vec-
tors according to the selected metagraph vertices: if
w = s(v, k) was selected for vertex v then write k
into the ith coordinate of the vector representing the
genome labeling vertex v.

It is well-known that the number of most parsimo-
nious labelings by one character can be calculated by
Equation (6) [35], and when some of the solutions

should be excluded due to some constraints, they simply
should be omitted from the calculations. This is how the
metagraph M was constructed. It is also a folklore that
following the distribution proportional to the weights
calculated in a recursion leads to the uniform distribu-
tion over the cases that the recursion calculates, and the
uniform distribution is the one that we would like to
sample from in the Gibbs sampling.
Irreducibility of the Gibbs sampler
The Gibbs sampler, as a Markov chain, will converge to
the prescribed distribution if the Markov chain is irreduci-
ble, that is, any most parsimonious labeling can be trans-
formed into any another by a finite number of Gibbs
sampling steps. Due to the constraints on the coordinates,
it is not trivial. Below we prove irreducibility by proving

Figure 1 A rooted binary tree with two most parsimonious labelings of internal nodes. a) The B functions of the Fitch algorithm
calculated in the bottom-up phase. b) The (canonical) Fitch solution. c) The values calculated in the Sankoff-Rousseau algorithm and the edges
in the metagraph M (see text for details). For readability, only those values are indicated that contribute in estimating the number of most
parsimonious solutions. Also, vertices of the tree are not indicated, i.e. s(k) is written instead of s(v, k). From positioning, it should be obvious
which s value belongs to which vertex. d) The most parsimonious solution that can be obtained only by the Sankoff-Rousseau algorithm and
not by the Fitch algorithm.
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that any most parsimonious labeling can be transformed
to a canonical labeling, the one described by Feijão and
Meidanis [21]. Below we formally define this most parsi-
monious labeling. First, we recall the Fitch algorithm.
Definition 6 The Fitch algorithm [33]is a greedy algo-

rithm for finding a most parsimonious labeling of a tree,
given a rooted binary tree, and the leaves of the tree are
labeled by characters from some finite set. It has two
phases (see also Figure 1a)and 1b)).

1 (Bottom-up phase) For each leaf v, assign a set B
(v) = {c} where c labels v. Then for each internal
node v with children u1 and u2

B (v) =
{
B (u1) ∩ B (u2) , if B (u1) ∩ B (u2) is not empty
B (u1) ∪ B (u2) , otherwise.

}
(7)

2 (Top-down phase) Choose any member from B
(root) to label the root. This is denoted by F (root).
Then propagate down characters labeling internal
nodes on the tree using the following recursion, where
v is the parent of u,

F (u) =
{
F (v) ∩ B (u) , if F (v) ∩ B (u) is not empty
any member from B (u) , otherwise.

}
(8)

Although Equation (8) might be ambiguous for alpha-
bets with size larger than 2, for 0-1 alphabet, there is no
ambiguity. Ambiguity for 0-1 alphabet can happen only
at the root when B(root) = {0, 1}.
Definition 7 Let T (V, E) be a rooted binary tree with

genomes labeling the leaves of the tree. Assume that each
genome is represented as a 0-1 vector indicating which
adjacency can be found in the genome, as described
above. Then the canonical solution for the most parsimo-
nious labeling of the tree under the SCJ model is given by
applying the Fitch algorithm for each position of the
representing vectors, and choosing 0 at the root whenever
B(root) = {0, 1}. The so-obtained values are the coordi-
nates of the vectors representing the genomes labeling the
internal nodes of the tree.
Feijão and Meidanis proved that the so-obtained vectors

are always valid, thus they indeed give a most parsimo-
nious labeling of the internal nodes [21]. Below we show
that any solution to the most parsimonious labeling of the
internal nodes under the SCJ model (which might be a
solution that cannot be obtained by the Fitch algorithm
just by the Sankoff-Rousseau algorithm, see for example,
Figure 1d)) can be transformed into the canonical solution
by a finite series of Gibbs sampling steps. First we have to
prove a lemma regarding the values calculated in the Fitch
algorithm and the Sankoff-Rousseau algorithm.
Lemma 1 Assume T is an arbitrary rooted binary tree

with leaves labeled by 0s and 1s. Then for any internal
node v, B(v) = {0, 1} if and only if s(v, 0) = s(v, 1).

