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Abstract

Background: Large-scale cancer genomic projects are providing lots of data on genomic, epigenomic and gene
expression aberrations in many cancer types. One key challenge is to detect functional driver pathways and to
filter out nonfunctional passenger genes in cancer genomics. Vandin et al. introduced the Maximum Weight Sub-
matrix Problem to find driver pathways and showed that it is an NP-hard problem.

Methods: To find a better solution and solve the problem more efficiently, we present a network-based method
(NBM) to detect overlapping driver pathways automatically. This algorithm can directly find driver pathways or
gene sets de novo from somatic mutation data utilizing two combinatorial properties, high coverage and high
exclusivity, without any prior information. We firstly construct gene networks based on the approximate exclusivity
between each pair of genes using somatic mutation data from many cancer patients. Secondly, we present a new
greedy strategy to add or remove genes for obtaining overlapping gene sets with driver mutations according to
the properties of high exclusivity and high coverage.

Results: To assess the efficiency of the proposed NBM, we apply the method on simulated data and compare
results obtained from the NBM, RME, Dendrix and Multi-Dendrix. NBM obtains optimal results in less than nine
seconds on a conventional computer and the time complexity is much less than the three other methods. To
further verify the performance of NBM, we apply the method to analyze somatic mutation data from five real
biological data sets such as the mutation profiles of 90 glioblastoma tumor samples and 163 lung carcinoma
samples. NBM detects groups of genes which overlap with known pathways, including P53, RB and RTK/RAS/PI(3)K
signaling pathways. New gene sets with p-value less than 1e-3 are found from the somatic mutation data.

Conclusions: NBM can detect more biologically relevant gene sets. Results show that NBM outperforms other
algorithms for detecting driver pathways or gene sets. Further research will be conducted with the use of novel
machine learning techniques.

Background
Cancer has become one of the most serious threats to
human health. Cancer is driven in part by somatic muta-
tions, including single nucleotide substitutions, small
indels, large copy number aberrations, and structural aber-
rations that accumulate during the lifetime of an indivi-
dual [2]. At the same time, a large number of somatic
mutations have been discovered in cancer genomes [3].

One key challenge in interpreting these data is to distin-
guish functional driver mutations, which lead to tumori-
genesis, from passenger mutations, which are functionally
neutral and have no consequence for cancer [4]. The sec-
ond key challenge is to detect biological driver pathways,
which are frequently perturbed within some tumor cells,
and cause the product of tumorigenic properties, such as
cell angiogenesis, metastasis or proliferation.
The final decision of whether a gene mutation is a dri-

ver or a passenger is to be made after testing its biologi-
cal function. However, it is expensive at present to
detect somatic mutations and to validate their functions

* Correspondence: lgao@mail.xidian.edu.cn
1School of Computer Science and Technology, Xidian University, Xi’an,
Shaanxi 710071, China
Full list of author information is available at the end of the article

Wu et al. BMC Bioinformatics 2015, 16(Suppl 5):S3
http://www.biomedcentral.com/1471-2105/16/S5/S3

© 2015 Wu et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://
creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

mailto:lgao@mail.xidian.edu.cn
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/


experimentally [5]. A common approach to detect driver
mutations is to detect genes with recurrent mutations in
a large number of cancer patients. The standard tech-
nology to detect recurrently mutated genes is to test a
single gene whether its frequency of mutations is signifi-
cantly higher than expected [1]. This statistical approach
has been used to detect many important cancer genes,
but it can’t be used to identify driver mutation pathways
and driver genes in cancer.
It is an urgent priority to predict driver mutated genes

and pathways through computational approaches. A large
number of computational methods have been developed
to address these challenges. There are mainly two compu-
tational approaches: one approach is to infer driver
mutated genes and pathways by integrating somatic muta-
tion data and additional biological knowledge such as pro-
tein-protein interaction networks, gene expression data or
other sources of information [2,4-6], and the other is to
directly find driver pathways or groups of driver genes de
novo from somatic mutation data utilizing two combina-
torial properties, namely - coverage and exclusivity [1,7,8],
rather than integrate any additional biological information
and prior knowledge. These methods are successful in
inferring the influence of some mutations, but generally
do not result in overlapping driver pathways. Actually
some genes may be involved in multiple biological pro-
cesses, so these genes may be members of more than one
driver pathway.
In recent years, the declining costs of genome sequen-

cing allow measurement of the somatic mutations in
many cancer genomes. Many research results, including
those from The Cancer Genome Atlas (TCGA) website
(https://tcga-data.nci.nih.gov/tcga/), Kyoto Encyclopedia of
Genes and Genomes (KEGG) [9] and other projects,
report a large number of significantly mutated genes. The
analysis shows that driver mutations vary greatly between
cancer patients, even for the same type of cancer [10].
One of the biological explanations for the mutated hetero-
geneity is that driver mutations not only target individual
genes, but also target groups of genes in cellular regulatory
and signaling pathways. Therefore, different cancer
patients may hold different mutated gene members from a
pathway of cancer development. Some methods have been
introduced to look for enrichment in genes or groups of
genes by prior biological knowledge, such as functional
groups from GO [11] or known pathways from KEGG [9].
More recently, other methods have also been developed to
detect recurrently mutated sub-networks by integrating
somatic mutations and protein interaction networks.
The known gene and protein interaction networks in

