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Abstract

Background: The advent of rapid evolution on sequencing capacity of new genomes has evidenced the need for
data analysis automation aiming at speeding up the genomic annotation process and reducing its cost. Given that
one important step for functional genomic annotation is the promoter identification, several studies have been
taken in order to propose computational approaches to predict promoters. Different classifiers and characteristics
of the promoter sequences have been used to deal with this prediction problem. However, several works in
literature have addressed the promoter prediction problem using datasets containing sequences of 250 nucleotides
or more. As the sequence length defines the amount of dataset attributes, even considering a limited number of
properties to characterize the sequences, datasets with a high number of attributes are generated for training
classifiers. Once high-dimensional datasets can degrade the classifiers predictive performance or even require an
infeasible processing time, predicting promoters by training classifiers from datasets with a reduced number of
attributes, it is essential to obtain good predictive performance with low computational cost. To the best of our
knowledge, there is no work in literature that verified in a systematic way the relation between the sequences
length and the predictive performance of classifiers. Thus, in this work, we have evaluated the impact of sequence
length variation and training dataset size (number of sequences) on the predictive performance of classifiers.

Results: We have built sixteen datasets composed of different sized sequences (ranging in length from 12 to 301
nucleotides) and evaluated them using the SVM, Random Forest and k-NN classifiers. The best predictive
performances reached by SVM and Random Forest remained relatively stable for datasets composed of sequences
varying in length from 301 to 41 nucleotides, while k-NN achieved its best performance for the dataset composed
of 101 nucleotides. We have also analyzed, using sequences composed of only 41 nucleotides, the impact of
increasing the number of sequences in a dataset on the predictive performance of the same three classifiers.
Datasets containing 14,000, 80,000, 100,000 and 120,000 sequences were built and evaluated. All classifiers achieved
better predictive performance for datasets containing 80,000 sequences or more.

Conclusion: The experimental results show that several datasets composed of shorter sequences achieved better
predictive performance when compared with datasets composed of longer sequences, and also consumed a
significantly shorter processing time. Furthermore, increasing the number of sequences in a dataset proved to be
beneficial to the predictive power of classifiers.
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Background
Over recent years, advances in technology have allowed
an acceleration of new genomes sequencing [1], eviden-
cing the increasing demand for data analysis automation
and for improving procedures previously used [2]. This
has encouraged studying and implementing several com-
putational techniques and creating new tools to enable
processing of large amounts of genomic data.
One of the first steps for functional genomic annotation

is promoter identification. Promoters are regions responsi-
ble for signaling and controlling the exact position where
the transcription mechanism initiates, called TSS (Tran-
scription Start Site). The capability for detecting them in
their different forms will make it possible to understand
how, where and when transcription occurs, in addition to
providing clarification on the interaction network and
regulation of the transcription mechanism [3,1].
The identification of promoter sequences in genomes

can be seen as a classification problem, where, given the
features of a genomic sequence, it would be classified as
promoter or non-promoter. Therefore, several computa-
tional approaches to predict promoters have been pro-
posed using different classification techniques and
different types of information extracted from sequences.
Nevertheless, further progress is needed to improve
them [4-6,1].
Much of the complexity of promoter prediction problem

is due to their diverse nature, which makes it difficult to
identify them [7,3,8]. The selection of inappropriate
features to predict promoters can result in a high number
of false-positives. Therefore, a crucial step for prediction
success is to discover features of promoter sequences that
are relevant to differentiate them from non-promoter
sequences.
In the search for relevant features to distinguish

between promoter and non-promoter sequences, several
properties of sequences have been tested for their predic-
tive capability. According to [4], a prediction strategy can
use three types of features: structural, based on signs and
based on context. Several studies have shown that in
order to build accurate models to predict or describe
genomic processes, the structural properties of the DNA
molecules must be considered [9]. Thus, the structural
properties have been widely used in recent years [4] and
have also been adopted for this work.
Despite the large amount of work involving promoter

prediction [7,3,5,2,6,10,1], to the best of our knowledge,
none of them have verified in a systematic way the rela-
tion between the length of sequences used for training
classification models and their predictive performance.
The importance of this evaluation is due to the fact

