
RESEARCH Open Access

SpliceJumper: a classification-based approach for
calling splicing junctions from RNA-seq data
Chong Chu, Xin Li, Yufeng Wu*

From Fourth IEEE International Conference on Computational Advances in Bio and medical Sciences
(ICCABS 2014)
Miami Beach, FL, USA. 2-4 June 2014

Abstract

Background: Next-generation RNA sequencing technologies have been widely applied in transcriptome profiling.
This facilitates further studies of gene structure and expression on the genome wide scale. It is an important step
to align reads to the reference genome and call out splicing junctions for the following analysis, such as the
analysis of alternative splicing and isoform construction. However, because of the existence of introns, when
RNA-seq reads are aligned to the reference genome, reads can not be fully mapped at splicing sites. Thus, it is
challenging to align reads and call out splicing junctions accurately.

Results: In this paper, we present a classification based approach for calling splicing junctions from RNA-seq data,
which is implemented in the program SpliceJumper. SpliceJumper uses a machine learning approach which
combines multiple features extracted from RNA-seq data. We compare SpliceJumper with two existing RNA-seq
analysis approaches, TopHat2 and MapSplice2, on both simulated and real data. Our results show that
SpliceJumper outperforms TopHat2 and MapSplice2 in accuracy. The program SpliceJumper can be downloaded at
https://github.com/Reedwarbler/SpliceJumper.

Introduction
With the development of high-throughput sequencing
technologies, RNA-seq has been widely applied in tran-
scriptome profiling. This facilitates the further studies of
gene structure and expression on the genome wide
scale. One of the opportunities provided by RNA-seq is
detecting splicing junctions. In eukaryotic genomes, spli-
cing is a process that exons join together and introns
are excluded to form the mature mRNA. Recent studies
show that variations in splicing patterns are associated
with Alzheimer [1] and other complex diseases [2].
Thus, detecting splicing junctions not only helps to pro-
file transcriptomes, but also contributes to the under-
standing of the mechanism of some complex diseases.
In this paper, we focus on calling splicing junctions
from RNA-seq data of organisms that have released
reference genomes.

Over the past several years, many sophisticated com-
putational approaches for calling splicing junctions from
RNA-seq data have been developed [3-6]. But it is still
challenging to call out splicing junctions accurately. One
difficulty is that because of the discrete nature of RNA-
seq data, reads spanning splice sites cannot be fully
mapped to the reference genome. Situation becomes
worse when reads span three or more exons. A common
strategy is to map reads that span two or more exons as
split-mapped reads. Split-mapped read means that one
wants to map segments of the read onto multiple dis-
joint genomic regions (which correspond to the exons).
Most existing RNA-seq reads alignment tools, such as
TopHat [3,7], MapSplice [4], STAR [8], PALMapper [9],
GSNAP [10], PASS [11], and GEM [12], are able to han-
dle split-mapped reads with large or small gaps. But
because of the repeats on genome, reads errors, and the
short length of unmapped segments, it is still difficult to
align the unmapped segments correctly. Another chal-
lenge is that the coverage of reads is uneven, and the
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expression level of many transcripts is low. Thus many
exons are covered by only a few or even no reads. This
can make it difficult to call out junctions especially for
tools relying on coverage to form exon islands. Another
issue is that many tools only use part of the information
contained in the reads. For example, TopHat [7] only
uses reads coverage to call splicing junctions. In princi-
ple, using more information, e.g. number of discordant
encompassing pairs and number of split-mapped reads,
contained in the reads may make junction calling more
accurate. Moreover. the past study of RNA in organisms
such as humans has accumulated substantial knowledge
about RNA structure. Ideally, calling splice junctions
can be assisted by these prior knowledge. Thus, it is
useful to develop new tools that use more information
contained in RNA-seq data and also the prior knowl-
edge about the RNA structure to achieve higher sensi-
tivity and specificity of the called splicing junctions.
In this paper, we introduce a new approach, Splice-

Jumper, which uses a machine learning approach that
combines multiple features extracted from RNA-seq
paired-end reads. There are three steps for SplicJumper.
First, we align the raw reads to genome sequence using
BWA [13] and call out all the candidate splicing sites.
Then, we classify the true and false splicing sites using a
machine learning approach by combining several features
extracted from the reads. Finally, we call out the splicing
junctions with the true splicing sites, and paired-end reads
are used to filter out the false ones. The main idea behind
our approach is that we treat the problem of calling spli-
cing sites as a classification problem. Then, we use the
called out splicing sites to guide the re-alignments of reads
that are initially not fully mapped. This allows accurate
calling of splicing junctions.
There are three main aspects for SpliceJumper:
1) SpliceJumper uses a machine learning approach to

call out true splicing sites by combining more features.
Also, information contained in paired-end reads is used
by SpliceJumper. As in many situations, it is not easy to
call out splicing junctions using only one or two features.
So combining more features helps to improve sensitivity
and specificity. Moreover, we use an efficient classifica-
tion approach to combine all these features.
2) Similar to many existing approaches, we also re-align

the initially unmapped reads. The difference is that we
try to re-align the unmapped parts in focal regions with
the help of the called out splicing sites. This way, it not
only works efficiently, but also helps to filter out ambigu-
ous alignments. We show that SpliceJumper outperforms
TopHat2 and MapSplice2 in accuracy on both simulation
and real data.
3) Unlike tools such as TopHat, MapSplice, or other

tools that require user-provided threshold parameters to
call out splicing junctions, SpliceJumper learns the

parameters through the training procedure. Thus there
is no need for users to set any thresholds.