humans remain incomplete, and the information about
the interactions in these networks is unreliable and
imprecise [1,12]. The goal of identifying driver pathways
is to reveal the natural data mutation properties and to

gain some initial insights regarding mutated genes and
pathways. Therefore, a good algorithm for finding
mutated driver pathways should depend as little as pos-
sible on prior knowledge, which is usually not available
before results analysis. Recently, the De novo Driver
Exclusivity (Dendrix) [1] and Multi-Dendrix [7] algo-
rithms have been introduced to detect driver pathways
using combinatorial constraints derived from biological
knowledge of how driver mutations emerge in pathways.
Particularly, each cancer patient contains relatively few
driver mutations, and these mutations perturb multiple
cellular signaling or regulatory pathways. Each driver
pathway contains approximately one driver mutation for
one patient, so this is a pattern of mutual exclusivity
between mutation genes in the driver pathway. More-
over, an important driver pathway should cover a large
number of patients, so this is a pattern of high coverage
by mutations. That is, a driver pathway corresponds to a
set of genes that is mutated in a large number of
patients, and whose mutations are mutually or approxi-
mately exclusive. These driver pathways of high cover-
age and mutually exclusivity are generally smaller and
more focused than most signaling and regulatory path-
ways. The Multi-Dendrix algorithm [7] improves on
Dendrix algorithm [1] in finding sets of genes with
mutual exclusivity and high coverage. Dendrix calculates
a single score for the weight of a set of genes, and finds
the highest scoring set, then removes the set of genes
found in previous iteration, and then repeats the step.
Hence, the algorithm can discover multiple driver path-
ways iteratively. However, such an iterative approach
can only yield local optimal sets of genes. Multi-Dendrix
algorithm can identify multiple cancer driver pathways
simultaneously by the Multiple Maximum Weight Sub-
matrix problem using integer linear program [6].
To reduce the complexity of the solution and solve the

NP-hard problem of the Maximum Weight Sub-matrix
in an efficient approach, we present a new NBM algo-
rithm to detect functional driver pathways de novo from
somatic mutation data without any prior biological
knowledge. In the first step, we filter the mutation matrix
and reserve the genes which meet a certain frequency of
recurrence, as genes altered in only one or few cancer
patients may not be driver genes but passenger genes. So
we remove the genes whose mutation numbers are lower
than 5 percent of all cancer patients. In the second step,
we construct a gene network by calculating the exclusive
score between each pair of genes. If the exclusive score
between a pair of genes is greater than or equal to a
threshold l, the edge between the pair will be created,
and its weight is the exclusive score. In the third step, we
present a novel greedy growth process based on the con-
cept of high coverage and high exclusivity to find gene
sets in the gene network constructed in the previous
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step. These gene sets are likely to correspond to driver
pathways.

Methods
Exclusivity and coverage
Two important characteristics on the expected modes of
somatic mutations have been used to understand the
somatic mutation process of cancer in the last couple of
years. Vandin et al. [1] introduced a measure to discover
mutated driver pathways with two criteria from biologi-
cal knowledge. The first one is “high coverage“ which
means many patients have at least one mutation in the
pathway [6]; the second one is “high exclusivity“ which
means most patients have no more than one mutation
in the pathway [6]. Given a binary mutation matrix A
with m rows (samples) and n columns (genes), the
exclusive degree function ED(M) and coverage degree
function CD(M) are defined as follows. For a gene g, the
coverage Γ(g) = {i: Aig - 1} represents the set of patients
in which gene g is mutated (Figure 1). Similarly, for a
sub-matrix M of size m × k in the mutation matrix A,
the coverage is Γ(M) = ∪g∈M Γ(g). M is mutually exclu-
sive if Γ(gj) ∩ Γ(gk) = ∅, for all gj, gk, ∈ M, gj ≠ gk, 1 ≤ j,
k ≤ n A gene set in A named as a driver pathway is a
column sub-matrix of A with high coverage and high
exclusivity.
For a sub-matrix M of size m × k, the exclusive degree

function ED(M) is defined as:

ED(M) =
|�(M)|

∑
g∈M |�(g)| . (1)

Obviously, for a pair of genes gj, gk, the exclusive
degree of them is defined as:

ED(gj, gk) =
|�(gj)

⋃
�

(
gk

)|
|�(gj)| +

∣∣�
(
gk

)∣∣ . (2)

According to the above analysis, ED(M) = 1 when M
is mutually exclusive.
For a sub-matrix M of size m × k, the coverage degree

function CD(M) is defined as:

CD (M) =
|� (M)|

m
. (3)

Obviously, for a pair of genes gj, gk, the coverage
degree of them is defined as:

CD(gj, gk) =
|�(gj)

⋃
�(gk)|

m
. (4)

Note that CD(M) = 1 when M is the complete
coverage.
The optimal results for a sub-matrix M are ED(M) = 1

and CD(M) = 1, but it is practically impossible.

