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Abstract

Background: Continued advances in next generation short-read sequencing technologies are increasing
throughput and read lengths, while driving down error rates. Taking advantage of the high coverage sampling
used in many applications, several error correction algorithms have been developed to improve data quality
further. However, correcting errors in high coverage sequence data requires significant computing resources.

Methods: We propose a different approach to handle erroneous sequence data. Presently, error rates of high-
throughput platforms such as the Illumina HiSeq are within 1%. Moreover, the errors are not uniformly distributed
in all reads, and a large percentage of reads are indeed error-free. Ability to predict such perfect reads can
significantly impact the run-time complexity of applications. We present a simple and fast k-spectrum analysis
based method to identify error-free reads. The filtration process to identify and weed out erroneous reads can be
customized at several levels of stringency depending upon the downstream application need.

Results: Our experiments show that if around 80% of the reads in a dataset are perfect, then our method retains
almost 99.9% of them with more than 90% precision rate. Though filtering out reads identified as erroneous by our
method reduces the average coverage by about 7%, we found the remaining reads provide as uniform a coverage
as the original dataset. We demonstrate the effectiveness of our approach on an example downstream application:
we show that an error correction algorithm, Reptile, which rely on collectively analyzing the reads in a dataset to
identify and correct erroneous bases, instead use reads predicted to be perfect by our method to correct the other
reads, the overall accuracy improves further by up to 10%.

Conclusions: Thanks to the continuous technological improvements, the coverage and accuracy of reads from
dominant sequencing platforms have now reached an extent where we can envision just filtering out reads with
errors, thus making error correction less important. Our algorithm is a first attempt to propose and demonstrate
this new paradigm. Moreover, our demonstration is applicable to any error correction algorithm as a downstream
application, this in turn gives a new class of error correcting algorithms as a by product.

Background
High-throughput short read sequencing technologies
have become the mainstay of genomic research. Critical
attention is paid to read quality as it affects the quality
and performance of sequencing applications. For exam-
ple, read quality directly impacts accuracy in mapping to
a reference genome. In de novo genome sequencing,
apart from accuracy of the generated contigs, read quality

affects contig lengths. Error-free reads can also improve
algorithmic performance, as alignments can be replaced
with much faster exact matching.
The focus of this work is applications of high-

throughput sequencing in which a single genome is
sampled at high coverage, such as resequencing and de
novo sequencing. In these cases, the infrequent occur-
rence of errors in reads, and the apparent lack of affinity
of errors to any fixed genomic location, provide a way to
detect and correct erroneous bases in reads. If the reads
covering a specific genomic position can be identified
and properly positioned relative to their locations of
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genomic occurrence, this layout can be used to infer the
true base by majority vote and correct the others. This
works for a haploid genome, but can be extended to
polyploid genomes to at least identify correct bases. Sev-
eral error correction algorithms for haploid genomes
have been developed, using k-spectrum [1-4], suffix
trees [5-7], or multiple sequence alignments [8,9] to
identify overlapping reads. For a detailed survey of error
correction methods, see [10,11].
Most error correction methods are designed for Illu-

mina sequencers, which are predominantly used. With
rare exceptions, reads from these sequencers only con-
tain substitution errors, leading to simpler algorithms
based on Hamming distance instead of edit distance.
High-end sequencers have error rates well within 1%,
and a large percentage of reads are indeed claimed to be
free of errors. Taking advantage of this, in this paper we
propose a different approach: rather than base-level error
correction, we seek to identify reads that are error-free
(or perfect ). If such predictions can be made with high
accuracy, it opens the door to simplifying algorithms for
downstream applications, not to mention improvements
in quality. In fact, we show that error correction algo-
rithms themselves can be improved by using the perfect
reads to correct others, instead of collectively using all
the reads.