Background
Signatures of splicing junctions on reads
Alternative splicing is a regulated process during gene
expression that results in a single gene coding for multi-
ple proteins. In this process, some exons of a gene may
be included within, or excluded from, the final processed
messenger RNA (mRNA) produced from that gene [14].
Each alternative splicing event happens at a donor site
and an acceptor site. And these two splicing sites form a
splicing junction. When sequenced reads are taken from
a splicing site, various signatures left by the splicing junc-
tion may be found from the reads. Figure 1 illustrates an
alternative splicing event. A, B, C, and D are four splicing
sites, and three splicing junctions, [A,B], [C,D], and [A,
D], are formed.
There are mainly three types of signatures that can

be extracted from the RNA-seq reads around splicing
sites.
(i) Discordant encompassing pair signature: the num-

ber of discordant encompassing pairs. A discordant pair
has insert size from the two mapped reads outside the
range [m-3v,m+3v], where m is the mean insert size,
and v is the standard variation of the insert size. If the
length of a splicing junction is large enough, then a
pair-end reads encompassing the splicing junction will
become discordant after aligned to the reference gen-
ome. Figure 1 shows two discordant pairs that encom-
pass splicing junctions [C,D] and [A,D].
(ii) Split-mapped reads signature: the number of split-

mapped reads. Reads spanning splicing sites may be
clip-mapped at the splicing sites. Thus, each read will
be split into two or more segments. If all these segments
are aligned correctly, the split-mapped read may reveal
the positions of the splicing sites. Figure 1 shows three
split-mapped reads that span splicing sites A, B, C, and
D. Take the read split-mapped at sites A and B as an
example. The partially mapped segment (the left seg-
ment) clipped at site A indicates site A is a potential
splicing site. And the clipped segment (the right seg-
ment) can be mapped at site B that indicates site B is
also a potential splicing site.
(iii) Coverage changing signature: the coverage change

between left and right neighboring regions. Coverage
change will be apparent from left neighboring region to
right neighbor region of a splicing site. This is because
no reads will be mapped at the right region of a donnor
site, and no reads aligned at the left region of an accep-
tor site. Figure 1 shows the coverage changing of the
four splicing sites A, B, C, and D.
More detailed information of parsing features from

RNA-seq data are explained in the Method section.
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Existing approaches
During the past few years, many tools have been devel-
oped to call splicing junctions. According to features
used and strategies to combine features, there are two
main types of approaches. The first is “exon inference”
based approach, which uses coverage information to
infer exons first, and then align initially unmapped reads
and call splicing junctions. One tool is TopHat which
first infers exon islands with the initially mapped reads
aligned by Bowtie [15,16]. Then TopHat concatenates
the potential exons using the known splicing motifs, and
finally re-aligns the initially unmapped reads to the
jointed exons. Another similar tool is PASSION [6].
PASSION also builds exon islands from initially mapped
reads. Then it uses the pattern growth algorithm to split
and align unmapped reads. And finally a filtering strat-
egy is used to call out splicing junctions. When coverage
is high, this kind of approaches is expected to work well.
However, when coverage is low, these approaches may
not work well. For example, because of the existence of
errors (reads errors or alignment errors), variations, or
the uneven coverage, there may be no reads covering
some (small or large) regions of an exon. Thus the exon
will be partitioned into two or even more “exons” in
this step. This not only affects the alignments of reads
in the following steps, but also introduces many false
positives.
The second type of approach is “gap alignment” based.

There are two main steps for this kind of approaches.
The first step is a “seed-extend” process that splits reads
into segments (called kmers), which are then aligned to
the reference genome independently. If a segment can-
not be initially mapped, sometimes its neighboring seg-
ments are mapped. If this segment can be reconstructed
by extending its neighboring regions, the gap spanned
by this segment is considered as a potential splicing
junction and is called out. In the second step, true spli-
cing junctions are called out according to some thresh-
old parameters. MapSplice is a tool of this kind. In the
second step, each potential splicing junction is scored
by MapSplice according to anchor significance and