Obviously, we want to get the optimal results for
the exclusive degree and the coverage degree at the same
time, but increasing coverage may be obtained at the
expense of decreasing exclusivity. So we define a func-
tion named exclusivity-coverage-degree as follows:

ECD(M) = ED(M) × CD(M) =
|�(M)|2

m × ∑
g∈M |�(g)| . (5)

Obviously, for a pair of genes gj, gk, the exclusivity-
coverage-degree is defined as:

ECD(gj, gk) = ED(gj, gk) × CD(gj, gk) =
|�(gj)

⋃
�(gk)|2

m × (|�(gj)| +
∣
∣�(gk)

∣
∣)
. (6)

Note that ECD(M) = 1 when M is the mutually exclu-
sive and complete coverage. We need to find a gene set
M whose exclusive degree and coverage degree are large
simultaneously, so we define a function ECD(M) which
allows for a tradeoff between exclusivity and coverage.

Constructing a gene network based on approximate
exclusivity
Vandin et al. introduced the Maximum Weight Sub-
matrix Problem, which is defined for an integer k > 0 as
the problem of looking for a m × k sub-matrix M of A
that maximizes a weight W(M) [1,7,8], and showed that
this problem is an NP-hard problem. To solve it more
efficiently, we construct a weighted gene network based
on approximate exclusivity between each pair of genes
to simplify the relationships among genes and to reduce
the calculation complexity greatly. First, we calculate the
exclusive degree of each pair of genes in a somatic mutation
matrix using formula (2). Second, we construct a gene net-
work in which each node represents a gene and the weight
of an edge represents the exclusive degree between the pair
of genes that is greater than or equal to a threshold l. If
the exclusive degrees between one gene and the rest of all
other genes are less than the threshold l, the gene will not
appear in the network. The process is shown in Figure 1.

Clustering method in a gene network
Our clustering method consists of two steps. In the first
step, the algorithm grows gene sets with high coverage and
high exclusivity from selected two seeds. Initially, it selects
two connected nodes with the highest exclusivity-coverage-
degree as the first two seeds, and then grows the gene set
from them using a greedy procedure. Whenever the
growth process finishes, the algorithm selects the next two
connected seeds by considering all the nodes that have not
been included in any of gene sets found so far and tak-
ing the two connected seeds with the highest exclusivity-
coverage-degree again. The whole procedure terminates
when there are no two connected nodes remaining to
consider.
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A step-by-step description of the greedy growth pro-
cess beginning from two connected nodes v0, v1 is as
follows [13].
Step 1: Let V0 = {v0, v1}. Set the step number t = 0.
Step 2: Calculate the exclusive degree and exclusivity-

coverage-degree of Vt and let Vt+1 = Vt.
Step 3: For every external node v incident on at least

one boundary edge, calculate the exclusive degree and
exclusivity-coverage-degree of V’ = Vt ∪ {v}. If ECD(V’)
>ECD(Vt+1) and ED(V’) >l, let Vt+1 = V’.
Step 4: For every internal node v which belongs to Vt,

calculate the exclusive degree and exclusivity-coverage-
degree of V’ = Vt\{v}. If ECD(V”) >ECD(Vt+1) and ED
(V”) >l, let Vt+1 = V”.
Step 5: If Vt ≠ Vt+1, increase t and return to step 2.

Otherwise, declare Vt a locally optimal driver pathway.

The growth process permits the removal of any node from
the gene set being grown, including the original seed nodes.
If the original one or two seed nodes are not included in the
final driver pathway, they are considered outliers and they
will not be included in any of the driver pathways, except in
the case when another high exclusivity and high coverage
cluster grown from different seed nodes absorbs them.
In the second step, we discard driver pathway candi-

dates that contain less than three genes or those whose
coverage degree is below a given threshold δ. For the
gene sets whose coverage degree is too low, they are
usually not regarded as driver pathways.