Proof The ⇒ direction was proved in [30]. The ⇐ direc-
tion is proved by strong induction on h, the height of v.
We prove the equivalent form B(v) ≠ {0, 1} ⇒ s(v, 0) ≠ s
(v, 1). When h = 0, v is a leaf, and the statement is true as
s(v, 0) ≠ s(v, 1) and B(v) ≠ {0, 1}.
For any node h ≥ 1, assume that the statement holds

for any node with height k <h. If B(v) ≠ {0, 1} then
either B(v) = {0} or B(v) = {1}. The two cases are sym-
metric, so we might assume that B(v) = {0}, the proof
for the other case is symmetric.
If B(v) = {0} and u1 and u2 are the children of v, then

either B(u1) = B(u2) = {0} or B(u1) = {0}, B(u2) = {0, 1}
or B(u1) = {0, 1}, B(u2) = {0}.
If B(u1) = B(u2) = {0}, then by the induction, s(u1, 0) ≠

s(u1, 1), and since the Fitch algorithm gives a most par-
simonious solution, s(u1, 0) <s(u1, 1). Similarly for the
other node, s(u2, 0) <s(u2, 1). Then s(v, 0) <s(v, 1),
according to Equations (4) and (5).
If for one of the children, the B function takes {0, 1},

then for that node u, s(u, 0) = s(u, 1). For the sibling
node u’, s(u’, 0) <s(u’, 1), and it is easy to check (by con-
sidering Equations (4) and (5)) that s(v, 0) <s(v, 1). □
Lemma 2 Let L be a most parsimonious labeling of a

tree T (V, E) under the SCJ model. Assume that the gen-
omes are given in a binary vector representation as
described above. Let v be the minimum height node for
which some adjacency a, Ba(v) = {0}, however, a is pre-
sent in the genome labeling v (Ba(v) is the set that the
Fitch algorithm calculates for the vertex v when the algo-
rithm is applied to the presence/absence of adjacency a).
Change the current labeling in the following way.
Remove a from the genome labeling the node v and pro-
pagate down the presence-absence of adjacency a below
the subtree rooted in v according to the Fitch algorithm
as v was the root of the tree. Then the so obtained new
labeling L′
a) contains valid genomes and
b) is also a most parsimonious labeling.
Proof Changing any presence to absence cannot turn a

valid genome into invalid. The only case when the genome
might become invalid is when an absence is turned into
presence (a possible example for this is on Figure 1d) and
1b), d) is a Sankoff-Rousseau solution, b) is the canonical
Fitch solution). This might be the case when

• for some node u below v, Ba(u) = {1} or
• on connected parts C of the tree where for all
nodes, u ∈ C, Ba(u) = {0, 1}, except for the root of
C, r, for which Ba(r) = {1}.

If Ba(u) = {1} then for all adjacencies b being in con-
flict with a, Bb (u) = {0} (Lemma 6.1. in [21]). But then
b must be absent in the genome labeling u otherwise it
would contradict the minimum height of v.
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For any connected part C with the above described
property, we prove that for any adjacency b, which is in
conflict with a, b is absent in the genomes labeling the
vertices of C. For the root r, it holds as Ba(u) = {1}, thus
Bb (u) = {0}. For any node u ∈ C, for whose parent w,
we showed that b is absent in the genome labeling w,
we show that b is also absent in the genome labeling u.
If Bb (u) = {0}, then b is absent in the genome labeling
u due to the minimal height of v. If Bb = {0, 1}, then sb
(u, 0) = sb (u, 1). Then in a most parsimonious labeling,
it cannot be the case that b is absent in the genome
labeling w but is presented in the genome labeling u.
Indeed, such a labeling would have a parsimony score 1
for the edge (u, v), and a cost sb (u, 1) below the subtree
rooted in u. On the other hand, if we change the label-
ing at the node u that b is absent in the genome label-
ing u, and on the subtree below u, we can change the
presence/absence of b to get a parsimony score sb (u, 0).
Then the parsimony score regarding b for the edge (u,
v) is 0, hence this new labeling has a smaller total cost
on the tree compared to the current one, a contradic-
tion. By induction, on the whole connected part C, b is
absent in the genomes labeling the vertices of C.
We proved that the new labeling L′ contains valid