entropy. Another similar approach is TopHat2, which is
an improved version of TopHat. One difference between
TopHat2 and MapSplice is that TopHat2 first aligns
reads to transcriptome that are generated from provided
annotations. It is believed that “gap alignment” based
approaches perform better than “exon inference” based
methods, especially when the expression level or cover-
age is low [17]. However, this kind of approaches also
has its own limitations. For example, the length of many
splicing junctions is several thousands bases or even lar-
ger, and many kmers may be ambiguously mapped in
such a long region. Thus it can be difficult for those
tools to distinguish which is the true alignment, even
using some anchor based strategies.
Besides these two main kinds of approaches, there are

other approaches that combine different features, such as
TrueSight [5]. TrueSight combines RNA-seq read map-
ping quality and coding potential of genomic sequence
into a model, which is trained by iterative logistic regres-
sion. Then TrueSight uses the model to de novo identify
splicing junctions and filter out unreliable ones. One
issue is that TrueSight views each candidate junction as a
whole and this may introduce false positives. For exam-
ple, if the donor site is of high confidence (have strong
features) while the acceptor site is a false one, then it is
quite possible for TrueSight to call this splicing junction
as a true one. This can introduce false positives.
In this paper, we compare the performance of Splice-

Jumper with two tools. One is TopHat2. TopHat2 is
widely used for splicing junction calling and RNA-seq
reads alignment. The other is MapSplice. MapSplice per-
forms well for both reads alignments and splicing junction
calling according to two assessment papers [17,18].

Methods
High-level approach
Our approach, SpliceJumper, aims to call splicing junc-
tions from RNA-seq paired-end reads, and also align the
reads. There are mainly three steps to call out the spli-
cing junctions. First, SpliceJumper aligns the raw reads
to the reference sequence using BWA, and calls out all

Figure 1 Features indicating existence of splicing junctions: discordant encompassing pairs, split-mapped reads, and coverage change
at two neighbor regions of a splicing site. A, B, C, and D are four splicing sites.
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the candidate splicing sites. As each candidate splicing
site is either a true one or a false one, this problem can
be viewed as a classification problem. So it is natural to
use machine learning approaches to perform classifica-
tion. Thus in the second step we use a supervised
machine learning approach to call splicing sites. We
choose supervised machine learning because for both
real and simulation data, we have enough labeled data
as training data. To train a model, choosing the appro-
priate features is important. SpliceJumper uses four fea-
tures parsed from the three signatures explained in the
Background Section. After parsing all the features, Spli-
ceJumper trains a model using the training data. Then
with the trained model, SpliceJumper calls out the spli-
cing sites. Finally, in the third step, we call out the spli-
cing junctions with the called out splicing sites. In this
step, each called out splicing junction should satisfy
three conditions: 1)Both the donor and acceptor sites
are the true ones that are called out in the second step.
2) At least one read is split-mapped at the donor and
acceptor sides. 3) The distance between the mapped
segment and the clipped segment is concordant with
the insert size between the split-mapped read and its
mapped mate read. And also, the reads alignment is fin-
ished during this procedure.

Details of our approach
SpliceJumper calls splicing junctions in three steps. In
the first step, BWA is used to align the raw reads to the
reference genome and from the BAM file we call out all
the candidate splicing sites. Then we collect all the fea-
tures of each candidate splicing site, train a SVM model
based on training data, and then call out the true ones
using the trained model. Finally, we call out splicing
junctions with the true splicing sites.
Preprocessing and candidate splicing sites calling
SpliceJumper requires BAM files (sorted and indexed) as
input. So before calling candidate splicing sites, BWA (or
other alignment tools reporting soft-clipped and hard-
clipped alignments) is used to align the raw reads to the
reference genome. Then reads are classified to three types
according to the alignment type: fully mapped reads, clip-
mapped reads including soft-clipped and hard-clipped
reads, and other reads. Fully mapped reads refer to the
reads that can be fully aligned to the reference. BWA only
reports the primary alignment. So if only a part of a read
is primarily aligned, the read will be reported as a clip-
mapped read. Depending on whether the clipped part is
ambiguously mapped or not, clip-mapped reads are classi-
fied as hard-clipped reads and soft-clipped reads. Other
reads are mainly unmapped reads, which usually refer to
those reads that are mapped to the junction of two adja-
cent reference sequences. In our approach, reads with low
mapping quality or unmapped are discarded. During the

process of classifying reads, reads coverage is calculated. If
a read pair is discordant, we also mark the positions of the
read pair.
To call candidate splicing sites, our approach is based

