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Abstract

provided for the downstream analysis.

Motivation: Based on the next generation genome sequencing technologies, a variety of biological applications
are developed, while alignment is the first step once the sequencing reads are obtained. In recent years, many
software tools have been developed to efficiently and accurately align short reads to the reference genome.
However, there are still many reads that can't be mapped to the reference genome, due to the exceeding of
allowable mismatches. Moreover, besides the unmapped reads, the reads with low mapping qualities are also
excluded from the downstream analysis, such as variance calling. If we can take advantages of the confident
segments of these reads, not only can the alignment rates be improved, but also more information will be

Results: This paper proposes a method, called RAUR (Re-align the Unmapped Reads), to re-align the reads that can
not be mapped by alignment tools. Firstly, it takes advantages of the base quality scores (reported by the
sequencer) to figure out the most confident and informative segments of the unmapped reads by controlling the
number of possible mismatches in the alignment. Then, combined with an alignment tool, RAUR re-align these
segments of the reads. We run RAUR on both simulated data and real data with different read lengths. The results
show that many reads which fail to be aligned by the most popular alignment tools (BWA and Bowtie2) can be
correctly re-aligned by RAUR, with a similar Precision. Even compared with the BWA-MEM and the local mode of
Bowtie2, which perform local alignment for long reads to improve the alignment rate, RAUR also shows
advantages on the Alignment rate and Precision in some cases. Therefore, the trimming strategy used in RAUR is
useful to improve the Alignment rate of alignment tools for the next-generation genome sequencing.

Availability: All source code are available at http://netlab.csu.edu.cn/bioinformatics/RAUR.html.

Introduction

Next-generation genome sequencing (NGS) technologies,
including Illumina/Solexa and AB/SOLIiD, generate
billions of short reads (25-200 bp) and become more and
more popular. Based on NGS technologies, a variety of
biological applications are developed. In many large pro-
jects, resequencing and read mapping are extensively used,
such as 1000 Genome Project[1] and ENCODE [2].
Recently various high-throughput approaches based on
bisulfite conversion combined with NGS have been
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developed and applied for the genome wide analysis of
DNA methylation [3]. Resequencing [4], disease genome
study [5], and identification of genetic variants [6,7] are
also benefited greatly by NGS. For most applications and
analysis, assembly and alignment are the first step once
sequencing reads are obtained. When reference genomes
are not available, assembly will be used to construct gen-
omes and many algorithms have been proposed, such as
[8]. The alignment algorithms are applied when reference
genomes are available. However, there are many chal-
lenges to accurately map the reads to the genome, due to
the sequencing errors with an overall per base error rate
around 1-2% [9], repeats in the reference genome and dif-
ferences between the donor and reference genomes.
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In recent years, many short read alignment algorithms
have been developed to address these challenges, differ-
ent in speed, memory, accuracy, and alignment strategy
[10,11]. There are two main strategies adopted in them.
One strategy is spaced seeds, and the representative
alignment algorithms are known as MAQ [12] and
SOAP [13]. The other one is Burrow-Wheeler Trans-
form [14], and the representative alignment algorithms
are BWA [15], Bowtie2 [16], and SOAP2 [17]. Although
these alignment algorithms are more and more efficient
and accurate, there are a portion of reads which are not
mapped at all by the alignment tool or the mapping
quality scores are less than the threshold.

The mapping quality and the related works

Mapping quality was firstly proposed in MAQ [12],
which is an indicator of the likelihood that a mapping is
accurate. Later on, many alignment tools also report
mapping qualities for their alignments. The calculation
of mapping quality is related to “uniquenes”. An align-
ment is unique if it has a much higher alignment score
than all the other possible alignments. In another word,
the bigger the gap between the best alignment’s score
and the second-best alignment’s score, the more unique
the best alignment, and the higher its mapping quality
should be.