Contributions
In this paper, we present a k-spectrum analysis based
approach to filter out erroneous reads in a high-coverage
Illumina dataset. We applied our algorithm to one HiSeq
2500 and five HiSeq 2000 datasets. Our experiments
show that if around 80% of the reads in a dataset are per-
fect, then our approach retains almost 99.9% of the per-
fect reads with more than 90% precision rate. Though
the coverage reduces by 7% on an average, we observed
no noticeable skew in the distribution of perfect reads as
compared to the distribution of the original dataset. We
also developed a way to characterize the type of datasets
for which such an approach is effective.
Depending on the application, our method can be cus-

tomized to vary the degree of stringency used to discard
a read as erroneous. For example, if the objective is to
retain most of the perfect reads despite the risk of
increasing false positives, then the lowest level of strin-
gency should be used. On the other hand, if the objective
is to minimize false positives, the highest level of strin-
gency should be used.
Finally, we demonstrate that our prediction of perfect

reads can be used to improve the performance of error
correction algorithms. To do so, we consider Reptile [1],
a k-spectrum based error correction algorithm. This
method performs an analysis of kmers in the input
reads and uses a Hamming graph constructed based on

the kmers to detect and correct errors. We found that if
only kmers from perfect reads are used instead, this
leads to an improvement of up to 10% on the percen-
tage of errors removed from the dataset. This approach
can be readily applied to improve other error correction
algorithms.
The organization of the rest of the paper is as follows.

The details of our approach are presented in Section
titled Methods. Experimental results are presented in
Section titled Results. In Section titled Improving error
correction algorithms, we show how to apply this
approach to improve error correction methods. We con-
clude in Section titled Conclusions.

Methods
Our algorithm is based on analyzing the k-spectrum of
the given data set. The k-spectrum is the collection of all
kmers, i.e., all substrings of length k from the reads.
Define a kmer to be valid if it is present in the genome
being sequenced, and invalid otherwise. A read is perfect
if it does not contain any invalid kmer. In the absence of
the reference genome, the validity of a kmer can be esti-
mated from its frequency in the dataset. As errors are
infrequent, with sufficient coverage, a valid kmer should
occur at significantly larger frequency than invalid kmers.
Thus, similar to k-spectrum based error correction algo-
rithms, our method consists of two phases. In the first
phase, we generate frequency statistics of the kmers, and
construct a graph to link kmers within short Hamming
distance. In the second phase, each read is checked for
potential errors using the statistics built in the first phase.

kmer statistics generation
The kmer at position p of read r is denoted by r[p : p +
k − 1]. We assume k to be a fixed even number so that
k/2 is a whole number. To determine the validity of a
kmer, we also consider the quality scores of the asso-
ciated bases. We count an instance of a kmer only if
each of its associated bases exceeds a quality threshold
QE (stands for Excellent Quality). The number of such
instances of a kmer T is termed its frequency, denoted
by f(T). Because of the double stranded nature of DNA,
each kmer is associated with its reverse complement
kmer also. We represent both these kmers by the one
smaller in lexicographic order, and combine the frequen-
cies. The frequencies of all the kmers in the k-spectrum
can be easily computed in a single pass over the data.
Alternatively, other efficient kmer counters such as [12]
can be modified to use quality scores.
In the first phase, our algorithm also builds a Hamming

graph over the k-spectrum. Each kmer is represented by a
node in the graph. A pair of nodes is connected if the
corresponding kmers differ in at most d positions, for a
fixed d. The main purpose of the graph is to better
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estimate the validity of a kmer by taking its graph neigh-
borhood into account. We use the same space efficient
data structure to construct and store the Hamming
graph as in Reptile (for details, see [1]).