that, considering the structural properties, the longer the
sequences used to compose datasets used for training
classifiers, the greater the amount of attributes. The

problem is that high-dimensional datasets, that is, with
great number of attributes, make the classification a
more complex process, and the result may be an increase
in classifiers training time and a reduction of their pre-
dictive performance.
In our preliminary work [11], the effect of sequence

length for distinguishing between promoters and non-
promoters was briefly evaluated using two classification
techniques. In this work, in order to extend this analysis,
an additional classifier, the Random Forest, was evalu-
ated using the same datasets adopted in [11]. Statistical
tests were also applied aiming at assessing the differ-
ences among the classification performances obtained
from each evaluated dataset. Classifiers’ performances
for each class were included as well. Finally, results of
an experiment carried out to evaluate the impact of
increasing the number of dataset instances on classifiers
predictive accuracy were also added.
Due to the amount of data available and the attention it

has received from the scientific community in recent dec-
ades [4], the genome chosen to be studied in this work
was Homo sapiens. The experiments were conducted
using a well-known and reliable promoter database
which is publicly available on the web.

Methods
Consolidation of datasets
For the studies conducted in this work, promoter and
non-promoter sequences derived from human genome
were used for datasets construction.
Promoters were obtained from a set of sequences

available in the DBTSS database [12] (version 8.0),
which has already been used in several other works
[6,3,1,2], and is a set of approximately 98,000 experi-
mentally validated promoter sequences with active TSS,
where each sequence has 1201 bp (base pairs).
Non-promoters correspond to several genomic

sequences that were extracted randomly from intergenic
regions and from introns and exons [6]. The criteria for
obtaining these sequences require that the region is at a
minimum distance of 1000 nucleotides from the posi-
tions demarcated on CAGE database, indicating tran-
scription regions, and at a minimum distance of 1000
nucleotides from the positions demarcated on RefSeq
database, that has informations denoting the beginning
and ending positions of genes. Thus, the selection of
false non-promoter sequences is avoided. CAGE and
RefSeq databases were obtained from pppBenchmark
tool [13] website http://bioinformatics.psb.ugent.be/
webtools/pppbenchmark/.
Due to computational cost to process a sequence data-

set, only part of the sequences available at DBTSS data-
base were used for composing datasets for the first part
of this study. Thus, a total of 7,000 different promoter
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sequences were chosen randomly, avoiding the inclusion
of noisy sequences. In addition, other 7,000 non-promoter
sequences completed the datasets. Therefore, these data-
sets are composed of the same 14,000 sequences.
However, the length of sequences varies from one

dataset to another. For example, the dataset called
250-50 consists of sequences represented by 301 nucleo-
tides. For promoter sequences, this size is the sum of
the number of nucleotides positioned upstream and
downstream from TSS (in addition to TSS itself), that is,
in the example there are 250 nucleotides upstream and
50 nucleotides downstream from TSS. Therefore, for the
same dataset, TSS is always located at the same position in
all promoter sequences. Since nonpromoter sequences do
not have TSS, their length is simply given by their number
of nucleotides. Thus, in 250-50 dataset, non-promoter
sequences are also composed of 301 nucleotides.
In addition to these datasets consisting of 14,000

sequences, which were used to evaluate the impact of
sequence length variation on the predictive performance
of classifiers, datasets comprised of a higher or greater
number of sequences (composed of 41 nucleotides) were
built in order to verify the impact of an increased number
of training instances on the predictive capacity of classifi-
cation models. Using the same procedures previously
presented for generating datasets, a random selection of
73,770 promoter sequences from the DBTSS database
allowed the construction of additional datasets contain-
ing 40,000, 50,000 and 60,000 promoter sequences. It is
worth noting that the same amount of non-promoter
sequences completes each of these datasets, maintaining
the ratio of 50% of promoter sequences and 50% of non-
promoter sequences.
Each dataset sequence is characterized by a set consist-

ing of 13 structural properties [9], named: A-philicity,
base stack energy, B-DNA, bendability, DNA-bending
stiffness, disrupt energy, DNA denaturation, free energy,
nucleosome positioning, propeller twist, protein deforma-
tion, protein-DNA twist and Z-DNA. These properties,
which have already been subject of other studies in litera-
ture [10,5,1], are physicochemical and conformational
properties.
Since the structural properties may be determined by