genomes. We are going to prove that it is also a most
parsimonious labeling. Since Ba(v) = {0}, it follows that
sa(v, 0) <sa(u, 1). Hence, in the old labeling L , the par-
simony score regarding a on the subtree rooted in v
was greater than in the modified labeling. On the edge
connecting v to its parent, the new score might be 1,
the old score might be 0, and then here the parsimony
score might increase by 1, however, this loss cannot be
greater than the gain we obtained on the subtree rooted
at v. (And if the old labeling L was most parsimonious
it turns out that the old parsimony score regarding a on
edge connecting v to its parent was 0.)
Since the number of adjacencies as well as the height

of the tree is finite, in a finite number of steps, any
labeling can be transformed into a labeling such that for
all vertices v and all adjacencies a, Ba(v) = {0} indicates
that adjacency a is absent in the genome labeling v.
Next, we consider transforming such labelings.
Lemma 3 Let L be a most parsimonious labeling of a

tree T (V, E) under the SCJ model. Assume that the gen-
omes are given in a binary vector representation as
described above. Furthermore, assume that for all ver-
tices w and all adjacencies a, Ba(w) = {0} indicates that
adjacency a is absent in the genome labeling w.
Let v be the minimum height node for which there is

an adjacency a with Ba(v) = {1}, however a is absent in
the genome labeling v. Change the current labeling in
the following way. Add a to the genome labeling the
node v and propagate down the presence-absence of
adjacency a below the subtree rooted in v according to

the Fitch algorithm as v was the root of the tree. Then
the so obtained new labeling L′
a) contains valid genomes and
b) is also a most parsimonious labeling.
Proof The proof of validity in Lemma 3 is exactly the

same as the proof of Lemma 2 with one replacement.
Each argument that said “if Bb (u) = {0}, then b is absent
in the genome labeling u due to the minimal height of
v“ should be replaced with “if Bb (u) = {0}, then b is
absent in the genome labeling u due to the given
conditions.”
Proving that the new labeling L′ is also most parsi-

monious is exactly the same as the proof of Lemma 2,
just switching 0 and 1.
Hence any most parsimonious labeling can be trans-

formed to a most parsimonious labeling such that for
each node v and each adjacency a, Ba(v) = {0} indicates
the absence of a in the genome labeling v, and Ba(v) =
{1} indicates the presence of a in the genome labeling v.
Furthermore, each transformation is a possible Gibbs
sampling step since one coordinate is changed from a
most parsimonious labeling to another most parsimo-
nious, valid labeling. During these transformations,
when the labeling is changed below a vertex v, for
which Ba(v) ≠ {0, 1} for some a, the new labeling is the
canonical Fitch labeling. What about the subtrees below
the vertices v and the adjacencies a for which Ba(v) =
{0} where the adjacency a was absent in the initial label-
ing or Ba(v) = {1} where the adjacency a was present in
the initial labeling? The following lemma claims that,
for such subtrees, the initial labeling was already the
Fitch labeling.
Lemma 4 Assume that in a most parsimonious label-

ing, Ba(u) = {0, 1} and a is present (respectively, absent)
in the genome labeling the parent of u. Then a is present
(respectively, absent) in the genome labeling u.
Proof Assume that the presence/absence of a in u and

its parent is different. Then the parsimony score on the
edge connecting u to its parent is 1. However, sa(u, 0) =
sa(u, 1), hence switching the presence/absence of a is
possible without changing the parsimony score on the
subtree rooted at u (changing the presence/absence of a
in genomes labeling vertices below u might be needed).
On the other hand, the parsimony score on the edge
connecting u to its neighbor could decrease by 1, a con-
tradiction to the assumption that we started with a most
parsimonious labeling.
The consequence of the Lemma 4 is that we can

transform, by finite series of Gibbs sampling steps, any
most parsimonious labeling to a labeling L′ such that
for all vertices u and all adjacencies a, for which Ba(u)
≠ {0, 1} or a vertex v above u (v is not necessarily the
parent of u, but may be an arbitrary node which is
higher, but still above, u) exists such that Ba(v) ≠ {0, 1},
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the genome labeling u is the Fitch canonical solution
regarding adjacency a. These labelings are almost in the
Fitch canonical solutions, except for connected parts C
containing the root of the tree on which for some a, Ba

(v) = {0, 1}, ∀v ∈ C. The next lemma claims that they
can be transformed into the Fitch canonical solution.
Lemma 5 Let L be a most parsimonious labeling of a

tree T (V, E) under the SCJ model. Assume that the gen-
omes are given in a binary vector representation as
described above. Furthermore, assume that for all ver-
tices w and all adjacencies a, Ba(w) = {0} indicates that
adjacency a is absent in the genome labeling w and Ba