Identifying perfect reads
Our algorithm for processing a read is presented in
Algorithm 1. The algorithm decomposes a read into
overlapping kmers such that the overlap between two
consecutive kmers is k/2, half their length. If there are
insufficient base pairs for such an overlap towards the
end of a read, the last kmer is chosen to be the suffix of
the read of length k. If none of these kmers is estimated
to be invalid, the algorithm outputs the read as perfect.
Algorithm 1: Error detection
Data: Read r
Result: Classify r as Perfect or Erroneous
p ← 0; /* current kmer r[p:p+k−1] */
while (true) do

T ← kmer of r at position p;
if T is not valid then return Erroneous;
if (p + k = |r|) then return Perfect;
if ((p + k/2) + k < |r|) then p ← p + k/2;
else p ← |r| − k;

end
The algorithm relies on a rule to estimate if a kmer is

valid. We consider five different rules based on proper-
ties P1, . . . , P5 below:
P1: f (T) ≥ CE

P2: f (T) ≥ CG and each base pair in T has quality ≥ QG

P3: f (T) ≥ CG and T does not have a neighbor T′ in
Hamming graph with f(T′) ≥ CG

P4: f (T) ≥ CG and T does not have a neighbor T′ in
Hamming graph with f(T′) ≥ f(T) × FH
P5: f (T) ≥ CG and all neighbors T′ of T in the Ham-

ming graph have property: all the base pairs of T
where T differs from T′ have quality score ≥ QG where

the following parameters are to be set appropriately: CE

(Excellent Count ), CG (Good Count ), QG (Good Qual-
ity), FH (High-cardinality Factor ), CE > CG and QE > QG.
For the rest of the paper, we say T is valid by Rule i if it

satisfies any one of the properties P1, P2, . . . , Pi. Thus,
the rules are in decreasing order of stringency. In the
most stringent case (P1), the algorithm treats a kmer T as
valid only if its frequency f (T) is at least a threshold CE.
In P2, f (T) is allowed to be above a lower threshold CG

but each base in T must have quality score above QG.
The rationale for properties P3 and P4 is that as the kmer
in consideration has comparatively lower frequency, and
there are no high cardinality d-neighbors, it might be the
case that the kmer is from a region of low coverage. In
P5, the kmer has strong quality scores at all the positions
in which it differs from its d-neighbors, and hence it has
a high likelihood of being valid.

Note that these rules are heuristics and hence the per-
fect reads detected by our algorithm may have errors
and some of the erroneous reads detected by our algo-
rithm can in fact be error-free.

Results
We applied our algorithm to 6 datasets from the NCBI
short read archive, the details of which are given in
Table 1. For each dataset the table shows SRA accession
number, sequencer platform, name of the reference gen-
ome, strain, organization that published the data, date of
publishing, percentage of GC content, length of the gen-
ome in Mb, read length, and average coverage.
To evaluate our method, knowledge of error-free reads

in each dataset is required. To determine them, we
aligned each dataset using the BWA aligner [13] with
default parameters. A read is taken to be error-free if it
is perfectly aligned by BWA without any substitution,
insertion, or deletion. The results of BWA alignments
are shown in Table 2 where each row shows the strain
of the reference genome used, number of reads in the
dataset, number of reads aligned, number of reads not
aligned, number of reads ambiguously aligned, number
of reads perfectly aligned, and overall error rate. Note
that the rows of Tables 1 and 2 are arranged in increas-
ing order of the percentage of perfect reads.

Experiments and evaluation methodology
We applied our algorithm to each of the datasets using
the following default parameters: k = 24, CG = 1, CE = 8,
QG = 45. We chose QE = 71 for S3 and QE = 73 for the
remaining datasets. To assess the quality of predictions
made, we define:
TP = number of perfect reads that are classified by

our algorithm as perfect
FN = number of perfect reads that are classified as

erroneous
FP = number of erroneous reads that are classified as

perfect
TN = number of erroneous reads that are classified as

erroneous
Then, we used the standard measures of specificity

(Sp), sensitivity (Sn), and precision (Pr) as:
Sp = TN/(TN + FP)
Sn = TP/(TP + FN)
Pr = TP/(TP + FP)