local interactions among neighboring nucleotides in a
sequence [9], they are represented by tables where each
possible nucleotide combination is associated with a
value that represents its contribution to a particular
structural property. As an example, Table 1 presents the
mapped values of oligonucleotides for the stacking
energy structural property.
Using these 13 structural properties, each nucleotide

sequence (promoters and non-promoters) is converted
into a numerical vector that characterizes it. Figure 1
illustrates the conversion of a sequence into two

structural properties (protein deformation and nucleo-
some positioning). As it can be observed, the numerical
vector of each property (structural profile) is obtained
from scanning the sequence of nucleotides where,
depending on the structural property, each vector value
is obtained considering sequences of dinucleotides (pro-
tein deformability) or trinucleotides (nucleosome
positioning).
Considering the conversion schema previously men-

tioned, in order to show the capability of the structural
properties to distinguish promoter from non-promoter
sequences, Figure 2 illustrates, for all structural proper-
ties considered in this work, the average structural profile
of promoter and non-promoter sequences of the 250-50
dataset. The structural profiles were plotted according to
the average value on each position. In this figure, TSS is
located at the 0 position.
The complete characterization of a sequence is given

by a single numerical vector resulting from the junction
of the vectors representing each of the 13 structural
properties considered in this work. The size of the resul-
tant vector of these junctions corresponds to the number
of predictor attributes of the datasets used for classifiers
training. Figure 3 illustrates this process of generating
dataset instances. In addition to these predictor attri-
butes, each sequence has a value for the class attribute,
which indicates whether that sequence is promoter or
non-promoter. As an example, the largest dataset used in
our experiments, the 250-50 one, results in a set of 3898
predictor attributes. Table 2 shows the number of predic-
tor attributes for each dataset used in this work.
As it can be observed in Table 2 the length of

sequences used to compose the dataset defines the
amount of their attributes. Several studies in literature

Table 1. Mapped values of oligonucleotides for base
stack energy property [14]

Oligonucl. Value (kcal/mole) Oligonucl. Value (kcal/mole)

AA -5.37 GA -9.81

AC -10.51 GC -14.59

AG -6.78 GG -8.26

AT -6.57 GT -10.51

CA -6.57 TA -3.82

CC -8.26 TC -9.81

CG -9.69 TG -6.57

CT -6.78 TT -5.37

Figure 1 Conversion of a sequence to two structural
properties.
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have addressed the problem of promoter prediction
using datasets containing sequences of 250 nucleotides
or more [7,2,3,1]. Although a limited amount of features
is being used in characterization of sequences, high-

dimensional datasets are generated for classifiers
training.
The problem with high-dimensional datasets, that is,

with high number of attributes, is that they make

Figure 2 Average structural profile of thirteen features along promoter and non-promoter sequences of the 250-50 dataset. Each
graph corresponds to a different structural property, and the property name is presented on the top of the graph.
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classification a more complex process, often consuming
an infeasible time for training classifiers and degrading
their predictive performance.
Therefore, to predict promoters by training classifiers

from datasets with a reduced number of attributes, it is
essential to obtain good predictive performance with low
computational cost. This way, the objective of the first set
of experiments conducted in this work is to evaluate the
impact of the sequence length variation on classifiers per-
formance. After that, considering a limited sequence length
(41 nucleotides), additional experiments were carried out
aiming at verifying the impact of an increased number of
training instances on predictive performance of classifiers.