Mapping quality is important to the downstream analy-
sis, like variance calling. For instance, a variant caller
might choose to ignore evidence from alignments with
mapping quality less than 10. However, in almost all the
state-of-the-art alignment tools, the mapping quality
scores do not correlate well with the actual likelihood that
a mapping is accurate[11]. Many accurate mappings
are generally reported with quality 0, and many inaccurate
mappings are reported with high-quality scores. The
RMAP algorithm [18] is proposed to improve mapping
accuracy by incorporating base-call quality scores to
weight mismatches. Furthermore, Ruffalo et al. [19] use a
machine learning approach to re-calculate the mapping
qualities of the short read mappings which are more accu-
rate than those reported by the available alignment tools.

The coming of unmapped reads
The re-calculation of mapping quality of the mappings
can make the mapping quality more reliable and pro-
mote the accuracy to some extent. However, it can do
nothing for the reads which are reported as unmapped.
For most alignment tools, the edit distances or the
allowed mismatches are limited, thus some reads can not
be mapped if the number of mismatches in any hit
exceeds the allowable differences. Given a read of length
m, BWA [15] only tolerates at most k differences (mis-
matches or gaps) in a hit, where & is chosen such that <
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4% of m-long reads with 2% uniform base error rate. With
this configuration, for 15-37 bp reads, k equals 2; for 38-
63 bp, k = 3; for 64-92 bp, k = 4; for 93-123 bp, k = 5; and
for 124-156 bp reads, k = 6. That is to say, the reads with
differences more than k in any hits will be unmapped.

Some trimmed-like strategies appear in some align-
ment programs and try to handle the problem. For
example, in local read alignment mode, Bowtie2 [16]
might “trim” or “clip” some read characters from one or
both ends of the alignment to maximize the alignment
score. The local read alignment can improve the Align-
ment rate at some extend. However, the false positive
sites are also introduced by maximizing the alignment
score which will affect the alignment accuracy, since the
maximum alignment score can’t guarantee that high
quality bases are involved. BWA-MEM [20] is a new
alignment algorithm, which can perform local alignment
and is robust to sequencing errors and applicable to a
wide range of sequence lengths.

Our contribution in this article

The unmapped reads also contain many information
which is important to the downstream analysis. Thus in
this article, we propose a method named (RAUR) to re-
align these unmapped reads. A trimming strategy used in
RAUR is to figure out the longest and most confident and
informative segment of a read based on base quality score.
It adopts an iterative progress to trim the unmapped reads
until the reads can be confidently mapped or can’t be
mapped in the whole progress. RAUR can combine with
any alignment tool to improve the alignment rate. In our
experiments, RAUR is combined with BWA [15] and Bow-
tie2 [16] separately, and run on both the simulated data
and real data with different read lengths. By comparing
the Precision and Alignment rate, we can find out that
RAUR can improve the Alignment rate of each alignment
tool greatly, while the Pecision are still comparative with
those of the original alignment tool. Furthermore, in some
cases, it has comparative or better performance than
BWA-MEM and the local read alignment mode of
Bowtie2, which also adopt trimmed-like strategies.

Methods
In this section, we investigate the correlation between
the low base quality scores and sequencing errors. Based
on the investigation, the trimming strategy adopted in
RAUR is presented in details. Then, RAUR algorithm is
described.

Base quality scores distribution

Quality score measures the probability that a base is
called incorrectly. With sequencing by synthesis technol-
ogy, each base in a read is assigned a quality score by a



Peng et al. BMC Bioinformatics 2015, 16(Suppl 5):58
http://www.biomedcentral.com/1471-2105/16/55/5S8

phred-like algorithm [21], similar to that originally devel-
oped for Sanger sequencing experiments. The quality
score of a given base, Q, is defined by Equation 1.

Q = —10logy(e) (1)

where e is the estimated probability of the base call
being wrong. Thus, a higher quality score indicates a smal-
ler probability of error. A quality score of 10 represents an
error rate of 1 in 10, with a corresponding call accuracy of
90%; a quality score of 20 represents an error rate of 1 in
100, with a corresponding call accuracy of 99%; a quality
score of 30 represents an error rate of 1 in 1000, with a
corresponding call accuracy of 99.9%. In this paper, a base
quality score > 20 is considered as a high base quality,
otherwise it is a low base quality.