(w) = {1} indicates that the adjacency is present in the
genome.
Consider any adjacency a, and let C denote the con-

nected subset C containing the root for which Ba(v) = {0,
1}, ∀v ∈ C. (C might be the empty set.) Change the cur-
rent labeling L such that in the new labeling L′ adja-
cency a be absent in each genome labeling any vertex v
∈ C, and do not change the labeling otherwise. Then the
new labeling
a) is a valid labeling and
b) is also a most parsimonious labeling
Proof Changing the presence to absence cannot make

an invalid genome, therefore proving the validity is
trivial.
For any vertex v, B(v) = {0, 1}, either the B function

for both children is also {0, 1} or for one of the children
it is {1} and for the other child it is {0}. Extend C to C’
such that we add to C all the cherry motifs (a pair of
children) for which the Ba function is {1} for one of the
children and {0} for the other child. We know from the
condition that a is present in the genome labeling one
of the children and is absent in the genome labeling the
other child. If we do not change the current labeling at
the leaves of C’, there are two possible most parsimo-
nious labelings regarding adjacency a: i) a is presented
in all genomes labeling the internal nodes, ii) a is absent
in all genomes labeling the internal nodes. The latter is
what L′ contains.
We are ready to prove the main lemma.
Lemma 6 Let L be a most parsimonious labeling of a

tree T (V, E) under the SCJ model. Then L can be trans-
formed into the canonical Fitch solution by finite series
of Gibbs sampling steps.
Proof In the first phase, while there is a vertex v and

adjacency a such that Ba(v) = {0} and a is present in
the genome labeling vertex v, find the a and v with the
minimal height and do the Gibbs sampling indicated in
Lemma 2.
After the first phase, in the second phase, while there

is a vertex v and adjacency a such that Ba(v) = {1}, how-
ever, a is absent in the genome labeling v, find the a

and v with the minimal height, and do the Gibbs sam-
pling indicated in Lemma 3.
After the second phase, in the third phase, while there

is an adjacency a, for which we have a nonempty con-
nected part C containing the root with the property that
∀v ∈ C, Ba(v) = {0, 1} and a is present in any of the
genomes labeling any of the vertices v ∈ C, choose one
of these adjacencies, and remove it from all genomes
labeling the vertices in C. Since it yields a most parsi-
monious labeling, it is also a Gibbs sampling step.
After the third phase, the labeling is the Fitch canoni-

cal labeling.
The main lemma directly leads to the following

theorem.
Theorem 2 Any most parsimonious labeling of a tree

under the SCJ model can be transformed into any
another most parsimonious labeling by finite series of
Gibbs sampling steps.
Proof A most parsimonious labeling L1 can be trans-

formed into the canonical labeling Lc and also labeling
L2 can be transformed into Lc by Gibbs sampling
steps. Note that the inverse of a Gibbs sampling step is
also a Gibbs sampling step, thus L1 can be transformed
into L2 by first transforming L1 into Lc then trans-
forming Lc into L2 by the inverse transformation that
moves L2 into Lc .
Testing the Gibbs sampler on real life data
The Gibbs sampler method has been implemented in
Java programming language, downloadable from http://
www.renyi.hu/~miklosi/SCJ-Gibbs/. The genomes of 8
vertebrate species were used to test the Gibbs sampler:
Gallus gallus, Monodelphis domestica, Bos taurus, Canis
familiaris, Rattus norvegicus, Mus musculus, Homo
sapiens, Rhesus macaque. Synteny blocks were obtained
as described in [37]. Only those synteny blocks were
kept that could be found in all the 8 species. The tree
topology applied was in agreement with the tree topol-
ogy in [37]. The initial most parsimonious labeling was
obtained using the Fitch algorithm. 107 Markov chain
steps (Gibbs sampling steps) were applied, samples were
collected after each 10000 steps. No burn-in phase was
applied as the aim was the investigation of the mixing
of the Markov chain and not calculating any statistics
from the samples.
Each sampled most parsimonious labeling has the

same sum of edge lengths (number of mutations on an
edge), however, the individual edge lengths vary during
the Monte Carlo simulation. These lengths were used as
traces of the Markov chain to empirically check the
mixing of the Markov chain, see Figure 2. Note that the
target distribution is the uniform distribution, thus the
usual log-likelihood trace would be a constant line, and
therefore, it could not be used for convergence analysis
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of the chain. As can be seen, the traces suggest good
mixing: burn-in phase cannot be recognized on the
trace plot. Autocorrelations are another statistics that
can measure the mixing of Markov chains. 0 autocorre-
lation between samples at time t and t + k means that k
number of steps in the Markov chain is sufficient to get
uncorrelated samples. The autocorrelations quickly
approach to 0, also suggesting good mixing of the Mar-
kov chain.