Classifiers and experimental setup
SVM (Support Vector Machine) [15], Random Forest
[16] and k-NN (k-Nearest Neighbors) [17] classifiers,

usually adopted in data mining works, were chosen to
evaluate the impact of the sequence length variation and
training dataset size (number of instances) on the per-
formance of predictive models. Experiments were con-
ducted using the caret package (short for classification
and regression training ) in R [18], which is a program-
ming language and an environment widely used in
statistical and graphics computation for data analysis.
k-NN classifier’s idea is very simple. Each dataset

instance is described by an n-dimensional vector, where
n corresponds to the number of predictor attributes. To
classify a new instance (an instance whose class is
unknown), the classifier uses distance metrics to deter-
mine the k training instances that are more similar to the
instance to be classified. Then, the most frequent class
among the k similar instances is attributed to the new
instance. In k-NN, the k value is an input parameter.
Considering each dataset instance as a point in

n-dimensional space, the basic idea of SVM is to find a
hyperplane with maximum margin of separation, i.e.,
one that provides the separation of training instances,
with maximum margin, in two portions in n-dimen-
sional space. Once the optimal hyperplane is found, the
classification of a new instance is made by determining
its position in relation to the separation hyperplane.
Although this method was originally proposed for binary
classification problems, several extensions have been
proposed in literature to make it suitable for multi-class
classification problems.
Random Forest (RF) is a classification method that

operates building decision trees and performing classifi-
cation by combining their results. Through the Bagging
process, multiple datasets are derived from the original
one and, from each derived dataset, a new decision tree
is generated. The construction of these trees is made by
using a subset of attributes randomly selected from the
original dataset. The random nature of the process

Table 2. Number of predictor attributes for each dataset

Dataset Number of attributes

10-1 141

10-3 167

10-5 193

10-10 258

10-20 388

10-30 518

10-40 648

10-50 778

20-50 908

30-50 1,038

40-50 1,168

50-50 1,298

100-50 1,948

150-50 2,598

200-50 3,248

250-50 3,898

Figure 3 Process of generating dataset instance from nucleotide sequence.
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ensures low processing cost and diversity of generated
decision trees.
In order to set the algorithms parameters for the data-

sets used in this study, experiments were conducted by
varying the parameters values C (0.25, 0.5, 1, 2, 4) and
gamma([0.1, 0.0001]), for SVM (using RBF kernel), mtry
( 4
√
p ;

√
p/2 ;

√
p ; 2

√
p , p/2), where p is the number of

predictive attributes of the dataset, for Random Forest
(using ntree = 500) and k (1, 3, 5, 7, 9) for k-NN. Table 3
presents the best parameter values obtained for each data-
set and therefore used in our experiments to obtain the
results presented here. All experiments were carried out on
a Core i7-2600 @ 3.40GHz PC with 12 GBytes of RAM.
The classifiers predictive performance was measured

using ten-fold cross validation method [19] and Fmeasure
metric. Furthermore, an agreement statistic, named
kappa measure, was also adopted aiming at evaluating
the classifiers for datasets composed of different number
of sequences. Since this measure do not take into
account the correct classification as a result of a mere
coincidental concordance between the classifier output
and the actual class of each instance to be classified, it is
a reliable metric for assessing the performance of classi-
fiers. For each dataset, the same test partitions were used
in the evaluation of classifiers.

Results and discussion
Impact of the variation of sequences length
The results obtained from the experiments to verify the
impact of the sequence length variation on the classifiers
performance are shown in the Figure 4.
The graph of Figure 4 shows the predictive perfor-

mance, in terms of average F-measure, of the SVM, RF

and k-NN classifiers for each of the 16 evaluated data-
sets. As it can be seen in this graph, the SVM and RF
classifiers have obtained better predictive performance
than the k-NN one for all datasets evaluated.
Yet, the most important thing to observe in Figure 4

graph is that, for all classifiers, the decrease in the
length of sequences used in the datasets did not neces-
sarily imply a reduction in their predictive performance.
SVM and RF performance remained relatively stable for
datasets composed of sequences ranging in length from
301 (250-50 ) to 41 (10-30 ) nucleotides, presenting
some degradation in performance only for sequences
containing less than 41 nucleotides. k-NN achieved its
best performance with the 50-50 dataset and, even for
the dataset composed of shorter sequences (10-1), pre-
sented superior predictive performance compared with
larger datasets (250-50).
In order to determine if there is a statistically signifi-

cant difference among the F-measures of the evaluated
datasets for each classifier, we have used Friedman test
[20]. After that, if the differences in the datasets’ perfor-
mances were statistically significant, the Nemenyi post-
hoc test [20] was applied to find which datasets actually
differ. These statistical tests were applied with 95% of
confidence level.
Table 4 shows the p-value obtained by Friedman test

for each classifier evaluated in this study. As all p-values
are smaller than 0.05, we can conclude that there is a
significant difference among the 16 datasets for all
classifiers.