Sequencing errors are one of the main resources for
mismatches. The differences between the individual gen-
ome and the reference genome are the other resource for
mismatches or gaps in alignment. We investigate the qual-
ity score of sequencing errors of ILLUMINA sequencing
reads with length 50-bp simulated by ART [22]. As shown
in Figure 1, we can observe that, the base quality scores of
the majority of sequencing errors are lower than 20. On
the other side, majority of the bases (above 90%) with low
base quality scores (< 20) are not sequencing errors, as
shown in Figure 2.

The strategy of trimming

There is a saying that the more things you do, the higher
possibility you will make a mistake. Similarly, more bases
considered, more sequencing errors will be encountered,
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Figure 1 The quality score distribution of sequencing errors.
The 10 million reads of lllumina’s Solexa with length 50-bp
simulated by ART, and each base in a read is assigned a quality
score by a phred-like algorithm. X represents the quality scores
ranging from 0 to 40, and Y represents the number of sequencing
error corresponding for each X value.
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Figure 2 Percentage of sequencing errors in bases with Quality
score below 20. (a) shows the percentage of sequencing errors
with quality scores lower than 20 in all the bases with quality scores
lower than 20; (b) shows the percentage of sequencing errors with
quality scores lower than 20 in all the sequencing errors.

which may ruin the alignment. With the number of mis-
matches or the edit distance greater than the allowed
value, some reads will be unmapped by the alignment
tools, or are mapped with low mapping qualities. These
reads are excluded from downstream analysis. However,
some confident segments of these reads can be used in
variance calling. The first and most important step to
make use of the unmapped reads is to figure out the
most confident and informative segment of an unmapped
read, which can be aligned correctly. This step is called
trimming.

The purpose of trimming is to control the number of
possible mismatches in the alignment. Mismatches in
alignment can be sequencing errors and variances.
Given a segment with K low quality bases, the maxi-
mum number of possible mismatches is K+b, and the
minimum number is 0, where b is the number of possi-
ble variances. From Figure 2, we can know that the
probability that all the K low quality bases in the seg-
ment are sequencing errors is small. Furthermore,
Sachidanandam et al. [23] found out that it is nearly in
1 kb that there is a SNP, which indicates in a short
read, b is < 1. Thus, an alignment tool which allows K
edit distances in a read, can align a segment with K low
quality bases confidently. Additionally, to align uniquely,
the length of the segment should be long enough. Thus,
our aim of trimming is to find the longest segment with
no more than K low quality bases, which can be aligned
uniquely.
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The details of trimming is illustrated as Algorithm 1.
The inputs are unmapped reads, and parameter K. K is the
number of low quality bases allowed in the segment. For
each read, the positions of the bases with low qualities in
the read are stored in a array. A segment of a read is sev-
eral successive bases. Then we check the lengths of seg-
ments in the read containing K low quality bases. Each
unmapped read is undertook the trimming in RAUR, and
can be represented by a longest segment(or called a
trimmed read) under the parameter K. The longest seg-
ments will be output in the same format as the original
unmapped reads. The start position and the end position
of a trimmed read in the original unmapped read are
recorded, which can be used to deduce the position of an
original unmapped read by using these information.

Algorithm 1 Trimming

1: Input: reads in fastq format, parameter K;

2: Qutput: trimmed reads in fastq format;

3:

4. Process:

5: for each read R do

6: > find the positions of low quality score
7: N_Low = 0,i = 0,Low_position = [];

8: Max_length = 0,Max_start = 0,Max_end = 0;
9: for each base i € R do

10: if i has a low base quality then

11: Low_position[N_Low++] = i

12: end if

13:

14: end for

15: if N Low < K then
16: output R in fastq format

17: next
18: end if
19: >find the longest segment with K low

quality bases
20: for S = 0;S < N Low — K;S++ do
21: length = O,start = O,end = 0j = S + K;
22: if S > 1 then

23: start = Low_position[S-1]+1;
24: else

25: start = 0;

26: end if

27: if j <N Low then

28: end = Low_position][j]-1;

29: else

30: end = Rlength-1;