Discussion and conclusions
In this paper, we overviewed the state-of-the-art knowl-
edge on the computational complexity of counting and
sampling genome rearrangement scenarios. Most of the
counting problems fall into one of the following three
categories: i) easy to compute, i.e., the number of solu-
tions can be exactly calculated in polynomial time, ii)
hard to count exactly in polynomial time, however, sto-
chastic approximations exist that are just as good in
practice than exact calculations iii) hard to count both
exactly and approximately.
Unfortunately, all counting problems whose decision/

optimization counterparts are NP-hard fall into the
third category. Surprisingly, counting the SCJ scenarios
on a phylogenetic tree also falls into the third category,
although its optimization counterpart is in P. Counting
the number of SCJ scenarios between two genomes as
well as counting the number of most parsimonious
medians under the SCJ model is easy. Counting the
number of most parsimonious DCJ scenarios has a good
stochastic approximation. That approximation is given
via a rapidly mixing Markov chain. This is a general
phenomenon that sampling and counting have the same

computational complexity and a solution to one of the
problems explicitly gives a solution to the other pro-
blem. In applications, sampling is usually more impor-
tant than counting, however, theoretical results on the
computational complexity on counting naturally tells
the limit of possibilities of sampling algorithms.
The most important open questions are:

• Is it possible to sample (almost) uniformly most
parsimonious reversal scenarios between two gen-
omes in polynomial time?
• Is it possible to sample (almost) uniformly most
parsimonious SCJ median scenarios in polynomial
time?
• Is it possible to sample (almost) uniformly most
parsimonious labelings of an evolutionary tree under
the SCJ model in polynomial time?
• Is it easy or hard to count exactly the most parsi-
monious labelings of an evolutionary tree under the
SCJ model?
• Is it easy or hard to count exactly most parsimo-
nious reversal scenarios?
• Is it easy or hard to count exactly most parsimo-
nious DCJ scenarios?

The greatest effort has been made to develop a method
efficiently sampling most parsimonious reversal scenarios
between two genomes. Some Markov chain methods
have been developed [24,9] that seem to work well in
practice [38]. Unfortunately, no formal proof is given so
far that these Markov chains are indeed rapidly mixing.
Above giving an overview of the computational com-

plexity of counting genome rearrangement scenarios, we

Figure 2 Inferring the performance of the Gibbs sampler on 8 Vertebrates genomes. See the text for detailed description of the data and
the method. Left: The number of SCJ operations of the 14 edges of the evolutionary tree in the samples of the Gibbs sampler. Samples were
collected after each 10000 Gibbs sampling steps, 1000 samples were collected. For readability, the numbers of SCJ operations falling onto edges
have been shifted such that the average of them be 20, 40, 60,... 280. Right: Autocorrelations of the number of SCJ operations on edges in the
samples. One unit on the first axis means 10000 Gibbs sampling steps.
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also gave a Gibbs sampler for sampling most parsimo-
nious labelings of evolutionary trees under the SCJ
model. Sampling and counting such labelings have
unknown computational complexity. Our sampler works
well in practice on real life data, and these experiments
suggest the conjecture that at least good stochastic
approximation exists for these problems. Although the
SCJ model is one of the least realistic genome rearran-
gement models, there is a strong correlation between
SCJ and DCJ distances. Therefore a rapidly mixing Mar-
kov chain on SCJ phylogenies could open the possibility
to develop Monte Carlo methods for approximate DCJ
phylogenies.
We considered only five special counting problems in

this paper, each of them under three possible rearrange-
ment models. There are further genome rearrangement
problems like genome halving [39], guided genome halv-
ing [40], genome aliquoting [41]. Some of them are
computationally easy as decision problems [42], there-
fore, it is a natural question what can we say about the
computational complexity of counting the solutions of
these problems.
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