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Abstract

Motivation: The identification of new therapeutic uses of existing drugs, or drug repositioning, offers the
possibility of faster drug development, reduced risk, lesser cost and shorter paths to approval. The advent of high
throughput microarray technology has enabled comprehensive monitoring of transcriptional response associated
with various disease states and drug treatments. This data can be used to characterize disease and drug effects
and thereby give a measure of the association between a given drug and a disease. Several computational
methods have been proposed in the literature that make use of publicly available transcriptional data to reposition
drugs against diseases.

Method: In this work, we carry out a data mining process using publicly available gene expression data sets
associated with a few diseases and drugs, to identify the existing drugs that can be used to treat genes causing
lung cancer and breast cancer.

Results: Three strong candidates for repurposing have been identified- Letrozole and GDC-0941 against lung
cancer, and Ribavirin against breast cancer. Letrozole and GDC-0941 are drugs currently used in breast cancer
treatment and Ribavirin is used in the treatment of Hepatitis C.

Background
Despite the enormous investments in basic science and
technology, the number of approved drugs reaching the
market has been declining since the late 1990s. Bringing
a new drug to market typically takes about 10 to 15 years
and costs between $500 million and $2 billion [1].
If new uses can be identified for existing drugs, it can

save both money and time, and improve treatments. In
this context, the concept of drug repositioning is increas-
ingly gaining importance. Drug repositioning is the pro-
cess of identifying new indications for approved drugs.
Apart from cheaper and faster drug development and
reduced risks in drug discovery, drug repositioning offers
several other merits. The new potential uses identified as
a part of this process, which are not consistent with

known disease mechanisms, might generate hypotheses
that could lead to the discovery of new biological pro-
cesses or disease pathways [1]. Drug repositioning can
also lead to significant contributions in orphan drug
development [2].
In the past, drug repositioning has often been accidental.

There are many examples of repurposed drugs whose
additional indications were discovered serendipitously.
Another form of repurposing is the off-label use of medi-
cines to treat a condition other than for which the drug
was approved by FDA [1]. Post marketing surveillance
information, including voluntary report by individual
patients and physicians, can aid drug repositioning in a big
way. Increased consumer activism, access to genetic infor-
mation and social networking technologies are creating
many opportunities for drug repositioning [1].
A number of computational approaches have been

proposed to hypothesize which drugs from one disease
indication can be used for another disease and they
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mainly fall into two categories, based on the data
sources utilized [3]. The methods in the first category
make use of certain static prior information, such as the
target set of the drug and the structural and functional
information of the target protein. This information is
combined and utilized with different approaches for pre-
dicting new indications for drugs. Traditionally, the idea
of drug repositioning has been based on understanding
how the drug interacts with various pathways in specific
cells in the body [4]. These methods try to identify dis-
eases with similar structures or molecular alterations
that could benefit from the same drug.
The methods in the second category make use of

microarray data to represent cellular state and reposition
drugs against various diseases [3]. Methods under this
category follow the common assumption that gene
expression of many diseases and drugs can characterize
to some extent the effects of diseases and drugs and
therefore they can be related based on the similarity/dis-
similarity of their expression profiles [5]. Ideally the
interference of the drug should restore the cellular state
to normal state and the changes of the transcriptional
level induced by the drug should reverse the changes in
the transcriptional level under disease state. Thus the
basic idea is that a drug will have the potential to cure a
disease if the differential expression profile under drug
administration and disease states is anti-correlated signif-
icantly [3].

Related work
Butte et al. [6] combined data from publicly available
microarray data sets representing 100 diseases and gene
expression data from human cell lines treated with 164
drugs or small molecules, obtained from Connectivity
Map [7], to predict therapeutic drug-disease interactions.
They generated genome-wide mRNA signatures for drug
treated cell lines and also calculated signatures from
various disease states. Each of the disease signatures was
statistically compared to each of the reference drug
expressions from the Connectivity Map and a similarity
score was calculated for every pairing of drug and disease
reflecting the similarity of the drug and disease signatures
[6]. Using the hypothesis that drug-cell signatures that
anticorrelated with disease signatures could be of thera-
peutic value [4], they recovered many known drug and
disease relationships and predicted many new indications
for approved drugs.
Iorio et al. [8] used similarity in gene expression pro-