Table 3. k-NN, RF and SVM parameters

k-NN RF SVM

Datasets k ntree mtry C sigma

10-1 9 500 3.45 1 3.64e-03

10-3 9 500 3.59 0.5 3.05e-03

10-5 9 500 6.95 0.5 1e-02

10-10 9 500 8.03 2 1e-03

10-20 9 500 19.7 1 1e-03

10-30 9 500 4.77 1 1e-03

10-40 9 500 25.5 1 7.84e-04

10-50 9 500 55.8 1 1e-03

20-50 9 500 30.1 1 1e-03

30-50 9 500 64.4 0.5 1e-03

40-50 9 500 17.1 0.5 1e-03

50-50 7 500 72.1 0.5 1e-03

100-50 9 500 88.3 1 1e-03

150-50 9 500 102 0.5 1.96e-04

200-50 9 500 114 1 1.56e-04

250-50 9 500 125 1 1e-04

Figure 4 Classifiers performances for datasets composed of
different sized sequences.

Table 4. P-value obtained from the Friedman Test

Classifier P-value

SVM 1.622e-11

RF 5.556e-09

KNN 1.263e-08
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Aiming at verifying in which pairs of datasets the dif-
ferences in performance were statistically significant, the
Nemenyi post-hoc test was applied and its results are
shown in Tables 5, 6 and 7 for SVM, RF and k-NN,
respectively. In these tables, the result contained in each
intersection of a row and a column indicates if the per-
formances of datasets related to this row and to this col-
umn are significantly different (coded as T - true) or not
(coded as F - false).
For the SVM classifier, based on the results shown in

Table 5 it can be noted that the dataset, composed of
smaller sequences, that does not present a statistically
significant difference in classification performance when
compared with any other datasets comprising longer
sequences, is the 10-20.
The results presented in Table 6 show that, for RF

classifier, the classification performance of the dataset
composed of sequences of 21 nucleotides (10-10) is not
statistically inferior to any dataset comprising sequences
longer than 21 nucleotides.
Similarly to what happened to the SVM and RF classi-

fiers, the results displayed in Table 7 for k-NN show a
dataset composed of short sequences (14 nucleotides)
that achieved no worse classification performance (with
statistical significance) than those obtained by datasets
composed of longer sequences.
The results presented so far show that, for the evaluated

classifiers, datasets consisting of sequences represented by
31 or less nucleotides allow the construction of classifica-
tion models that are as accurate as those obtained from
datasets composed of longer sequences, commonly
adopted in literature for promoter prediction purpose.
The importance of this result is due to the fact that

the size of the sequences used for training classifiers can

make the process very complex, often degrading their
predictive performance or consuming unfeasible proces-
sing time and computational resources.
Figure 5 graph shows that, for the three evaluated

classifiers, the time spent for processing datasets grows
exponentially as the lengths of their sequences increase.
It is worth noting that, in many cases, a dataset com-
posed of shorter sequences achieves superior predictive
performance and consumes much less processing time
than datasets composed of longer sequences. For exam-
ple, for SVM, the 10-30 dataset presents a slightly
higher predictive performance than that achieved by the
250-50 dataset (see Table 5) and the processing time is
more than 8 times shorter than that spent by the 250-
50 dataset. Even greater is the difference presented by
Random Forest method, in which the time spent for
processing the 10-30 dataset is about 12 times shorter
than that spent by 250-50 dataset.
The average F-measure results presented so far have

been computed considering test instances of both
classes, promoter and non-promoter. Although all data-
sets used in the experiments are balanced in the class
distribution, classifiers performances for each class are
not necessarily similar. Then, the graphs in Figure 6
represent the F-measure value of each class for all three
classifiers and for the 16 evaluated datasets. These
graphs show that all classifiers had a better predictive
performance for non-promoter class for all datasets. It is
also worth noting that, for all classifiers, the perfor-
mance difference between the classes is always smaller
for datasets composed of shorter sequences. This out-
come reinforces the importance of training classifiers
from datasets consisting of sequences represented by
fewer nucleotides.