31: end if

32 length = end-start+1
33: if length >Max_length then

34 Max_start = start
35: Max_end = end
36: Max_length = length

37: end if
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38: end for

39:  Output substr(R,Max_start,Max_end,Max_length)
in fastq format

40: end for

RAUR algorithm
The process of RAUR is illustrated in Algorithm 2.
Firstly, reads are aligned by an alignment program.
Then the unmapped reads and the unconfident mapped
reads (with mapping quality less than 10) [15] are the
input of the loop. RAUR makes every effort to find out
the longest and mappable segments of these reads by
decreasing the values of K of the loop. The parameter K
is used to control the number of low quality bases
allowed in the trimmed reads. In all experiments of this
paper, K is set as 8. For each iteration, the first step is
to trim each unmapped reads into a longest segment
(trimmed reads) containing K low quality bases. Then
align these trimmed reads by the alignment program.
When the trimmed reads with K low quality bases can-
not be aligned or confidently mapped, their original
reads are the input of the next loop with K = K-1. The
whole process will stop when K = 0. Thus, for each
read, it either can be confidently mapped with a certain
value of K or can’t be mapped with any value of K.

Figure 3 shows an example of trimming a read. The
consecutive squares represent the bases of a read with
45 bp, where the black color squares denote the bases
with low quality scores, and in contrast the white color
squares are the bases with high quality scores. There are
eight bases with low quality scores in the read. When
K = 4, the longest segment of the read starts at position
14 of the original read, and ends at position 42, contain-
ing four low quality bases. When the trimmed read
can’t be aligned, K is decreased by 1, and the trimming
algorithm search for the longest segment containing
three low quality score bases. The start position of the
longest segment is 7, and end position is 29. The trim-
ming will stop when the read can be confidently
mapped or K = 0. In our experiments, the initial value
of K is set as 8.

Algorithm 2 RAUR

1: Input: reference sequence, illumina Reads in fastq
format, parameter K(K > 0);

2: Output: alignment _file in sam format;

3:

4: Process:

5: Align Reads against reference sequence with an
aligner;

6:

7: Figure out the unmapped reads and reads with
mapping quality 210 and write into file unmappedreads

8:

9: for K_low = K;K_low > 0;K_low = K_low - 1 do
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Figure 3 An example of trimming. The consecutive squares represent the bases of a read with 45 bp, where the black color squares denote
the bases with low quality scores, and in contrast the white color squares are the bases with high quality scores. There are eight bases with low
quality scores in the read. When K = 4, the read is trimmed into a longest segment which contains four low quality bases, and when K = 3, the
read is trimmed into a longest segment which contains three low quality bases.
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10: > Trim reads into longest segments
with K_low low quality bases
11: K_low_Reads = Trimming(unmapped_Reads,

K low);

12:

13: Align K_low_Reads against reference sequence
with an aligner;

14

15: Figure out the unmapped reads and reads with

mapping quality 210 and write their original reads into
file unmappedgeads

16:

17: end for

Results

Evaluated programs and Evaluation metrics

To demonstrate the efficiency of RAUR, two alignment
programs are involved in the experiments: BWA(v0.7.5)
[15,20], and Bowtie(v2.0.4)[16], which are BWT-based
short read alignment tools. RAUR combines each align-
ment program separately to re-align the unmapped reads
and the unconfident mapped reads. RAUR(BWA) and
RAUR(Bowtie2) denote the alignment program combined
in RAUR. The two alignment programs are run indepen-
dently as the control group. BWA-MEM algorithm and the
local mode of Bowtie2 are sensitive to align longer reads,
such as 70 bp-1 Mbp query reads. For further comparison,
BWA-MEM [20] (denoted as BWA(mem)) and the local
mode of Bowtie2 (denoted as Bowtie2(local)), which per-
form local alignment for long reads to improve the align-
ment rate, are run on the datasets with read length greater
than 70. For all the alignment programs, the default options
are adopted, and the value of K in RAUR is initiated as 8.