files following drug treatment, across multiple cell lines
and dosages, to predict similarities in drug effect and
mode of action. For each drug, a consensus transcrip-
tional response was developed summarising the tran-
scriptional effect of drug across multiple treatments. A

drug network was constructed next in which two drugs
are connected if their consensus responses are similar.
By analyzing the interconnected modules, similarities
and differences in pharmacological effects and modes of
action were predicted.
A large-scale disease-disease, drug-drug and disease-

drug network was generated by Guanghui and Agarwal
[5] by directly matching their transcriptomic profiles
obtained from human Gene Expression Omnibus(GEO)
[9] data sets. Human GEO data sets were used to gener-
ate disease and drug genomic profiles. The links between
different diseases and drugs were established using two
different methods. The first method was based on the
concept of correlation, which measures profile-profile
similarity, whereas the second method, based on the con-
cept of enrichment, measures the signature-profile simi-
larity. The disease-disease network provided a new way
to redefine human diseases and gain a broader under-
standing of the disease mechanism. The connected dis-
eases that are located in different branches of MeSH tree
provided potentially novel disease relationships. The
genomic profile-based disease relationship helped in drug
repositioning. If two diseases are linked in a sub-network,
then this indicates that the diseases may be similar and
hence the drug used for one disease may be repurposed
for the other.The disease-drug sub-networks were used
to generate hypotheses on the potential drug side effects
and perform drug repositioning. Among the disease-drug
links, connections with negative scores suggested new
indications for existing drugs, while the positive scoring
connections could aid in drug side effect elimination.
A new method for identifying potential drugs for repo-

sitioning was proposed by Zikai et al. [3] by introducing a
new measure considering both efficiency and side effect.
The cellular network is a complex networked system and
hence the effect on some cellular elements induced by
the drug will propagate through the network. Therefore
the drug can induce both the desired effect and some
unintended effect simultaneously. The number of abnor-
mally regulated genes after drug treatment that were
regulated oppositely under disease state was used to mea-
sure the efficiency of the drug. Certain genes which are
newly regulated or further regulated in the same direc-
tion after drug treatment were considered the source of
side effect. The changes in transcription level of essential
genes, which are indispensable to support cellular life,
might cause significant unfavourable phenotype variation,
such as side effect. Therefore, the number of essential
genes that were newly regulated or further regulated in
the same direction after drug treatment was used to mea-
sure the extent of side effect. Based on these two mea-
sures, a new scheme was developed to score and rank
drug-disease associations and reposition drugs.
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Methods
We propose a novel methodology to perform drug repo-
sitioning without using gene signatures. In this method,
normal plus disease data set and pre and post drug
treatment data set associated with a disease are used.
The normal plus disease data set contains gene expres-
sion data of samples in normal and disease states. The
pre and post drug treatment data set contains gene
expression data of samples before and after treatment
with a particular drug. The significant genes associated
with the disease are determined by processing the nor-
mal plus disease data sets. Also the genes affected by
the drug are identified by processing the pre and post
drug treatment data sets. Next by comparing the two
sets, the disease genes targeted by the drug are identi-
fied. Hyperedges are then constructed for each drug, the
analysis of which leads to the identification of the drugs
that target genes causing various diseases.
The proposed method has been outlined below:
Input: The normal plus disease data set, and pre and

post drug treatment data set associated with two cancer-
ous and two non-cancerous diseases
Output: A list of drugs that can be used to treat genes

causing different diseases
Step 1: Process the normal plus disease data set to

identify the significant genes, Set A
Step 2: Similarly process the pre and post drug treat-

ment data set to create a Set B containing significant up
and down regulated genes. The disease genes that exhib-
ited up/down regulation under the administration of at
least one drug are considered for further analysis.
Step 3: Compare the genes of Set A and Set B for the

same disease. If the genes are common and they are
opposite i.e. in Set A, an identified significant gene is up-
regulated and after treatment in Set B, this gene is down-
regulated, or vice versa, then this implies that the gene is
a probable target of the drug
Step 4: Construct disease networks for each disease

using the identified significant genes and their interac-
tions. Compute their node weights and edge weights
Step 5: Construct a single network comprising of all

the disease genes along with nodes for each disease
Step 6: Construct hyperedges in this network for each

drug. Analysis of genes in this hyperedge can yield novel
disease-gene-drug relations
Network I consists of gene-gene interactions (Set A

and Set B). A separate network is constructed for each
disease. The node weight, edge weight and node
strength are computed as follows:

Node weight = Normalized(degree)+Normalized(betweenness)+Normalized(clustering coefficient) (1)

Edge weight = Average
(
Gene Ontology Semantic Similarity,Pathway Score

)
(2)

Pathway score =
Number of common pathways across the two nodes

Total number of pathways of the two nodes
(3)

Node strength = Node weight + �
(
Edge weight of all incident edges

)
(4)

Network II consists of gene-gene interactions (Set A
and Set B) together with disease-gene interactions. It is
a single network comprising of all the disease genes
along with separate nodes for each disease. Each disease
node shares an edge with each of its significant disease
genes. The node weight of the gene nodes and the edge
strengths are the same as in Network I. For the disease
nodes, the node weight is calculated in the same way as
it was done for genes in Network I. The disease- gene
edge weight is calculated by computing the z-score of
the node weights of all significant disease genes. Next
the genes are ranked based on the z-score and the dis-
ease-gene edge weight is calculated as:

Edge Weight(D,G) = 1 − rank(G)
N

(5)

where N is the total number of significant genes asso-
ciated with disease D
The drug nodes are then added to Network II and

each drug node is connected to the genes which show
opposite regulation under its administration. Hyperlinks
are observed where both disease-gene and drug-gene
edges are incident on a single gene node, representing a
disease-gene-drug relationship. All the gene nodes that
are connected to each drug node along with the disease
nodes form a hyperedge. These hyperedges are used to
perform drug repositioning.
The hyperedge associated with each drug consists of

all the disease nodes and the gene nodes associated
with the drug. The adjacent genes of the disease nodes
in the hyperedge are identified to find out the genes
associated with each disease that are affected by the
drug. The set of genes thus identified for each disease
is further refined by selecting only the ones that
become oppositely regulated under the administration
of the drug. Thus for each disease, we get a set of
gene nodes that are targeted by the drug. The node
strength of these genes in the disease network deter-
mine the prospects of repurposing the drug against the
disease.
The disease-gene-drug connections are ranked based

on a scoring function and an overall score is also
assigned for each disease-drug network. The scoring
function of disease-gene-drug takes into account the
relative contribution of the gene in the disease (A) and
also the relative effect of the drug on the gene (B). Here
it is assumed that the drug has equal effect on each of
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its target genes. The scoring function is the product of
the parameters A and B, as given below:

Score (Ds,G,Dr) = A ∗ B (6)

A =
P

Q
(7)

B =
1
S

(8)

P: Node weight of gene G in network of Ds
Q: Sum of node weights of all the genes associated

with disease Ds
S: Number of genes associated with Ds which are

affected by drug Dr
In order to score the disease-drug connection, the

sum of the node weights of the genes, affected by the
drug, in the disease network and the sum of the node
weights of all the genes in the disease network are taken
into account. It gives a measure of the efficiency of the
drug on the disease in terms of the relevance of the tar-
get genes in the disease network. The scoring function
for the disease-drug connection is defined as follows:

Score(Ds,Dr) =
Y

Z
(9)

Y: Sum of node weights of all genes associated with
Ds and affected by Dr
Z: Sum of node weights of all genes associated with

Ds
The disease-drug score, Score(Ds,Dr), is the proportion

of node weights in the disease network of Ds targeted by
Dr. A high disease drug scores indicate that the drug tar-
gets a good proportion of genes in the disease network.
But even if the scores are low, Dr can be a potential can-
didate for repurposing if it is found to target some of the
important biomarkers of the disease Ds.