on two observations: 1) For splicing sites with enough
reads covered, when aligned to the reference genome,
reads will be clip-mapped at the splicing sites. 2) For
splicing sites without enough reads covered, there may
be no reads clip-mapped at the splicing sites. But the
read coverage will change near the splicing sites. For
example, maybe there is only one read fully mapped
within an exon, and we can call out this type of candi-
date splicing sites through coverage change. If read cov-
erage at some sites decreases to zero or increases from
zero, then this site is also called out as a candidate junc-
tion site. Thus, two types of candidate sites are called
out at this stage: one is the read clip position, and the
other is the coverage change position. Figure 2 shows an
example of the two types of candidate splicing sites.
Figure 2(a) is a type one candidate splicing site. We can
see many reads are clipped at the splicing sites. Figure 2
(b) is a type two candidate splicing site, which does not
have enough reads covered, and no reads clipped at the
splicing sites, but there is coverage change. Candidate
splicing sites within s bases (by default s = 10) from
each other are combined. SpliceJumper provides a “-s”
option for users to set s. Each candidate site is given a
direction to indicate whether it is an candidate donor
site or candidate acceptor site. For the first type of can-
didate sites, site direction is decided by the reads clip
direction. If most of the reads are left-segment clipped,
then it is a candidate donor site. Otherwise it is a candi-
date acceptor site. For the second type of candidate
sites, if coverage changes from zero to some value then
it is an acceptor site. Otherwise it is a donor site. Note
that not all splicing sites will be called out at this step.
Some of these missed splicing sites may still be called
during the reads re-alignment step.
Feature parsing
Once the candidate splicing sites are called out, Splice-
Jumper collects features for each site. We extract four
features from the three signatures mentioned in the
Background Section. A clipped read contains two types
of segments: partially mapped segments and clipped seg-
ments. Different types of segments provide information
for different splicing sites. So we collect the two features
from the split-mapped reads signature: (i) the number of
reads clipped at candidate sites, and (ii) the number of
clipped segments mapped at candidate sites. From the
other two signatures we collect two features: (iii) the
number of discordant encompassing paired-end reads,
and (iv) the coverage difference between the left and
right neighbor regions. Thus, each candidate site will be
represented by four features and be viewed as a point in
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four dimensional space. In this way, the splicing sites
calling problem is converted to a classification problem.
(i) Reads clipped at candidate sites: the number of

reads clipped at candidate sites. Because of the existence
of introns, reads spanning the splicing sites cannot be
fully mapped and are reported as soft-clipped or hard-
clipped alignments. This provides us not only the posi-
tions of splicing sites, but also strong evidence that the
candidate splicing sites may be the true ones. Figure 1
shows three reads clipped at splicing sites.
(ii) Clipped segments mapped at candidate sites: the

number of clipped segments, which initially cannot find
primary alignments when aligned with BWA, but are
mapped at candidate splicing sites in the re-alignment
stage.
To obtain the quantity of this feature, we re-align the

clipped segments to the reference genome. For hard-
clipped reads, because the clipped segments are not
reported in the alignments, we trace the original reads
from the raw read files (in fastq format) according to the
“qname” field of alignments. Thus all hard-clipped reads
are transformed to soft-clipped reads. Then for each soft-
clipped read, we do re-alignment based on the observa-
tion that if a read is clipped at one side of a junction,
then the clipped segment should align at the other side
of the junction. So for the suffix soft-clipped reads, we
align the clipped segment to candidate acceptor sites fol-
lowing down the reference genome. And for prefix soft-
clipped reads, we try to align them to candidate donor
sites following up the reference genome. If both the suffix
and prefix of a read are clipped, then it is quite likely that
the read spans more than two exons. In this case, we
align both the suffix and prefix clipped segments sepa-
rately following the same strategy. Suppose the read is
clipped at b0, and we use [b1, b2] to indicate the region
where to search the alignment. The insert size of paired-
end reads is used to bound the searching. If the suffix (or
prefix) segment of a read is clipped, and the mate read is
mapped at the right (or left) side of this read, then the

mapping position bp of the mate read can be used as the
right (or the left) boundary of the searching. Then the
searching region becomes [b0, bp] (or [bp, b0]). Figure 3
shows an example of how paired-end reads are used to
guide the alignments. 1a and 1b are a pair, and 1a is fully
mapped at E (right end of 1a) while 1b is clipped at posi-
tion D. Thus, [E,D] forms a focal region to align the
clipped segment of 1b. Because 1b is clipped at an accep-
tor site, we try to align the clipped segment at donor sites
in region [E,D]. Because the clipped segment is short, we
find two alignments at A and C. The insert size between
1a and 1b here is used to call out the correct one. The
alignment at C is likey to be false because otherwise 1a
and 1b will form a discordant pair. But this is not very
likely and so the alignment at position A is chosen.
If no paired-end reads can be used as the boundary, a

maximum junction size with default value 1,500,000 bp
is used as the boundary. For reads clipped at donor
(acceptor) sites, the searching region is [b0,b0+1500000]
([b0-1500000,b0]). We try to find an alignment around
related splicing sites in the searching region. Here,
“related” means for reads clipped at donor sites, we only
check candidate acceptor sites; and conversely for reads
clipped at acceptor sites, we only check candidate donor
sites. If an alignment can still not be found, then we try
to align the segment within the whole region [b1, b2]
using local alignment. And if the segment finds an align-
ment at position pnew , then pnew will be viewed as a
new candidate splicing site and is added into the candi-
date splicing sites list. If the clipped segment finds an
alignment at candidate site cj , then the number of
clipped segments mapped at cj is increased by one.
(i) Discordant encompassing pair: the number of dis-

cordant encompassing pairs.
Recall that a discordant pair has insert size from the

two mapped reads outside the range [m-3v,m+3v], where
m is the mean insert size, and v is the standard variation
of the insert size. See Figure 1 for an illustration of
discordant encompassing pair for splicing junctions.