To evaluate the performance of different alignment pro-
grams, the Alignment rate and Precision are compared.
After alignment, all the reads can be classified into three
classes, confidently mapped reads, unconfidently mapped
reads and the un-mapped reads. The threshold of mapping
quality score to differentiate confident mappings and
unconfident mappings is set as 10 for all the alignment
programs. Alignment rate is the fraction of confidently
mapped reads to all the reads defined as Equation 2. On
simulated data, we can know the correct chromosomal
coordinates of the alignment and the Precision can be
measured. According to the correct chromosomal coordi-
nates, confidently mapped reads can be classified into con-
fidently and correctly mapped reads and confidently but
incorrectly mapped reads. Thus, Precision is defined as the
fraction of confidently and correctly mapped reads among
all the confidently mapped reads, calculated according to
Equation 3.

CN
Ali t rate = 2
ignment rate = (2)
CCN
Precision = 3
recision =~ (3)

where N is the number of total reads, CN is the num-
ber of confidently mapped reads with mapping quality >
10, and CCN is the number of confidently and correctly
mapped reads.

Simulated data and performance
On simulated data, we can know the correct chromoso-
mal coordinates of the alignment and the evaluation is
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straightforward. We simulate reads from the whole
human genome using ART [22], which simulates
sequencing reads by mimicking real sequencing process
with empirical error models or quality profiles summar-
ized from large recalibrated sequencing data. In this
paper, ART is used to simulates sequencing reads of
[lumina’s Solexa. Six datasets, including both single-end
reads and paired-end reads, are generated by ART
against the reference genome of human Hgl9, with read
length 50-bp, 75-bp and 100-bp, respectively. Each data-
set contains more than 1 million reads. And then, the
alignment programs map the reads back to the human
genome. As the exact coordinate of each read is known,
it is able to calculate the Precision of the alignments.
Table 1 and 2 show the Alignment rate and Precision of
each alignment programs on single-end datasets and
paired-end datasets, respectively.

As shown in Table 1 for the simulated single-end reads
with length 50 bp, the Alignment rate of BWA and Bow-
tie2 are about 74% and 79%, respectively, while the Align-
ment rate of RAUR(BWA) and RAUR(Bowtie2) are about
83%. It means about 4% and 9% reads can be re-aligned by
RAUR. The Precision of RAUR(BWA) is comparative with
that of BWA and Bowtie2, whose precision are above 99%,
while the Precision of RAUR(Bowtie2) has a little decrease.
For the 75-bp reads and 100-bp reads, the Alignment rate
of RAUR(BWA) and RAUR(Bowtie2) not only outperform
BWA and Bowtie2, but also show advantages when
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compared with BWA(men) and Bowtie2(local). Although
in theory BWA works with arbitrarily long reads, its per-
formances are degraded on long reads especially when the
sequencing error rate is high. The Alignment rate of
RAUR(BWA) are about 13% more and 47% more than
those of BWA on the 75-bp reads and 100-bp reads, and
about 3% more and 4% more than those of BWA(men).
The Precision of RAUR(BWA) are above 99%, which are
comparative with those of BWA and B-WA(men). Com-
pared with Bowtie2, the Alignment rate of both RAUR
(Bowtie2) and Bowtie2(local) on the 75-bp reads and 100-
bp reads are improved, however, their Precision decrease
to about 98% and 95%, respectively.

The performance of each alignment program on
paired-end reads with different read lengths are com-
pared, as shown in Table 2. Compared with the single-
end reads with the same read length, the Alignment rate
of each alignment program on paired-end reads are
much higher. The Alignment rate of BWA and Bowtie2
are about 84% and 89% on 50-bp paired-end reads, and
91% and 88% on 75-bp paired-end reads, respectively.
However, the Alignment rate of BWA on 100-bp paired-
end reads is as low as that of BWA on 100-bp single-
end reads. In contrast, the Alignment rate of RAUR
(BWA) and RAUR(Bowtie2) are above 94% on paired-
end reads with different read lengths. Compared with
Bowtie2(local), not only the Alignment rate but also the
Precision of RAUR(BWA) and RAUR(Bowtie2) are