Implementation
The gene expression data associated with normal plus
disease and pre and post drug treatment data sets for two
cancerous diseases- Lung Cancer and Breast Cancer and
two non-cancerous diseases- Parkinson’s Disease and
Hepatitis C were collected from the website of National
Center for Biotechnology Information (NCBI) GEO data-
base [9]. The raw data was downloaded and then normal-
ized using the Robust Multichip Average (RMA) [10]
normalization procedure in the R [11] package called affy
[12]. The data sets were annotated with the latest corre-
sponding GEO Platform (GPL) annotation file down-
loaded from the website of AILUN [13]. The probe ids
were mapped to the corresponding Gene Symbol, if it
exists. All the gene expression entries without a Gene

Symbol were removed. In cases where multiple microar-
ray probe sets mapped to the same Gene Symbol, their
mean expression value was assigned to the Gene Symbol.
The differentially expressed genes were identified using

the empirical bayes method with linear modelling
approach [14] implemented in the R package called
limma [15]. For the cancerous diseases, the FDR thresh-
old of 0.01 for q value was used in t−test to identify the
significant genes for both normal plus disease and pre
and post drug treatment data sets. The FDR threshold of
0.05 for q value was used in the case of non-cancerous
diseases. The number of significant genes identified for
the cancerous and non-cancerous data sets have been
given in Table 1. The log2 fold change of genes was used
[16] to find whether the gene is up-regulated or down-
regulated. If the log2 fold change value is positive, then
the gene is up-regulated. Otherwise, it is down-regulated.
For a given disease, if there were multiple data sets from
the same platform, the common genes and unique genes
were identified separately and the up/down regulation of
these genes were noted.
The significant genes of pre and post drug treatment

data sets were compared against the significant genes of
the corresponding disease and the genes whose regula-
tion has been made opposite under the administration
of drug were identified. Multiple dosages of the same

Table 1 No: of Significant Genes Identified in Cancerous
and Non-Cancerous Data sets.

Disease GSE No: of Genes

Lung Cancer Disease
GSE18842
GSE19188
GSE19804

8287
5792
4648

Drug
GSE6400 (Acitnomycin)
GSE6400 (1.25uM Sapphyrin PCI-2050)
GSE6400 (2.5uM Sapphyrin PCI-2050)

3990
4655
1755

Breast Cancer Disease
GSE10810
GSE26910

5887
102

Drug
GSE10281
GSE11352 (12 hr)
GSE11352 (24 hr)
GSE11352 (48 hr)
GSE20719
GSE28305(16 hr)
GSE28305(48 hr)

168
532
475
766
2441
23
176

Parkinson’s Disease
GSE7621

Drug
GSE14429(1 hr)
GSE14429(6 hr)

302
7668

Hepatitis C Disease
GSE38597 881

Drug
GSE23031 5421
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drug were treated separately, whereas in the case of
application of the same drug across multiple time
points, only the common significant genes across all the
time points were taken into consideration.
The gene-gene interactions of the significant genes

were obtained from BioGRID Version 3.2.97 [17]. The
interactions obtained from both high and low through-
put experiments were considered. The interactions were
further filtered by considering only those in which both
the interacting genes belong to the set of significant
genes under consideration. The results are summarized
in Table 2. After this step, it was observed that the
number of interactions for Parkinson’s Disease were
very less. Hence Parkinson’s Disease was dropped from
the analysis.
Disease network for each disease was constructed with

the identified significant genes forming the nodes of the
graph and the edges representing the interactions
between genes obtained from BioGRID. Network II, the
single network comprising of all the disease genes along
with nodes associated each disease, was also created. It is
a single network comprising of all the disease genes
along with separate nodes for each disease. Each disease
node shares an edge with each of its significant disease
genes. The node weights and edge weights of all the
graphs were computed using equations 1, 2 and 5.
The construction and analysis of graphs was performed

using the igraph [18] package of R. The Gene Ontology
(GO) score for a pair of genes was computed based on
Wang’s method[19] using the R package GOSemSim
[20]. The pathway information about genes was obtained
from KEGG [21].
The hyperlinks formed in Network II on adding the