Figure 2 Two types of candidate splicing sites: Figure (a) shows candidate splicing sites called out by clipped reads; Figure (b) shows
candidate splicing sites called out by coverage changing.
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Note that not all the junctions can make encompassing
read pairs to be discordant. This is because if the length
of a splicing junction is smaller than 3v, then even the
read pair encompasses the junction, it still could be con-
cordant. Our approach relies on other features to call out
these splicing junctions. According to our experiments,
around nine tenths of the junctions can cause encom-
passing pairs to be discordant. Thus, discordant encom-
passing pair is still a useful feature for calling splicing
junctions.
(ii) Coverage difference between left and right neigh-

boring regions: for candidate donor (acceptor) sites, it is
the average coverage of left (right) region minus the
average coverage of right (left) region. The average cov-
erage of a region is calculated by:

∑Ld
i=1 (di)/Ld, where Ld

is the length of the region and di is the read depth at
position i of the region. SpliceJumper provides a “-l”
option for users to set the region length (with default
value 25 bp). Figure 1 illustrates the coverage difference
at splicing sites A, B, C and D.
Classification and call out junctions
After parsing all the features for each candidate splicing
site, SpliceJumper uses a machine learning based
approach to classify all the candidate splicing sites into
the true ones and the false ones. Before training the
model, for each candidate site with four features we per-
form normalization. This is based on the observation that
coverage is quite uneven. And for a candidate site from a
region with high coverage the quantity of the features
will be large, while for a candidate site from a region with
low coverage the quantity will be small. However, maybe
both of the two sites are the true ones. Thus using the

original quantity of the features may mislead the classi-
fier. So normalization before training can improve the
accuracy. For candidate donor sites, all the four features
are normalized by the average coverage of the left neigh-
boring regions. For candidate acceptor sites, all are nor-
malized by the average coverage of the right neighboring
regions.
Model training and classification We use support vec-

tor machine (SVM) to perform classification. In particu-
lar, we use LibSVM [19] to train a model, and then use
the trained model to classify splicing sites. To train a
model, training data that contains candidate sites and
labeled with true or false should be provided. For simula-
tion data, the true label of each candidate is known. So to
prepare the training data we just label the candidate spli-
cing sites that are ture as 1, and the rest are labeled as 0.
For real data, users can train the model with released
annotations, such as human annotations released by
UCSC, Ensembl, Geneid, Genscan, RefSeq, SGP, Ace-
View, Vega, etc. One problem is that not all transcripts
will express in every sample. In other words although
some splicing sites do exist in annotations, they may not
express. So there will be no reads cover those splicing
sites. This kind of splicing sites should not be considered
as true ones. So before using labeled splicing sites
released in annotations, first we check whether the cover-
age around the sites is zero or not. If larger than zero
then the sites are labeled with true. In this way, we get all
the positive cases of the training data. Then we randomly
choose the same number of negative cases, which are
sites that have reads covered but not in annotation. With
the positive and negative cases, we have all the training

Figure 3 Illustration of paired-end reads that are used to guide the alignment and filter out false splicing junctions. A, B, C and D are
four called out splicing sites. 1(1a and 1b), 2(2a and 2b), and 3(3a and 3b) are three pairs. 1a, 2a, and 3b are fully mapped, while 1b, 2b, and 3a
are split-mapped. The right end of 1a is aligned at site E, and [E,D] forms a focal region to align the clipped segment of 1b. Insert size between
1a and 1b can be used to guide the alignment of the clipped segment of 1b: the clipped segment is short and can be aligned at both position
A and C, but the alignment at C is wrong because otherwise 1a and 1b form a discordant pair which has low probability. Thus alignment at
position A is chosen. Paired-end reads can also be used to filter out false splicing junctions. Splicing junction [C,D] is considered as a false one,
because although read 2b is split-mapped at position C and D, 2a and 2b will form a discordant pair if the alignment of 2b is correct. Thus a
conflict happens, and SpliceJumper will report [C,D] a false positive. In contrast, splicing junction [A,B] is considered as a true splicing junction.
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data of real data. To train a model, 10-cross validation
and grid search are used to find the optimal parameters.
Then with the trained model, we classify the candidate
sites in testing data into the true and false ones.
Junction calling After finishing classification, Splice-