Table 1 The alignment rate and precision of each alignment method on single-end simulated data with different read

length
50-bp 75-bp 100-bp

Align.Rate(%) Prec(%) Align.Rate(%) Prec(%) Align.Rate(%) Prec(%)
BWA 794737 99.7359 73.7762 99.7975 303573 99.7208
BWA(mem) - - 82.8545 99.8912 83.0971 99.8004
RAURBWA) 83.5165 99.3132 86.5413 99.1875 87.8022 99.1834
Bowtie2 74.8779 99.6313 77.8351 99.7501 714820 99.8918
Bowtie2(local) - - 85.206 95.8658 82.3958 95.5368
RAUR(Bowtie2) 83.0495 98.2984 85.3716 98.3442 86.8258 98.2009

There are 7,740,912 simulated single-end reads with length 50-bp, 5,156,962 with length 75-bp, and 3,868,843 with length 100-bp.

Table 2 The alignment rate and precision of each alignment method on paired-end simulated data with different read

length
50-bp 75-bp 100-bp

Align.Rate(%) Prec(%) Align.Rate(%) Prec(%) Align.Rate(%) Prec(%)
BWA 89.0737 99.6436 916370 99.8411 34.7815 99.6929
BWA(mem) 973837 99.8505 96.6372 99.6355
RAUR(BWA) 94.8130 99.2667 96.8181 99.7171 97.0432 98.9618
Bowtie2 84.2039 99.8432 88.0185 99.9409 775385 99.9537
Bowtie2(local) - - 95.0565 98.0066 90.5642 96.8716
RAUR(Bowtie2) 96.6203 98.2447 96.9858 99.1592 96.8685 98.7567

There are 996,739 pairs simulated paired-end reads with length 50-bp, 1,541,980 pairs with length 75-bp, and 1,156,184 pairs with length 100-bp.
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greater than those of Bowtie2(local) on both 75-bp
paired-end reads and 100-bp paired-end reads. However,
the performances of BWA(men) are slightly better than
RAUR(BWA) on Alignment rate or Precision.

From Table 1 and 2, it is easy to find out that with
longer read length, the numbers of unmapped reads are
increasing, and the Alignment rate of BWA and Bowtie2
are declined, while RAUR(BWA) and RAUR(Bowtie2) can
dramatically improve the Alignment rate by re-aligning
the unmapped reads. Furthermore, we can observe that
RAUR(BWA) and RAUR(Bowtie2) can achieve higher
Alignment rate on datasets with longer read length, and
the Precisions are above 98%. It indicates that for long
reads there exist some fragments whose mapping positions
can correctly deduce the mapping positions of the original
reads, and RAUR can figure out these most informative
fragments to be aligned. Table 3 and 4 list the numbers of
re-aligned reads which are actually TP (true positive), and
FP (false positive) from single-end simulated datasets and
paired-end simulated datasets, respectively. Most of re-
aligned reads are eventually TP. In Table 1 and 2, the
alignment rate of RAUR(Bowtie2) are improved, while the
precision of RAUR(Bowtie2) are less than those of RAUR
(BWA). The reason lies in the different strategies of Bow-
tie2 and BWA to perform gapped alignment. BWA pays
different penalties for mismatches, gap opens and gap
extensions. Bowtie2 combines the full-text minute index-
assisted seed alignment and SIMD-accelerated dynamic
programming to perform sensitive gapped alignment with-
out incurring serious computational penalties. For Illu-
mina reads, there are only substitution errors seldom indel
errors. Since the simulated sequencing reads of Illumina’s
Solexa are generated by ART against the reference gen-
ome of human Hg19, the differences between simulated
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reads and the reference genome are mismatches rather
than gaps. With low penalty for gapped alignment, a
gapped alignment may gain a high mapping quality score,
which will damage the accuracy of the alignment.