drug nodes are shown in Figure 1. Here the central node
in red color is the disease node corresponding to Breast
Cancer. The two other central nodes in purple color are
the drug nodes corresponding to 5aDHT and Letrozole.
The other nodes colored green are the gene nodes repre-
senting the genes associated with Breast Cancer. All gene
nodes are connected to the disease node. The gene nodes
are also connected to the drug nodes that make them
oppositely regulated. The hyperlinks are observed where
both disease-gene (blue) and drug-gene (magenta) edges
are incident on a single gene node (green). All the gene
nodes that are connected to both the disease node and
the drug node Letrozole form one hyperedge. Similarly

another hyperedge associated with the drug node 5aDHT
can also be observed.
The nodes in the hyperedge associated with the Breast

Cancer drug Letrozole is given in Figure 2. The nodes
colored in red are the disease nodes. The yellow nodes
are the genes associated only with breast cancer. The
nodes colored green represent the genes associated with
both breast cancer and lung cancer and the purple color
node denotes the gene associated with the two cancer-
ous diseases as well as with Hepatitis C.
The Disease-Drug scores for various drugs and dis-

eases, computed using equation 9, have been summar-
ized in Table 3.

Results and discussion
By ranking the genes based on their node strength in
each of the disease networks, the significant genes tar-
geted by the drug set and are highly related with each
disease have been identified.
Out of the top 10 significant genes associated with

breast cancer, 7 were validated using GeneCards, which
is a compilation of annotative information about human
genes, mined and integrated from over 80 digital sources
[22]. In the case of lung cancer, 6 out of the top 10 were
verified [22]. 3 genes out of the top 10 were found to be
associated with Hepatitis C [22]. The top 10 genes iden-
tified for each disease have been listed in Table 4.
In our analysis, it was found that the breast cancer

drug Letrozole targeted some of the lung cancer genes.
Out of the 34 target genes found to be associated with
Lung Cancer, 17 were validated from literature [22]. In
the light of the recent studies indicating that blocking
estrogen is crucial in developing effective treatments for
lung cancer [23], we analyzed the targets of Letrozole
and found out several genes including RRM2, TOP2A
and RAD51 that were estrogen responsive [24]. It has
also been reported that Letrozole decreased cell prolif-
eration in ER expressing cell lines in Non Small Cell
Lung Carcinoma (NSCLC) [25]. In the light of these evi-
dences, we propose Letrozole as a strong candidate for
repurposing against lung cancer.
It can be seen from Table 3 that Letrozole has a

higher score for Hepatitis C. This is because it targeted
genes with higher node weights in the disease network
of Hepatitis C as compared to Lung Cancer. Even
though the sum of the node weights of the lung cancer

Table 2 BioGRID Interactions Summary.

Disease Significant No: of Disease Genes No: of Interactions Involving Only Significant Genes

Lung Cancer 3980 11394

Breast Cancer 1468 1802

Hepatitis C 281 55

Parkinson’s Disease 21 4
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genes targeted was less, (hence the lower score com-
pared to Hepatitis C), it was verified from literature that
some of the lung cancer genes targeted by Letrozole
were significant in developing a treatment to the disease.
Hence we proposed Letrozole as a more plausible candi-
date for repurposing against lung cancer as compared to
Hepatitis C.
In the case of the drug GDC-0941, which has been

found effective in treatment of breast cancer, we
observed that the drug targeted 204 lung cancer genes
and 52 of them were verified as being associated with
lung cancer from literature [22]. Also four target genes,
CCNE2, E2F3, TRAF2 and TRAF4 were identified as
being part of the lung cancer disease pathway [21]. A
study conducted in mice show that GDC- 0941 has excel-
lent anti-tumor activity against various cancers [26].