Parameter settings
In the algorithm, threshold l is used to decide whether
there is an edge between each pair of genes according

Figure 1 The illustration process of the mutated driver pathways identification problem is shown in the figure. A) Somatic mutation
data in multiple patients are represented in a mutation matrix. B) Calculate the exclusive degree between each pair of genes, and construct a
gene interaction network according to the exclusive degree. If the exclusive degree between the pair of genes is greater than or equal to l, an
edge is created between the two genes and the exclusive degree is represented as its weight. C) The exclusive degree of Set 1 is 1 and its
coverage degree is also 1. If g4 is combined to Set 1, the exclusive degree of Set 1 will be reduced. The exclusive degree of Set 2 is 0.9 and the
coverage degree of that is 1. If g4 is combined to Set 2, the exclusivity of Set 2 will be reduced.
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to its exclusive degree. Threshold δ is applied to deter-
mine whether a driver pathway candidate is chosen as
a driver pathway according to its coverage degree.
Based on the analysis of the algorithm and a large
number of experiments, the following threshold values
have been identified as leading to good results l =
0.95 and δ = 0.3.

Results and discussion
To assess the efficiency of NBM, we apply the method
on simulated data and compare the results with Multi-
Dendrix [7], with the iterative versions of Dendrix [1]
and the RME methods [8]. When running all methods
on a conventional computer, the NBM can obtain opti-
mal results in less than nine seconds on a data set con-
taining five pathways. Multi-Dendrix can obtain the
results within a similar time to NBM, while Iterative-
Dendrix and Iterative-RME obtain the results in more
than 30 s. To assess the performance of NBM, we apply
it onto five biological datasets (Table 1). Firstly, we
remove the genes whose mutation frequency is lower
than 5 percent of samples. Secondly, we construct a
weighted gene network based on approximate exclusivity
between each pair of genes from somatic mutation data.
Finally, we obtain driver pathways based on the exclusive
degree and exclusivity-coverage-degree using a new
greedy strategy.

Simulated data
We generate mutation data for m = 300 patients and n
= 500 genes as follows. Five pathways P = (P1, P2, P3,
P4, P5) with each Pi containing five genes are implanted
in the mutation matrix. We select the coverage Γ(Pi)
uniformly whose coverage degrees CD(Pi) are 0.95, 0.85,
0.75, 0.65, 0.55, respectively. For each pathway Pi, |Γ(Pi)|
patients are selected at random and a driver mutation is

added to exactly one gene from the pathway Pi. There-
fore, in each pathway Pi, the driver mutations are
mutually exclusive. Then passenger mutations are added
at random with probability of q.
We compare NBM with Multi-Dendrix [7], iterative

versions of Dendrix [1] and RME [8] on the simulated
mutation data. We calculate the average runtime of
each algorithm on the simulated data. The runtimes of
each algorithm are shown in Table 1 reflecting on dif-
ferent value of q.

Biological data
To assess the performance of our NBM method on real
biological data, we collect five somatic mutation data
sets which are obtained from [2] directly. In Table 2 we
present the information about the data sets, including
number of patients, number of genes, maximum muta-
tion frequency for all genes, average mutation number
of each sample and average of mutation frequency for
all genes.
We first apply NBM to the lung adenocarcinoma data

set used by Vandin et al. [1] to assess its performance
compared with Multi-Dendrix, Dendrix and RME. The
NBM can obtain the driver pathways in less than 1 s, and
Multi-Dendrix can get them in about 2 s, while Dendrix
and RME can get them in more than 10 s. The analysis
shows that the NBM is more efficient than the three other
methods. We find that the four methods obtain either the
same results or similar results. For instance, all the four
methods can obtain the same gene set (TP53, ATM).
RME, Dendrix and Multi-Dendrix can obtain gene set
(KRAS, EGFR, STK11) with k = 3, and NBM can obtain
also the gene set (KRAS, EGFR, NF1). The exclusive degree
and coverage degree of the gene set (KRAS, EGFR, STK11)
are 88.7% and 65.4% respectively, and the exclusive degree
and coverage degree of the gene set (KRAS, EGFR, NF1)
are 95.2% and 60.1% respectively. Obviously, the exclusive
degree of our results is higher than that of the results
obtained from the above three methods. It is necessary to
acknowledge that the coverage degree declines at the

Table 1 The runtimes of the four algorithms on the same
simulated dataset

Average runtime (seconds)

q Iterative-RME Iterative-Dendrix Multi-Dendrix NBM

0.0001 30.26 635.68 5.32 7.25

0.0005 42.37 685.35 7.03 7.56

0.001 165.28 645.87 8.35 7.89

0.005 N/A 721.32 9.56 7.86

0.01 N/A 756.48 11.48 8.35

0.015 N/A 786.69 13.98 8.43

0.02 N/A 843.53 15.45 8.58

A comparison of the runtimes of Iterative-RME, Iterative-Dendrix, Multi-
Dendrix and NBM on simulated mutation data with different passenger
mutation probability q. Runtimes of each algorithm are shown as the mean of
20 runs for each q. N/A represents that Iterative-RME algorithm does not give
any result within 24 hours. Simulations are performed on the machine
running 64-bit windows with Intel Xeon 2.0 GHz processor and a maximum of
6 GB of available memory.