Jumper has called out all the true splicing sites. There
are two steps to call out the splicing junctions. First, we
call out all the candidate splicing junctions. To call a
splicing junction, first both the two sites (one is donor
and the other is acceptor) of the junction should be true
in classification. There should be a connection between
the two sites. We say two sites are connected if there at
least one read that is clipped at the donor (acceptor)
site, and the clipped segment of the read can be aligned
at the acceptor (donor) site. In practice, this step is fin-
ished in feature parsing step, and a graph with all the
candidate sites as nodes and connecting edges is kept.
In the second step, we check whether there is a conflict
between the insert size and the mapping position of the
clipped segment. If the mapped clipped segment leads
the read pair to be discordant, then we say it is a con-
flict. If conflicts happen, it is quite possible that the con-
nection between the two sites is false. This may be
caused by wrong alignment of the clipped segment
because the segment usually is short and there are
repeats in genome. We discard this kind of splicing
junctions. Figure 3 shows an example: A, B, C, and D
are called out splicing sites. 1(1a and 1b), 2(2a and 2b),
and 3(3a and 3b) are three pairs. 1a, 2a, and 3b are fully
mapped, while 1b, 2b, and 3a are split-mapped. Splicing
junction [C,D] is considered as a false one, because
although read 2b is split-mapped at position C and D,
2a and 2b will form a discordant pair if the alignment of
2b is correct. Thus a conflict happens, and SpliceJumper
will report [C,D] as false positive. In contrast, splicing
junction [A,B] is considered as a true splicing junction.

Results
We run SpliceJumper on both simulation and real data,
and compare with TopHat 2.0.10 and MapSplice 2.1.6
on accuracy and efficiency. For simulation data, because
we know the true junctions, we can calculate the num-
ber of true positive, false positive and false negative of
each tool. Three metrics are used: 1) Precision=TP/(TP
+FP), 2) Recall=TP/(TP+FN), and 3) F-value = 2*Preci-
sion*Recall/(Precission+Recall), where TP represents
true positive, FP represents false positive, and FN repre-
sents false negative. For real data, because no true junc-
tions are provided, we cannot directly evaluate the
accuracy of called junctions of each tool. We rely on
another metric: the ratio of mapped bases. RNA-seq
reads alignment and splicing junction calling are related
to each other. To call splicing junctions accurately the
first step is to align reads correctly, and at the same

time calling splicing junctions accurately can also help
to guide the alignment of the unmapped reads. Thus,
the ratio of mapped bases is an approximate estimate of
the accuracy of called out splicing junctions. For real
data, as the origin of each read is unknown, we give the
ratio of mapped bases. For simulation data, because the
true alignment position of each read is known, we com-
pare the ratio of correctly mapped bases.

Calling RNA junctions with simulated data
We use the same simulated data released in [17]. Two
datasets (Test1 and Test2 of simulation one) are used. All
the reads are simulated using a tool BEERS released in the
same paper. Both of the datasets are generated from
30,000 mouse build mm9 transcript models. Indel, substi-
tution and error rates for the Test1 dataset are 0.0005,
0.001 and 0.005 respectively, and 0.0025, 0.005 and 0.01
for Test2 dataset. For each dataset, 10 million pairs of
reads with read length 100bp are simulated. Wetest the
accuracy of the three tools on chromosome 11. It is unfair
for all the tools if there are no reads covering the splicing
sites. So when calculating the accuracy, only junctions
with at least one read covered are counted. Thus there are
14,939 and 15,738 benchmarked junctions on chromo-
some 11 for Test1 and Test2 dataset respectively. Recall
that SpliceJumper requires training data. We use the spli-
cing sites of chomosome 1 as the training data, and test
the performance of the trained model on chromosome 11.
To compare the called out junctions with the bench-

mark data, a slack value is introduced. If the distance
between both the left and right sides of a called out spli-
cing junction and a benchmarked one is smaller or equal
to the slack value, then the called out one is considered
as a correct one. Table 1 shows the change of F-value of
the three tools as slack value increases from 0 to 15 for
the Test1 and Test2 dataset. The results show that the F-
value improves for all the three tools when the slack
value increases. When the slack value is 0, MapSplice2
has the best performance but none of the three tools
reaches its best performance. And when the slack value
reaches 8, the F-value of all the three tools basically
reaches stable values, and SpliceJumper has the best per-
formance. Detailed results for the three tools when the
slack value is 8 are shown in Table 2 and Table 3 for
Test1 and Test2 dataset respectively.
We also calculate the ratio of correctly mapped bases.

For Test1 dataset, Splice-Jumper is 95.10%, while TopHat2
and MapSplice2 are 93.49% and 94.11% respectively. For
Test2 dataset, SpliceJumper is 92.09%, while TopHat2 and
MapSplice2 are 89.76% and 91.25% respectively.