Another study has shown that treatment with GDC-0941
led to pronounced tumor shrinkage and inhibition of
tumor growth in two NSCLC models in mice [27]. Hence
we suggest that GDC-0941 can be repurposed against
lung cancer.
Ribavirin is a drug prescribed for Hepatitis C. In our

analysis, it was observed that the drug targeted the gene
KIF18A, which is a potential target for breast cancer [28].
Another potential target for triple negative breast cancer,
LRP8 [29], was also found to be targeted by Ribavirin.
Targeting MYC-regulated pathways has been proposed
as a promising therapeutic strategy for breast cancer [30].
And in one of the recent studies, it has been reported
that in breast cancer cell lines, MYC expression is depen-
dent on the RAD21 subunit of cohesin [31]. It was
observed in our analysis that Ribavirin targeted RAD21

Figure 1 HyperLinks in Network II of Breast Cancer on adding Drug Nodes associated with Letrozole and 5aDHT. The red color node is
the disease node representing Breast Cancer and the purple nodes represent the drug nodes, namely 5aDHT and Letrozole. The green colored
nodes are the gene nodes representing the genes associated with Breast Cancer. All gene nodes are connected to the disease node. The gene
nodes are also connected to the drug nodes that make them oppositely regulated. The hyperlinks are observed where both disease-gene (blue)
and drug-gene (magenta) edges are incident on a single gene node (green). All the gene nodes that are connected to both the disease node
and the drug node Letrozole form one hyperedge. Similarly another hyperedge associated with the drug node 5aDHT can also be observed.
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by making it down-regulated. In the context of these evi-
dences, we propose Ribavirin as a strong candidate for
repurposing against breast cancer.
Acitnomycin D and Sapphyrin PCI-2050 are drugs

used in the chemotherapy for lung cancer. It was
observed that Acitomycnin D, 1.25uM Sapphyrin PCI-
2050 and 2.50uM Sapphyrin PCI-2050 targeted 123, 114
and 47 breast cancer genes respectively, out of which
37, 34 and 13 genes respectively were validated from lit-
erature as being associated with breast cancer [22].
These 3 drugs targeted the gene E2F3, which has been

Figure 2 Disease Nodes, Genes and their Connections in the Hyperedge of the Breast Cancer drug Letrozole. The nodes colored in red
are the disease nodes - Breast Cancer, Lung Cancer and Hepatitis C. The yellow nodes are the genes associated only with breast cancer. The
nodes colored green represent the genes associated with both breast cancer and lung cancer and the purple color node denotes the gene
associated with the two cancerous diseases as well as with Hepatitis C.

Table 3. Summary of Disease-Drug Scores

Drug Breast
Cancer

Hepatitis
C

Lung
Cancer

Letrozole 0.1593 0.0178 0.0138

GDC-0941 0.5652 0 0.0825

5a-DHT 0.0086 0 0.0017

Ribavirin 0.0160 0.5427 0.0118

Acitnomycin D 0.2231 0.0178 0.2851

Sapphyrin PCI-2050 (1.25uM) 0.0984 0.1624 0.3190

Sapphyrin PCI-2050 (2.50uM) 0.0685 0 0.1258
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identified as a potential therapeutic target in breast cancer
[32]. Hence we suggest that Acitnomycin D and Sapphyrin
PCI-2050 may be considered for repurposing against
breast cancer.
5a-Dihydrotestosterone (DHT) is a steroid used in the

treatment of breast cancer. This drug targeted 10 lung
cancer genes and 3 of them were verified from literature
[22]. So we propose 5a-DHT as a weak candidate for
repurposing against lung cancer.

Conclusions
We have proposed a new computational method to iden-
tify candidates for drug repositioning for breast cancer
and lung cancer using gene expression data. This method
can be extended to other diseases and drugs to identify
novel therapeutic relationships. The effectiveness of the
proposed method can be improved by including all the
significant disease genes and their interactions rather
than considering only the genes that are affected by
a drug.
This method is based on the hypothesis that diseases and

drugs can be related based on the similarity/dissimilarity of
their gene expression profiles. Hence the validation of the
proposed candidates for repurposing would require addi-
tional experiments in lab by the domain experts. It would
be interesting to look at other ways to validate the plausible
candidates for repurposing. The proposed method using
hyperedges can be made scalable using graph databases
such as HyperGraphDB, which is designed for complex,
large scale knowledge representation applications such as
the ones found in artificial intelligence, bio-informatics and
natural language processing [33].
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