Discussion
The results of our experiments using Rule 2, which
tests for conformance with at least one of properties
P1 and P2, are presented in Table 3. Except for dataset
S2, Rule 2 achieves near 100% sensitivity, indicating
this rule correctly classifies an overwhelming majority
of error-free reads, and misclassifies a negligible
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percentage of error-free reads. Thus, applications
which take reads predicted to be error-free by our
algorithm will retain almost all of the error-free reads.
Specificity for various datasets indicates to what extent
our algorithm succeeded in weeding out reads that
contain at least one error. Except for dataset S1, our
algorithm eliminated at least 50% of erroneous reads
from the dataset, reaching close to 90% in some cases
(datasets S2 and S3). Precision, the ratio of true perfect
reads to total reads predicted as perfect by our algo-
rithm, is over 90% in all cases except dataset S1. The
lower performance on S1 can be attributed to the com-
paratively lower coverage and lower percentage of per-
fect reads.
In all cases except S1, applications can significantly

benefit by taking as input the reads predicted to be
error-free by our algorithm, instead of the raw datasets.
Doing so, the applications will be operating on data that
has over 90% perfect reads, miss very few perfect reads
from the original dataset, and can do away with a
majority of erroneous reads. We also tested the coverage

induced by the reduced datasets generated by our algo-
rithm against the coverage of the genome by the original
raw datasets, and found no noticeable loss of informa-
tion, i.e., we did not find any regions of the genome dis-
proportionately losing coverage significantly higher than
what is implied by the reduction in the size of the data-
set. For visualization of the test, we show plots gener-
ated by the tool Qualimap [14], which divides the
complete genome into about 400 windows and plots the
average of the coverage of all base pairs within each
window. We show in Figure 1 the plot generated by
Qualimap for dataset S5 alone; for datasets S4 and S6
we get similar plots. It can be seen that the coverage
pattern remains the same though the average coverage
reduces from 140x to 130x (around 7%). Figure 1 also
shows that the percentage of GC content remains same.
As Illumina sequencers can generate billions of reads in
a single experiment at a very low cost per base, elimi-
nating erroneous sequences can significantly improve
data quality for applications without appreciable loss of
data-scale.

Table 1 Sequence datasets.

Data
Set

SRA
Accession

Sequencing
Platform

Reference
Genome

Reference
Strain

Organization Publication
Date

GC
%

Genome
Length (Mb)

Read
Length

Coverage

S1 SRR789669 HiSeq 2500 D. Miranda MSH22 UCB 08-05-2013 45.6 136.73 90 43

S2 SRR647546 HiSeq 2000 E. Coli O157:H7 UMIGS 10-01-2013 51.7 5.59 101 369

S3 ERR036168 HiSeq 2000 P. Falciparum 3D7 WTSI 03-11-2011 22.5 23.27 75 362

S4 ERR142615 HiSeq 2000 B. Pertussis ST24 WTSI 28-08-2012 67.2 4.12 75 1000

S5 ERR142617 HiSeq 2000 P. Falciparum 3D7 WTSI 28-08-2012 20.2 23.27 75 160

S6 SRR507777 HiSeq 2000 S. Cerevisiae S288c CSHL 20-06-2012 39 12.16 76 362

UCB: University of California, Berkeley; WTSI: Wellcome Trust Sanger Institute; UMIGS: Institute for Genome Sciences, University of Maryland; CSHL: Cold Spring
Harbor Laboratory

Table 2 Alignment of sequence datasets.

Data Set Reference Strain Number of Reads Aligned (%) Unaligned (%) Ambiguous (%) Perfect Reads (%) Error Rate

S1 DroMir2.2 65603904 43580948 (66.4) 18010469 (27.5) 4012487 ( 6.1) 33234182 (50.7) 0.71

S2 O157:H7 20461442 18191534 (88.9) 1045418 ( 5.1) 1224490( 6.0) 13294580 (65.0) 0.72

S3 3D7 112418270 88192289(78.5) 19516044 (17.4) 4709936 ( 4.2) 74845636 (66.6) 0.43

S4 CS 54996906 46950786 (85.4) 3957391 ( 7.2) 4088729 ( 7.4) 44437437 (80.8) 0.24

S5 3D7 49738806 41836006 (84.1) 5818785 (11.7) 2084015 ( 4.2) 40472551 (81.4) 0.18

S6 S288c 57886340 46179933 (79.8) 2213383 ( 3.8) 9493023 (16.4) 51612399 (89.2) 0.13

Table 3 Results using default parameters and Rule2.