Calling RNA junctions with real data
The real data is released in [20], which is gathered
across a time-course experiment (GEO accession
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number: GSM818582). There are 65,352,789 pairs of
reads with read length 101 bp. We compare the perfor-
mance of the three tools on chromosome 11. We train
the model based on the annotation released by UCSC.
8,000 splicing sites of chromosome 20 in the released
annotation data are used as positive cases, and each spli-
cing site has at least one read covered. 8,000 randomly
generated sites are used as negative cases, and each site
has coverage larger than zero and is not included in
released annotation. SpliceJumper calls out 9,902 junc-
tions, while TopHat2 and MapSplice2 calls out 9,836
and 9,878 junctions respectively. Because the true junc-
tions are unknown, we use the ratio of mapped bases to
evaluate the performance of the three tools. The ratio of

mapped bases of SpliceJumper is 92.69%, while 90.89%
and 92.13% for TopHat2 and MapSplice2 respectively.
One can see SpliceJumper has the highest ratio of
mapped bases.
We also calculate the number of overlapped junctions

of the two tools. Similar to the junction comparison in
simulation section, a slack value is also introduced when
checking whether one splicing junction of one tool over-
laps with a splicing junction of another tool. Detailed
results of number of overlapped splicing junctions as
slack value increases are shown in Table 4. From the
results, we see that when the slack value is 7, the num-
ber of called out junctions of all the three tools con-
verges. Splice-Jumper has 8,205 junctions overlapping

Table 1 Comparison of SpliceJumper, TopHat2 and MapSplice2 on simulation data.

Slack value Test1 dataset Test2 dataset

SpliceJumper TopHat2 MapSplice2 SpliceJumper TopHat2 MapSplice2

0 0.8314 0.0003 0.8918 0.7940 0.0015 0.8288

1 0.8923 0.0016 0.9627 0.8548 0.0103 0.9319

2 0.9367 0.9370 0.9631 0.9156 0.8558 0.9328

3 0.9618 0.9377 0.9639 0.9400 0.9016 0.9471

4 0.9666 0.9384 0.9642 0.9491 0.9150 0.9473

5 0.9676 0.9390 0.9647 0.9495 0.9156 0.9476

6 0.9676 0.9396 0.9650 0.9562 0.9166 0.9485

7 0.9676 0.9397 0.9650 0.9573 0.9167 0.9502

8 0.9676 0.9397 0.9651 0.9578 0.9178 0.9508

9 0.9677 0.9397 0.9651 0.9578 0.9178 0.9508

10 0.9677 0.9398 0.9651 0.9578 0.9178 0.9508

11 0.9677 0.9398 0.9651 0.9578 0.9179 0.9510

12 0.9678 0.9399 0.9651 0.9578 0.9179 0.9510

13 0.9678 0.9399 0.9652 0.9579 0.9180 0.9510

14 0.9678 0.9399 0.9652 0.9579 0.9180 0.9510

15 0.9678 0.9400 0.9653 0.9579 0.9180 0.9510

Slack value is introduced when comparing a called out junction with a benchmarked one. And if the distance of both sides between the called out one and the
benchmarked one is within the slack value then the called out one is considered as a correct one. We compare the F-value (2*Precision*Recall/(Precision+Recall))
of the three tools for different slack values. The higher the F-value the better the performance.

Table 2 Comparison of SpliceJumper, TopHat2 and MapSplice2 on simulated Test1 dataset when the slack value is 8.

Tools False positive False negative True positive Precision Recall F-value

SpliceJumper 78 862 14,077 0.9945 0.9423 0.9677

TopHat2 248 1,475 13,430 0.9819 0.9010 0.9397

MapSplice2 125 888 14,006 0.9912 0.9404 0.9651

False positive: the number of called out junctions that are actually false ones. False negative: the number of not called out junctions that are actually true ones.
True positive: the number of called out junctions that are actually true ones.

Table 3 Comparison of SpliceJumper, TopHat2 and MapSplice2 on simulated Test2 dataset when the slack value is 8.

Tools False positive False negative True positive Precision Recall F-value

SpliceJumper 334 969 14,769 0.9779 0.9384 0.9578

TopHat2 717 1,784 13,954 0.9511 0.8866 0.9178

MapSplice2 358 1,151 14,587 0.9760 0.9269 0.9508

False positive: the number of called out junctions that are actually false ones. False negative: the number of not called out junctions that are actually true ones.
True positive: the number of called out junctions that are actually true ones.

Chu et al. BMC Bioinformatics 2015, 16(Suppl 17):S10
http://www.biomedcentral.com/1471-2105/16/S17/S10

Page 8 of 11



with MapSplice2, and has 7,726 junctions overlapping
with TopHat2, while TopHat2 has 7,526 junctions over-
lapping with MapSplice2.