Taken RAUR(bowtie2) for example, the influence of
different parameter K on the Alignment rate and Preci-
sion is analyzed in Table 5. We run RAUR(Bowtie2)
with different initial values of parameter K, and the
Alignment rate and Precision are compared, as shown in
Table S3. The Alignment rate of RAUR(Bowtie2) are
increased with larger initial values of K, while the Preci-
sion of RAUR(Bowtie2) are decreased. In the original
mappings of Bowtie2, there are reads unmapped or
mapped with low mapping qualities due to the exceed-
ing of allowable mismatches or gaps. RAUR employs a
parameter K to control the possible mismatches, there-
fore the Alignment rate are improved by RAUR(Bow-
tie2). For large initial values of K, the gapped alignments
of Bowtie2 may damage the Precision of RAUR(Bow-
tie2). For smaller initial values of K, the Precision of
RAUR(Bowtie2) are higher, because the lengths of reads
trimmed with the small initial value of K are short, and
most part of the trimmed reads are aligned to the gen-
ome in an ungapped fashion using the FM Index by
Bowtie 2. However, for real data, the Precision of RAUR
(Bowtie2) will be higher compared with those on simu-
lated data. Because besides the substitution errors intro-
duced by sequencers, the indels and substitutions will
be introduced by the differences between the donor and
reference genomes, gapped alignments performed by
Bowtie2 will be useful. The influence of different initial
values of K on the performance of RAUR(BWA) will
be similar, which the Alignment rate of RAUR(BWA)
are increased with larger initial values of K, but the

Table 3 The number of TP (true positive), and FP (false positive) in the re-aligned reads from single-end simulated

datasets
50-bp 75-bp 100-bp
#RA #TP #FP #RA #TP #FP #RA #TP #FP
RAUR(BWA) 312,949 284,796 28,153 658,289 629,733 28,556 27222453 2,197,995 24,458
RAUR(Bowtie2) 632,552 519,586 112,966 388,654 293,101 95,553 593,629 532,641 60,988

#RA is the number of confidently re-aligned reads with mapping quality not less than 10, #TP is the number of confidently and correctly re-aligned reads, and

#FP is the number of confidently but incorrectly re-aligned reads.

Table 4 The number of TP (true positive), and FP (false positive) in the re-aligned reads from paired-end simulated

datasets
50-bp 75-bp 100-bp
#RA #TP #FP #RA #TP #FP #RA #TP #FP
RAUR(BWA) 57,206 53,440 3,766 79,892 77913 1,979 719,859 709,445 10414
RAUR(Bowtie2) 123,759 108,171 15,588 138,273 126,500 11,773 223,491 209,981 13,510

#RA is the number of confidently re-aligned reads with mapping quality not less than 10, #TP is the number of confidently and correctly re-aligned reads, and

#FP is the number of confidently but incorrectly re-aligned reads.
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Table 5 The alignment rate and precision of Bowtie2 on single-end simulated data with different initial values of K

50-bp 75-bp 100-bp
K Align.Rate(%) Prec(%) Align.Rate(%) Prec(%) Align.Rate(%) Prec(%)
10 0.870362 0.981524 0.858727 0.981852 0.834774 0.981529
9 0.869464 0.981703 0.856311 0.982638 0.832754 0982217
8 0.868262 0.982009 0.853695 0.983442 0.830495 0.982984
7 0.866564 0.982608 0.85074 0.984281 0.827873 0.983787
6 0.864261 0.983586 0.847368 0.985199 0.824662 0.984629
5 0.861039 0.985146 0.84329 0.98618 0.820193 0.985421
4 0.856596 0.987344 0.837615 0.987297 0.812949 0.986246
3 0.850384 0.990075 0.828366 0.988768 0.800774 0.987542
2 0.841539 0.993 0.813271 0991168 0.782962 0.990233
1 0.825283 0.995516 0.794526 0.994829 0.763764 0.993865

There are 7,740,912 simulated single-end reads with length 50-bp, 5,156,962 with length 75-bp, and 3,868,843 with length 100-bp.

Precision of RAUR(BWA) will not be decreased as much
as RAUR(Bowtie2). The reason lies in the different stra-
tegies of Bowtie2 and BWA to perform gapped align-
ment, and BWA pays different penalties for mismatches,
gap opens and gap extensions.