Table 5. Nemenyi post-hoc test results for the SVM classifier

10-1 10-3 10-5 10-10 10-20 10-30 10-40 10-50 20-50 30-50 40-50 50-50 100-50 150-50 200-50 250-50

10-1 F - - - - - - - - - - - - - - -

10-3 F F - - - - - - - - - - - - - -

10-5 F F F - - - - - - - - - - - - -

10-10 F F F F - - - - - - - - - - - -

10-20 F F F F F - - - - - - - - - - -

10-30 F F F F F F - - - - - - - - - -

10-40 T F F F F F F - - - - - - - - -

10-50 T T T F F F F F - - - - - - - -

20-50 T T F F F F F F F - - - - - - -

30-50 T F F F F F F F F F - - - - - -

40-50 F F F F F F F F F F F - - - - -

50-50 T F F F F F F F F F F F - - - -

100-50 T F F F F F F F F F F F F - - -

150-50 T F F F F F F F F F F F F F - -

200-50 T F F F F F F F F F F F F F F -

250-50 T F F F F F F F F F F F F F F F
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Impact of increasing the number of instances
As previously mentioned, due to the computational cost
for processing a dataset of sequences, only part of the pro-
moter sequences obtained from the DBTSS database was
considered for composing datasets used in the experi-
ments involving the evaluation of the length variation on
predictive performance of classifiers. From these experi-
ments, it was found that datasets consisting of sequences
represented by few nucleotides (less than 50) resulted in
predictive models equivalent to those obtained from data-
sets formed by longer sequences.
Since the length reduction of sequences used in datasets

can substantially reduce the processing time (see Figure 5)
and the amount of memory consumed in classification

process, using sequences represented by only 41 nucleo-
tides (in the pattern 10-30 ), additional experiments were
conducted in order to answer the following question: could
the predictive performance of classifiers be improved by
increasing the number of instances (sequences) in datasets?
So that we could answer the previous question, data-

sets containing 80,000, 100,000 and 120,000 instances
were built and evaluated. Each dataset was composed by
50% of promoter sequences and 50% of non-promoter
sequences. The averages F-measure reached by the same
classifiers adopted in the previous experiments are
shown in Figure 7 graph. In addition, for each classifier,
the kappa statistic is presented in order to show its rela-
tive improvement over a random predictor.

Table 6. Nemenyi post-hoc test results for the RF classifier

10-1 10-3 10-5 10-10 10-20 10-30 10-40 10-50 20-50 30-50 40-50 50-50 100-50 150-50 200-50 250-50

10-1 F - - - - - - - - - - - - - -

10-3 F F - - - - - - - - - - - - -

10-5 F F F - - - - - - - - - - - -

10-10 F F F F - - - - - - - - - - -

10-20 F F F F F - - - - - - - - - -

10-30 F F F F F F - - - - - - - - -

10-40 T F F F F F F - - - - - - - -

10-50 T T T F F F F F - - - - - - -

20-50 T T F F F F F F F - - - - - -

30-50 T F F F F F F F F F - - - - -

40-50 F F F F F F F F F F F - - - -

50-50 T F F F F F F F F F F F - - -

100-50 T F F F F F F F F F F F F - - -

150-50 T F F F F F F F F F F F F F - -

200-50 T F F F F F F F F F F F F F F -

250-50 T F F F F F F F F F F F F F F F

Table 7. Nemenyi post-hoc test results for the kNN classifier

10-1 10-3 10-5 10-10 10-20 10-30 10-40 10-50 20-50 30-50 40-50 50-50 100-50 150-50 200-50 250-50