Data Set TP FN FP TN Precision Pr Specificity Sp Sensitivity Sn Time taken in seconds

Phase 1 Phase 2

S1 3.3E+07 786 2.6E+07 6588766 0.563 0.204 1 149.786 217.319

S2 1.1E+07 2403877 781985 6384877 0.933 0.891 0.819 31.449 28.394

S3 7.5E+07 146338 4348595 3.3E+07 0.945 0.884 0.998 88.842 197.219

S4 4.4E+07 45171 3873795 6685674 0.92 0.633 0.999 51.391 148.213

S5 4E+07 51679 4422332 4843923 0.901 0.523 0.999 51.942 135.711

S6 5.2E+07 33420 1681374 4592567 0.968 0.732 0.999 54.857 160.928
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Execution time
All experiments were carried out on a HP ProLiant
DL580G7 server, which has 32 Intel Xeon E7520
(1.8 GHz) processors and 132GB main memory. The
server is running 64-bit Ubuntu 12.04 OS. We used
Jellyfish software [12] to generate kmer statistics in phase
1 of our algorithm. Our multi-threaded implementation
of phase 2 is also based on the library functions asso-
ciated with the Jellyfish software. The rightmost two col-
umns of Table 3 show the average time taken by the two
phases of our algorithm in 10 independent runs on each
of our datasets. In our experimentation, we used 32
threads in each phase. The time taken in phase 2 is
within the same order of magnitude of time taken in gen-
erating the kmer statistics.

Predicting applicability of our algorithm
As noted previously, our algorithm performed well on
all datasets except for S1. It would be of tremendous
practical value if we can ascertain the applicability of
our algorithm by evaluating the dataset alone, without
knowing the reference genome. Below, we present a
methodology to do so.
The quality of results obtained by our algorithm can

be explained using the histogram of kmer frequencies
(see Figure 2). In Figure 2(a) we plot the histogram of
kmer frequencies in dataset S5 for k = 24. On the hori-
zontal axis we show the different frequencies of the
kmers. For a particular frequency x on the horizontal
axis the curve named all shows the number of distinct
kmers T that have frequency f(T) = x. Depending on the
alignment, the kmers can be divided into three cate-
gories. A kmer is good if it comes from the error-free
regions of all the reads that it appears, bad if it comes
from erroneous regions in all the reads it appears, and

mixed if it appears in the error-free regions on some
reads and in the erroneous regions of some other reads.
In Figure 2(a) we also show the frequency histograms
for good, bad and mixed kmers.
A necessary condition for the good performance of a

k-spectrum based error detection algorithm is that the
frequency histograms for good, bad, and mixed kmers
should follow the pattern in Figure 2(a) where the num-
ber of mixed kmers is very very low, most bad kmers
have low frequency, bad kmers with higher frequencies
are very rare, and the histogram of good kmer frequen-
cies follows a normal curve which has mean approxi-
mately equal to the average coverage. When this
condition is satisfied, we can clearly demarcate a thresh-
old frequency at the crossover of the good and bad
curves such that most of the kmers with frequency less
than the threshold are bad, and most of the kmers with
frequency above the threshold are good. The dataset S5
follows the pattern and our algorithm works well on S5.
Figure 2(b) shows the frequency histograms for all

kmers in datasets S2, S3, S4, and S6, respectively. The
plots follow the expected patterns, which explains the
good performance of our algorithm on these datasets
too. Note that S4 has comparatively higher coverage,
and hence we used the additional right vertical axis with
a different unit value.
On the other hand, the plots for S1 shown in Figure 2

(c) do not follow the expected pattern. In fact it is not
possible to distinguish the good kmers from the bad
ones depending upon only the frequency, as the bad
curve is above the good curve. Increasing the kmer size
does not help either. Figure 2(d) shows the plots for all
kmers for values of k = 16, 20, 24, 28, and 32, none of
which follows the expected pattern. This explains the
bad performance of our algorithm on S1.