Table 2 Basic information of the biological datasets used
in this study

Cancer type #Patient #Gene MMF AMN AMF NG

HNSCC [6] 74 4920 46 94.5 1.42 2

GBM1 [6] 84 178 43 9.6 4.5 8

GBM2 [2] 90 1126 48 21.8 1.74 5

LC [1] 163 356 64 6.0 2.75 4

OC [2] 313 5385 251 49.0 2.85 101

MMF: maximum mutation frequency for all genes. AMN: average mutation
number of each sample. AMF: average of mutation frequency for all genes.
NG: number of genes which are mutated in more than 20 samples in the
mutation matrix. HNSCC: head and neck squamous cell carcinoma data.
GBM1: glioblastoma multiforme data 1. GBM2: glioblastoma multiforme data
2. LC: lung carcinoma data. OC: ovarian carcinoma data.
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expense of increasing exclusive degree. Besides, in our
results, EGFR and NF1 are members of the RTK/RAS/PI
(3)K signaling pathway involved in cellular proliferation,
and EGFR and NF1 are associated with classical and
mesenchymal subtypes, respectively. EGFR interacts with
KRAS, and NF1 inhibits KRAS in the RTK signaling path-
way [7]. Whereas the pair (KRAS, STK11) is not reported
as significant using statistical tests [1]. Therefore, it is
more reasonable for the gene set (KRAS, EGFR, NF1) to
be a driver pathway.
In the following sections, we further apply our method

NBM on the five datasets that are presented in Table 2.
NBM can efficiently obtain the more biologically mean-
ingful results in less time on all five data sets.

Head and neck squamous cell carcinoma data (HNSCC)
HNSCC is a common and frequent lethal malignant
tumor which is the sixth leading cancer according to inci-
dence worldwide [6]. To uncover its mutational spectra,
Stransky et al analyzed whole-exome sequencing data
from 74 cancer-normal pairs and revealed many genes
that have not been related to malignancy in previous stu-
dies [6]. The mutation matrix is sparse and only two genes
are mutated in more than 20 samples. Six genes (TP53,
TTN, SYNE1, MUC16, CSMD3, USH2A) are mutated in
more than 10 samples. They are mutated in 46, 23, 15, 14,
12 and 11 samples respectively. We obtain three optimal
gene sets shown in Table 3.
In the first driver pathway, TP53 is the core member

of the p53 signaling pathway. DCHS1 can lead to a
recessive syndrome in humans which includes periven-
tricular neuronal heterotopias. These will affect the tran-
scriptional effectors of the hippo signaling pathway [14].
PIK3CA is the core member of the RTK/RAS/PI(3)K
signaling pathway involved in cellular proliferation [7].
TP53 binds directly to the PIK3CA promoter and inhi-
bits its activity, and inactivation of TP53 and subsequent
up-regulation of PIK3CA contribute to the pathophy-
siology of many human cancers. The gene set is altered
in 74.3% with p-value = 9.91e-04. In the second driver
pathway, SYNE1 has recently been identified in non-
Hodgkin’s lymphoma, renal cell carcinoma and all kinds
of human cancers. Therefore, we have reason to believe
that SYNE1 is the one needing more attention [15].
CDKN2A is the core member of the RB signaling path-
way that is involved in G1/S progression. PCLO can tar-
get tumors using synthetic approaches by detecting

tumor dependency on the inhibition of differentiation
pathways, so it may become a therapeutic strategy in
HNSCC. The detected gene set agrees with the optimal
result of [2] when parameter k is 3. The gene set is
altered in 43.3% with p-value = 4.95e-03. In the third
driver pathway, CSMD3 mutation has been reported as
an important factor in HNSCC [15]. FAT1 is usually
thought to be a tumor suppressor, and loss of FAT1
may be predicted to allow loosening of the adhesions
that usually restrain growth of migration of cells. The
over-expression and genomic amplification of the TP63
locus can be observed in the majority of invasive
HNSCCs [15]. The gene set is altered in 33.8% with p-
value = 7.49e-03.

Glioblastoma multiforme data 1 (GBM1)
Glioblastoma multiforme (GBM) is the most common
and most aggressive type of primary brain tumor. In the
GBM analysis, both copy-number aberrations and sin-
gle-nucleotide (or small indel) mutations are contained
to form mutation matrix [6]. Eight genes (CDKN2B,
EGFR, CDKN2A, MTAP, PTEN, SEC61G, TP53 and
ELAVL2) are mutated in more than 20 samples in the
mutation matrix. They are mutated in 43, 38, 37, 34, 30,
28, 28 and 21 samples respectively. We get five optimal
gene sets shown in Table 4.
In the first driver pathway, CDKN2B and RB1 are the