Running time and memory usage
We benchmark the running time and memory usage on
simulated Test1 dataset. The server configuration is:
eight core CPU (Intel(R) Xeon(R) X5482 @ 3.20 GHz)
with 32G memory. SpliceJumper accepts bam files
aligned by BWA (or other tools which report soft-
clipped and hard-clipped alignments). If only original
raw reads are provided, users can run BWA (or other
tools) to do alignment first. To make the fair evaluation,
besides the running time of SpliceJumper, we also
include the running time of BWA, model training time
and predicting time. Detailed running time and memory
usage are provided in Table 5. The results show that the
running time for the three tools are similar, and MapS-
plice2 is a little better. For memory usage, SpliceJumper
is better.

Discussion
We show in this paper that SpliceJumper is more accu-
rate than TopHat2 and Map-Splice2 on both the simu-
lated and real datasets for calling splicing junctions.
Splice-Jumper achieves higher accuracy due to three
improvements. First, SpliceJumper views each splicing
site independently, and extracts more features for each

splicing site. For example, SpliceJumper uses the discor-
dant encompassing pair feature that is not used by
TopHat2 and MapSplice2. This feature is a strong feature
to indicate the existence of splicing junctions. Second,
SpliceJumper uses a machine learning approach to com-
bine the features, which not only uses the features in a
more effective way, but also avoids the threshold para-
meters setting issue. Finally, with the called out splicing
sites, the clipped segments can be aligned in focal
regions, which improves the accuracy. For illustration, we
show an example from the simulated Test1 dataset ana-
lyzed in the Results Section. Figure 4 shows the IGV [21]
view of a region from 3,032,644 to 3,036,223 of chromo-
some 11. The splicing sites are labeled from 1 to 9. We
can see that all the nine splicing sites have strong fea-
tures: many reads are clipped at the splicing sites; there is
significant coverage change between the two neighbor
regions of the splicing sites; and many discordant read
pairs encompass the splicing sites. SpliceJumer calls out
all the marked nine splicing sites correctly. Reads marked
as A, B, C, and D are clipped and also discordant with
their mate reads. For example, the “cigar” field for A and
B are “14S10M1I75M” and “21S10M1I68M” respectively,
and the mate read mapping positions for A and B are
3,032,234 and 3,032,253 respectively. From the bench-
mark data, we know there is a junction from 3,033,210 to
3,035,657 which indicates an alternative splicing event at
site 1 and site 8. SpliceJumper correctly calls out this spli-
cing junction, while neither TopHat2 nor MapSplice2
calls out this junction. One reason is that for the clipped
reads such as A or B, the clipped segment is short (14 bp
for A and 21 bp for B), and the region between site 1 and
site 8 is long (2,447 bp). Also there are three exons
between them. So it is quite possible for the clipped seg-
ments aligned to ambiguous positions that neither
TopHat2 nor MapSplice2 can distinguish. In contrast,
SpliceJumper first tries to align the clipped segments to

Table 4 Comparison of SpliceJumper, TopHat2 and MapSplice2 on real data.

Slack value SpliceJumper with MapSplice2 SpliceJumper with TopHat2 TopHat2 with MapSplice2

0 7,346 4,534 4,601

1 7,491 5,128 4,987

2 7,769 6,254 5,589

3 8,201 6,675 6,701

4 8,204 7,302 7,465

5 8,204 7,701 7,509

6 8,205 7,726 7,526

7 8,205 7,729 7,526

8 8,205 7,729 7,526

9 8,205 7,729 7,526

10 8,205 7,729 7,526

Slack value is introduced when comparing two junctions. If the difference between both the left sides and the right sides of two splicing junctions is smaller or
equal to the slack value, then we consider these two splicing junctions overlap with each other. When the slack value reaches 7, all the three tools give stable
results.

Table 5 Comparison of running time and memory usage
for SpliceJumper, TopHat2 and MapSplice2 on simulated
Test1 dataset.

Tools Running time Memory

SpliceJumper 711 minutes and 28 seconds 3.14G

TopHat2 679 minutes and 18 seconds 6.53G

MapSplice2 548 minutes and 5 seconds 4.61G
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focal regions, not the whole region. Consider the read A
in the above example. Because it is clipped at an acceptor
site. So to align the clipped segment we only check the
focal regions of site 7, 5, 3, and then 1. Even when the
clipped segment is short, SpliceJumper is still able to
align it to the correct position.
One issue of using SpliceJumper is that SpliceJumper

needs training data (i.e. data with known splicing sites).
For well studied organisms, we can use the released
annotation data to generate training data. In the case
when no annotation data is available, we believe that
simulated data may also be used as training data to
train models for real data analysis. In [22], we show that
models on simulated data can give reasonably accurate
insertion and deletion genotype calling on real data.
For future work, we notice that some kinds of struc-

tural variations, like long deletions, can introduce false
positives to our results. Many of the existing methods
such as TopHat2 and MapSplcie2 can call indels while
aligning reads. So in the future work, we plan to add
the indels calling part, which is not only useful to profile
the gene structure, and also to improve the accuracy of
splicing junctions calling.
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