Figure 1 Effect on coverage in dataset S5.
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Unlike the curves good, bad, and mixed, the curve all
can be plotted even in the absence of alignment informa-
tion. If the shape of the all curve follows the expected pat-
tern as in Figure 2(d), our algorithm should perform well.
The plots also give hints on how to set the parameters.

The parameter k should be such that the probability of a
kmer having repeats in the genome G, i.e., |G|/4k is very
small. CE should be the first minimum of all curve. At
least 95% of the kmers should have frequency CG or
more. The quality parameters could be such that about
80% (20%) of the bases have quality at least QG (QE ).

Effects of varying stringency levels
We also varied the Rules used to identify if a kmer is valid
or not, as described in Section. We report the results on
datasets S4, S5 and S6 with parameter FH = 2 in Table 4.
As we increase the rule number, the stringency of declar-
ing a read to be error-free decreases, resulting in more
true and false positives. Hence, sensitivity increases but
specificity and precision decrease.

Improving error correction algorithms
Our algorithm for predicting error-free reads can be used
to improve the performance of error correction

algorithms themselves. We demonstrate this using the
error correction algorithm Reptile [1], though the metho-
dology is more broadly applicable. Reptile consists of two
phases: In the first phase, it counts the frequency of all
kmers and constructs a Hamming graph on them. In
addition, kmers are classified as valid or invalid based on
whether or not they exceed a threshold count. Nodes in
the Hamming graph are marked with this information. In
the second phase, each read is corrected by changing
invalid kmers in it to their valid Hamming graph neigh-
bors. We slightly modified the first phase of Reptile to
count kmer frequencies in only those reads which are
predicted as error-free by our algorithm. In addition, we
use the Hamming graph to only correct errors in reads
that are predicted to be erroneous by our algorithm.
Table 5 compares the performance of the modified

Reptile algorithm with the original Reptile algorithm. For
each dataset, we show performance of the original Reptile
algorithm, followed by the modified algorithm using
Rule 1 and Rule 2, respectively. For comparison, we use
the measures described in [1]: a TP is any erroneous base
that is changed to true base, an FP is any true base chan-
ged wrongly, a TN is any true base left unchanged and an
FN is any erroneous base left unchanged. We also report

Figure 2 kmer frequency histogram.
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Gain G = (TP − FP)/(TP + FN), which measures the per-
centage of errors removed from the dataset, and EBA =
WC/(TP +WC) where WC denotes the number of erro-
neous bases that are correctly identified but changed to a
wrong base.
As proposed in [1] and more widely adopted later, Gain

is an important measure for assessing the quality of an
error correction algorithm. From Table 5 for the datasets
on which our prediction performs well, mainly S4, S5,
and S6, the modification improves Gain by up to 10%.

Conclusions
Thanks to the continuous technological improvements
in high-throughput DNA sequencing, reads of dominant

sequencing platforms such as the Illumina HiSeq are
sporting high coverage and accuracy. This has now
reached an extent where we can envision just filtering
out reads with errors, thus making error correction less
important. Our algorithm is a first attempt to propose
and demonstrate this new paradigm. Our experimental
results demonstrate that development of such algo-
rithms shows great promise. There are directions for
further improvement of our algorithmic strategy. Our
algorithm relies on several parameters. An automated
choice of parameters sensitive to, and computed based
on, the dataset would be useful. It might be useful to
have values of parameters CE , CG dependent on the
pattern of bases in the kmers. Like all error correction

Table 5 Results on reptile error correction.