10-1 F - - - - - - - - - - - - - - -

10-3 F F - - - - - - - - - - - - - -

10-5 F F F - - - - - - - - - - - - -

10-10 F F F F - - - - - - - - - - - -

10-20 F F F F F - - - - - - - - - - -

10-30 F F F F F F - - - - - - - - - -

10-40 F F F F F F F - - - - - - - - -

10-50 T F F F F F F F - - - - - - - -

20-50 T F F F F F F F F - - - - - - -

30-50 T F F F F F F F F F - - - - - -

40-50 T F F F F F F F F F F - - - - -

50-50 T F F F F F F F F F F F - - - -

100-50 F F F F F F F F F F F F F - - -

150-50 F F F F F F F F F F F F F F - -

200-50 F F F F F F F F T T F T F F F -

250-50 F F T F F F F T T T T T T F F F
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Figure 7 graph shows that increasing the number of
instances for training classifiers can improve their pre-
dictive power. All classifiers achieved better predictive
performance after increasing the number of instances in
the dataset. Random Forest classifier excels in terms of
predictive accuracy, achieving F-measure equal to 97%
for datasets containing 80,000 instances or more.
Furthermore, it is worth noting that, for all classifiers,
increasing beyond 80,000 instances does not improve
their predictive capacity. This result indicates that using
80,000 sequences is enough to train classification mod-
els with good generalization capacity.
In order to permit a more detailed examination of

results reached by RF for the dataset containing 80,000
sequences, its confusion matrix is shown in Figure 8.
In a similar way, kappa statistic improved for all clas-

sifiers after increasing the number of instances in the
dataset (see Figure 9 graph). The kappa statistic mea-
sures the agreement of prediction with the actual class,
assuming its maximum value of 1 only when there is a
complete agreement. There is not a standardized inter-
pretation of the kappa statistic, but according to [21],
values of kappa from 0 to 0.2 are considered slight, 0.21
to 0.4 fair, 0.41 to 0.6 moderate, 0.61 to 0.8 substantial,
and 0.81 to 1 as almost perfect. Hence, in spite of the
results are regarded as fair for all evaluated classifiers
considering the dataset containing 14,000 instances,
from 80,000 instances, while k-NN and SVM predictive
performances are considered moderate, the RF classifier
achieved an almost perfect agreement (kappa = 0.94).
Regarding the time spent for processing the datasets,

Figure 10 graph shows that it grows roughly linearly as
the number of instances in the dataset increases.
Another relevant fact is that the RF, classifier that
achieves the best predictive performance, is not the one
that consumes more processing time.

Conclusion
Promoter prediction is a fundamental step for genome
functional annotation and, therefore, several computa-
tional approaches have been proposed using different
classification techniques. However, to the best of our
knowledge, none of them verified in a systematic way the
relation between the length of sequences used for train-
ing classification models and their predictive perfor-
mance. This way, experiments were conducted to analyze

Figure 5 Classification processing times for datasets composed
of different sized sequences.

Figure 6 Average F-measure by class for datasets composed of
different sized sequences.
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the impact of the sequence length variation on the classi-
fiers performance.
In order to perform the analysis previously mentioned,

16 datasets composed of different sized sequences were
generated and evaluated using the SVM, RF and k-NN
classifiers. The experimental results show that a decrease

in the length of sequences used in the composition of the
datasets did not necessarily result in a reduction of classi-
fiers predictive performance. In addition, several datasets
composed of shorter sequences achieved superior predic-
tive performance compared with datasets composed of
longer sequences and consumed a significantly shorter
processing time. The results show that sequences repre-
sented by fewer nucleotides (less than 50) are good
enough for human promoters prediction.
From the conclusion obtained in this first experiment,

using sequences composed of only 41 nucleotides, datasets
with many more instances could be processed to generate
new classification models. This way, it was possible to eval-
uate if larger sets of instances for training classifiers could
provide an improvement in their predictive performances.
The results have shown that all classifiers achieved better
predictive performance after increasing the number of
instances in the dataset. The highlight result of this experi-
ment was the RF performance for datasets containing
80,000 sequences or more, which reached F-measure equal
to 97%.
Aiming at confirming the predictive power of classi-

fiers, the kappa measure was also considered in the
experimental evaluation. Again, for datasets containing
from 80,000 sequences composed of 41 nucleotides,
according to interpretation of the kappa statistic pre-
sented in [21], while k-NN and SVM achieved a moder-
ate predictive performance, RF reached an outstanding
performance (kappa = 0.94).
As future work, we plan to apply techniques for

selecting attributes in datasets generated in this study
aiming at reducing the datasets number of attributes
and improving classifiers predictive performance.
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