core members of the cell cycle and cell cycle mitotic.
CYP27B1 is the member of the glioblastoma copy num-
ber up and ERBB2 is the member of the cancer copy
number up. The three genes (CDKN2B, CYP27B1, RB1)
are sampled as the most frequent result in [1] when k is
3. The gene set is altered in 83.3% with p-value = 6.46e-
03. In the second driver pathway, CDKN2A and TP53
are the members of the p53 signaling pathway. Somatic
genetic CDKN2A and TP53 alterations are common in
many human cancers and their precursors [16]. The
gene set is altered in 70.2% with p-value = 5.33e-04. In
the third driver pathway, EGFR and NF1 are the core
members of the MAPK signaling pathway and KIT is
the member of the cancer copy number up and the
pathways in cancer. EGFR expression is associated with
the development of the Schwann cell-derived tumors
characteristic of NF1 [17]. The gene set is altered in
67.9% with p-value = 4.99e-03. In the fourth driver
pathway, CDK4 and RB1 are the core members of the
p53 signaling pathway. MTAP is the member of the

Table 3 Results of the algorithm in HNSCC

Optimal gene sets Gene number Exclusivity Coverage P-value

TP53, DCHS1, PIK3CA 3 94.8% 74.3% 9.91e-04

SYNE1, CDKN2A, PCLO 3 97.0% 43.3% 4.95e-03

CSMD3, FAT1, TP63 3 96.2% 33.8% 7.49e-03
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WNT pathway and ERBB2 is the member of the ERBB
signaling pathway. A recent study of CDK4 inhibitors in
glioblastoma identified retinoblastoma tumor suppressor
protein RB1 status as a determinant of tumor therapeu-
tic efficacy [18]. The gene set is altered in 73.8% with
p-value = 2.16e-05. In the fifth driver pathway, PIK3CA
and PTEN are the core members of the RTK/RAS/PI(3)
K signaling pathway which is prominently altered in
glioblastoma, and PTEN inhibits PIK3CA in the RTK/
RAS/PI(3)K signaling pathway. The gene set is altered in
56.0% with p-value = 9.91e-04. In the sixth driver path-
way, MDM2 is the member of the p53 signaling path-
way. NF1 is the core member of the MAPK signaling
pathway and it usually affects RTK/RAS/PI(3)K signaling
pathway. PIK3R1 is the member of the RTK/RAS/PI(3)K
signaling pathway involved in cellular proliferation. The
gene set is altered in 47.6% with p-value = 7.90e-03. In
the seventh driver pathway, DPYSL4 usually targets
genes TP53 and TP63. PDGFRA is the member of the
MAPK signaling pathway. PTEN is the core member of
the p53 and RTK/RAS/PI(3)K signaling pathways which
are prominently altered in glioblastoma. ERBB2 is the
member of the ERBB signaling pathway. The gene set is
altered in 56.0% with p-value = 5.88e-05.

Glioblastoma multiforme data 2 (GBM2)
The glioblastoma dataset is obtained from TCGA
(2008). It contains gene expression profiles nucleotide
sequence aberrations and DNA copy number alteration
in 206 glioblastomas samples [6,19]. A mutation matrix
covering 90 samples and 1126 genes are built [2]. Five
genes (CDKN2B, CDKN2A, PTEN, MTAP and TP53)

are mutated in more than 20 samples in the mutation
matrix. They are mutated in 47, 44, 38, 34 and 25 sam-
ples respectively. We get seven optimal gene sets shown
in Table 5.
In the first driver pathway, CDKN2A and TP53 are the

core members of the p53 signaling pathway; CDKN2A,
CDK4 and RB1 are the core members of the RB signaling
pathway. CDKN2A activates TP53 in the p53 signaling
pathway. CDKN2A inhibits CDK4 and CDK4 inhibits
RB1 in the RB signaling pathway. The gene set is altered
in 83.3% with p-value = 2.64e-8. In the second driver
pathway, PTEN, PIK3CA and EGFR are the core mem-
bers of the RTK/RAS/PI(3)K signaling pathway which is
prominently altered in glioblastoma. PTEN inhibits PIP3;
EGFR activates PIK3CA; PIK3CA activates PIP3 in the
RTK/RAS/PI(3)K signaling pathway. The gene set is
altered in 57.8% with p-value = 1.17e-05. In the third dri-
ver pathway, CDK4, CDKN2B and RB1 are the core
members of the RB signaling pathway. CDK4 inhibits
RB1, and CDKN2B inhibits CDK4 in the RB signaling
pathway. The gene set is altered in 73.3% with p-value =
7.62e-05. In the fourth driver pathway, PIK3CA, PTEN
and PIK3R1 are the core members of the RTK/RAS/PI(3)
K signaling pathway which is prominently altered in glio-
blastoma. PTEN interacts with PIK3R1; PIK3R1 interacts
with PIK3CA; PTEN inhibits PIK3CA in the RTK/RAS/
PI(3)K signaling pathway. The gene set is altered in
53.3% with p-value = 1.17e-05. In the fifth driver path-
way, MDM4, TP53 and MDM2 are the core members of
the p53 signaling pathway. QKI is a member of the sig-
nal transduction and activation of RNA family of RNA-
binding proteins, as a novel glioblastoma multiforme