Set Algo TP FN FP TN WC Sn Sp G EBA

S1 Reptile 4780231 28675648 134010 4249799767 19494 0.143 1.000 0.139 0.004061

S1 Rule1 1299909 6308111 3427119 1143304758 18463 0.171 0.997 -0.280 0.014004

S1 Rule2 9147518 24304818 158446 4249775331 23037 0.273 1.000 0.269 0.002512

S2 Reptile 5665375 8695457 90366 1946564438 2788 0.395 1.000 0.388 0.000492

S2 Rule1 2895901 11462701 745833 1945908971 5018 0.202 1.000 0.150 0.001730

S2 Rule2 5371516 8988883 128454 1946526350 3221 0.374 1.000 0.365 0.000599

S3 Reptile 18025179 10286737 605575 6874673712 44797 0.637 1.000 0.615 0.002479

S3 Rule1 18806026 9498842 1940111 6873336908 51638 0.664 1.000 0.596 0.002738

S3 Rule2 18290440 10019429 695540 6874583747 46844 0.646 1.000 0.622 0.002555

S4 Reptile 5565750 3453627 17740 3810574694 5139 0.617 1.000 0.615 0.000922

S4 Rule1 6365587 2653084 50006 3810542428 5845 0.706 1.000 0.700 0.000917

S4 Rule2 5990892 3028178 19705 3810572729 5446 0.664 1.000 0.662 0.000908

S5 Reptile 1690826 3501370 302635 3259337078 11016 0.326 1.000 0.267 0.006473

S5 Rule1 1904825 3286174 481440 3259158273 12213 0.367 1.000 0.274 0.006371

S5 Rule2 1802536 3389315 341530 3259298183 11361 0.347 1.000 0.281 0.006263

S6 Reptile 4346955 1083849 16099 4213859720 1413 0.800 1.000 0.797 0.000325

S6 Rule1 4939773 490989 37325 4213838494 1455 0.910 1.000 0.903 0.000294

S6 Rule2 4449982 980530 19259 4213856560 1705 0.819 1.000 0.816 0.000383

Table 4. Results on S4, S5, and S6 for varying rules.

Data Set Rule TP FN FP TN Pr Sp Sn

S4 Rule1 44315371 122066 3718959 6840510 0.923 0.648 0.997

S4 Rule2 44392266 45171 3873795 6685674 0.920 0.633 0.999

S4 Rule3 44392266 45171 3873932 6685537 0.920 0.633 0.999

S4 Rule4 44415654 21783 3905218 6654251 0.919 0.630 1.000

S4 Rule5 44416777 20660 3926550 6632919 0.919 0.628 1.000

S5 Rule1 40246703 225848 4161367 5104888 0.906 0.551 0.994

S5 Rule2 40420872 51679 4422332 4843923 0.901 0.523 0.999

S5 Rule3 40420999 51552 4422972 4843283 0.901 0.523 0.999

S5 Rule4 40433782 38769 4435544 4830711 0.901 0.521 0.999

S5 Rule5 40443582 28969 4442097 4824158 0.901 0.521 0.999

S6 Rule1 51341705 270694 1354288 4919653 0.974 0.784 0.995

S6 Rule2 51578979 33420 1681374 4592567 0.968 0.732 0.999

S6 Rule3 51579033 33366 1681628 4592313 0.968 0.732 0.999

S6 Rule4 51605360 7039 1684518 4589423 0.968 0.732 1.000

S6 Rule5 51605719 6680 1690727 4583214 0.968 0.731 1.000

Pal and Aluru BMC Bioinformatics 2015, 16(Suppl 17):S7
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algorithms, our algorithm ignores paired read informa-
tion and treats them as though they are single reads.
Utilizing paired read information to further improve the
performance of error detection or correction algorithms
remains an open question. In case of long reads where
reads are less likely to be perfect, a notion of approxi-
mate perfect (say at most e errors) can be used.

Availability
A C++ based implementation of our algorithm can be
found at the following github public repository: https://
github.com/soumitrakp/perfectread.git.
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