Table 4 Results of the algorithm in GBM1

Optimal gene sets Gene number Exclusivity Coverage P-value

CDKN2B, CYP27B1, RB1, ERBB2 4 90.9% 83.3% 6.46e-03

CDKN2A, TP53 2 90.8% 70.2% 5.33e-04

EGFR, NF1, KIT 3 93.4% 67.9% 4.99e-03

CDK4, MTAP, RB1, ERBB2 4 92.5% 73.8% 2.16e-05

PIK3CA, PTEN 2 90.4% 56.0% 9.91e-04

MDM2, NF1, PIK3R1 3 90.9% 47.6% 7.90e-03

DPYSL4, PDGFRA, PTEN, ERBB2 4 92.2% 56.0% 5.88e-05

Table 5 Results of the algorithm in GBM2

Optimal gene sets Gene number Exclusivity Coverage P-value

CDKN2A, TP53, CDK4, RB1 4 82.4% 83.3% 2.64e-08

PTEN, PIK3CA, EGFR 3 86.7% 57.8% 1.17e-05

CDK4, CDKN2B, RB1 3 95.7% 73.3% 7.62e-05

PIK3CA, PTEN, PIK3R1 3 96.0% 53.3% 1.17e-05

MDM4, QKI, TP53, MDM2 4 93.2% 45.6% 2.74e-05

MDM2, TP53, PIK3R1, CPT1B 4 90.9% 44.4% 1.08e-04

CYP27B1, EGFR, NF1, PIK3R1 4 90.2% 51.1% 5.32e-04
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tumor suppressor [20]. The TP53 directly regulates QKI
gene expression. MDM2 interacts with MDM4; MDM2
and MDM4 inhibit TP53; TP53 activates MDM2 in the
p53 signaling pathway. The gene set is altered in 45.6%
with p-value = 2.74e-05. In the sixth driver pathway,
TP53 and MDM2 are the core members of the p53 sig-
naling pathway. PIK3R1 is the core member of the
RTK/RAS/PI(3)K signaling pathway which is promi-
nently altered in glioblastoma. CPT1B is the member of
the PPAR signaling pathway. MDM2 inhibits TP53 in
the p53 signaling pathway. The gene set is altered in
44.4% with p-value = 1.08e-04. In the seventh driver
pathway, PIK3R1, EGFR and NF1 are the members of
the RTK/RAS/PI(3)K signaling pathway involved in cel-
lular proliferation. NF1 usually affects RTK/RAS/PI(3)K
signaling pathway. The mutational profile of CYP27B1
is nearly the same to a metagene and CYP27B1 is
mutated in all patients as the metagene. EGFR and NF1
are associated with the classical and mesenchymal sub-
types, respectively. Therefore, the exclusivity of muta-
tions in the gene set is likely due to subtype-specific
mutations [7]. EGFR interacts with RAS, and NF1 inhi-
bits RAS in the RTK signaling pathway. The gene set is
altered in 51.1% with p-value = 5.32e-04. We summarize
the relationship of the genes in each module (Figure 2).

Lung carcinoma data (LC)
Vandin et al. analyzed a collection of 1013 somatic
mutations from 188 lung adenocarcinoma patients [21].
There are in total 356 genes reported to be mutated in
at least one patient [1]. Four genes (TP53, KRAS,
STK11 and EGFR) are mutated in more than 20 samples
in the mutation matrix. They are mutated in 64, 60, 34
and 30 samples respectively. We get four optimal gene
sets shown in Table 6.
In the first driver pathway, TP53 and ATM are the

core members of the p53 signaling pathway. ATM acti-
vates CHK1/2, and CHK1/2 activates TP53 in the p53
signaling pathway. The gene set is altered in 46.6% with
p-value = 1.74e-3. In the second driver pathway, TP53,
ATM and RB1 are the core members of the p53 signal-
ing pathway. ATM has been reported as a mutated
tumor suppressor gene in lung adenocarcinoma and it
encodes a cell-cycle checkpoint kinase as a regulator of
the p53 signal pathway [22]. ATM activates CHK1/2;
CHK1/2 activates TP53; MDM2 inhibits RB1 and TP53
in the p53 signaling pathway. The gene set is altered in
48.6% with p-value = 1.75e-04. In the third driver path-
way, APC is the member of the WNT signaling path-
way, and CDKN2A is the member of the p53 signaling
pathway. EGFR and NF1 are the core members of the
MAPK signaling pathway and NF1 usually affects RTK/
RAS/PI(3)K signaling pathway. EGFR inactivates RAS,
and NF1 inhibits RAS in the MAPK signaling pathway.

The gene set is altered in 35.0% with p-value = 6.46e-
03. In the fourth driver pathway, KRAS is the core
member of the MAPK signaling pathway which regu-
lates cell differentiation and proliferation. EGFR is the
core member of the RTK/RAS/PI(3)K signaling pathway.
The two genes KRAS and EGFR are involved in the reg-
ulation of the mTOR pathway, whose dysregulation has
been reported as important factor in lung adenocarci-
noma [23]. NF1 is the most prominent case for a tumor
suppressor, and its inactivating mutations can be found
in neurofibromatosis type I patients [23]. The gene set
is altered in 60.1% with p-value = 2.99e-02.

Ovarian carcinoma data (OC)
Ovarian cancer often goes undetected until it has spread
within the abdomen and pelvis. At this late stage, it is
very difficult for ovarian cancer to treat and is fre-
quently fatal [24]. The dataset is obtained from TCGA
(2011) which has analyzed mRNA expression, micro-
RNA expression, DNA copy number alteration and pro-
moter methylation in 489 high-grade serous ovarian
adenocarcinomas [2]. The mutation matrix is dense and
101 genes are mutated in more than 20 samples in the
mutation matrix. Five genes (TP53, MYC, TTN,
CCNE1, PPP2R2A) are mutated in more than 40 sam-
ples in the mutation matrix. They are mutated in 251,
81, 63, 54 and 42 samples respectively. We get four
optimal gene sets shown in Table 7.
In the first driver pathway, TP53 and CCND2 are the

core members of the p53 signaling pathway. TP53 acti-
vates CCND2 in the p53 signaling pathway. The gene
set is altered in 82.4% with p-value = 1.74e-03. In the
second driver pathway, TLR3 is the member of the TLR
signaling pathway which has been implicated as having
both tumor-promoting and tumor-suppressive on ovar-
ian cancer [25]. TP53 is the core member of the p53
signaling pathway. The gene set is altered in 81.5% with
p-value = 8.26e-03. In the third driver pathway, the
gene set identified by NBM is the same results as that
given by BLP [2]. CCNE1 and MYC are involved in cell
cycle and are two important genes engaged in cell cycle
progression [26]. The gene set is altered in 49.2% with
p-value = 3.42e-03. In the fourth driver pathway, CDH1
is the member of the pathway in cancer. MAP3K1 and
MAP3K10 are the core members of the MAPK signaling
pathway. TTN can increase the growth inhibition in
ovarian cancer cells [27]. The gene set is altered in
35.8% with p-value = 3.57e-03.

Conclusions
Finding mutated driver pathways in cancer is an essen-
tial problem in computational biology. In this paper, we
introduce a novel algorithm called NBM for automati-
cally discovering mutated driver pathways in cancer
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Figure 2 The relationship between the genes in each module from the GBM dataset. (Left) Nodes represent genes in seven modules
found by NBM from GBM dataset. Genes with “(A)” appended are amplification mutations, genes with “(D)” appended are deletion mutations,
and genes with no annotation are SNVs. Edges connect genes which appear in the same gene set. Color of nodes indicates membership in
different signaling pathways as important for GBM: p53, RB and RTK/RAS/PI(3)K signaling pathways. (Right) Known interactions between genes in
each driver pathway: inhibit, activate and interact. And p-value of each driver pathway is given from DAVID functional annotation tool whose
website is http://david.abcc.ncifcrf.gov/summary.jsp.
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using somatic mutation data from many cancer patients.
Our algorithm can find gene sets few mutated together in
the same patient (high exclusivity) and mutated in many
samples (high coverage). Notably, we find these mutation
pathways de novo from the somatic mutation data of
cancer without any prior biological knowledge of gene
expression data, pathways and interactions between genes.
In this algorithm, gene network is firstly constructed
according to high exclusivity to solve the problem of high
complexity encountered in the previous methods. Then a
new greedy algorithm is introduced to cluster gene sets
according to the properties of high exclusivity and high
coverage. The results indicate that integrative analyses of
somatic mutation data have the potential to detect gene
sets pertinent to cancer phenotypes. Moreover, the algo-
rithm is also capable of finding the functional relevance of
uncharacterized or unexpected genes.
Comparing with the previous methods of finding driver

mutation pathways, our algorithm is superior in the follow-
ing two aspects. Firstly, the complexity of the solution is
reduced by constructing gene networks from somatic
mutation data. Secondly, there is no need to assign the
number of genes in a driver pathway with our algorithm. It
is necessary to point out that our algorithm does not use
gene interaction data, pathways and other biological infor-
mation. The algorithm could provide a supplement to the
analyses of cancer data and does not replace human ana-
lyses. We also anticipate that this method will be increas-
ingly helpful in producing hypotheses that will drive some
specific experiments and increase understanding for cancer
progression. Further development is anticipated with the
use of machine learning techniques [28]. We also plan to
analyze temporal gene mutation data with the use of spik-
ing neural networks using the method suggested in [29,30].
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