Real data and performance

To assess the performance on real data, each alignment
program is run on three datasets of single-end reads
(ERR008838(76-bp), SRR006273(76-bp) and ERR008843
(83-bp)) and three datasets of paired-end reads
(ERR007641(51-bp), SRR019044(76-bp), and ERR050728
(90-bp)). The single-end reads were produced by Illu-
mina for NA18633, NA18498, and NA18624 individuals,
and the paired-end reads were produced by Illumina for
NA12282, NA11831, and HG00759 individuals, included
in the 1000 Genomes Project http://www.1000genomes.
org. These reads are mapped to the human genome
UCSC Hg19. The comparison of Alignment rate of dif-
ferent alignment programs on different datasets are
shown in Table 6 and 7.

Table 6 The alignment rate and precision of each
alignment method on single-end real data with different
read length

In Table 6 the Alignment rate of RAUR(BWA) and
RAUR(Bowtie2) are significantly higher than those of
BWA and Bowtie2, and consistent with those of
RAUR(BWA) and RAUR(Bowtie2) on single-end simu-
lated data with read length 75-bp. A little different
from the simulated results, the Alignment rate of
RAU-R(BWA) and RAUR(Bowtie2) outperform those
of BWA(men) on three datasets, while Bowtie2(local)
gains the highest Alignment rate on SRR006273 and
ER-R00884s3, compared with other alignment pro-
grams, which is 2% more than those of RAUR(BWA)
and RAUR(Bowtie2).

On the three real datasets of paired-end reads, as shown
in Table 7 RAUR(BWA) and RAUR(Bowtie2) outperform
BWA and Bowtie2, and show significant improvement on
ERR007641 and SRR019044. All the alignment programs
work well on long reads (ERR050728(90-bp)). The Align-
ment rate of RAUR(BWA) is comparative with those of
BWA(men) and Bowtie2(local), while the Alignment rate
of RAUR(Bowtie2) is about 1-2% less than Bowtie2(local).

Table 7 The alignment rate and precision of each
alignment method on paired-end real data with different
read length

Alignment Rate

Alignment Rate

SRR006273(76 ERR008838(76 ERR008843(83 ERR007641(51 SRR019044(76 ERR050728(90
bp) bp) bp) bp) bp) bp)
BWA 69.0456 77.1065 81.1342 BWA 82.7438 80.9078 95.7637
BWA(mem) 753120 80.3020 83.2176 BWA(mem) - 823725 96.1319
RAUR(BWA) 83.0732 83.8950 86.3092 RAUR(BWA) 84.9410 85.8255 96.0608
Bowtie2 706717 78.7660 823776 Bowtie2 80.1309 79.8907 94.0414
Bowtie2 80.6902 85.9375 882963  Bowtie2 - 874895 96.3645
(local) (local)
RAUR 81.0039 83.8124 86.0461 RAUR 82.7563 86.2557 94.4253
(Bowtie2) (Bowtie2)

There are 10,685,743 single-end reads with length 76-bp in SRR006273,
12,564,212 with length 76-bp in ERR008838, and 15,929,373 with length 83-bp
in ERR008843.

There are 2,977,726 pairs reads with length 51-bp in ERR007641, 9,661,679
pairs with length 76-bp in SRR019044, and 676,633 pairs with length 90-bp in
ERR050728.
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Discussion

For a read, if it originates from a unique region and its
differences with the reference sequence do not exceed
the alignment tools’ allowance, it will be mapped
uniquely. If a read is copied from a repeat region within
the allowed number of mismatches, it has multi hits and
the alignment tools have little confidence in its map-
ping. However, a read is probably unmapped if it has
too much mismatches in the alignment, no matter they
are sequencing errors or variances. RAUR is proposed
to re-align these reads which cannot be mapped by
alignment tools. The trimming strategy adopted in
RAUR is used to find out the longest and confident
fragments of these unmapped reads, with K low quality
bases at most. Therefore, compared with the original
reads, the possible mismatches in the alignments of the
trimmed reads will decrease, and the possibility of suc-
cessful alignments will increase.

RAUR is not only efficient to re-align the unmapped
reads, but also works well on the reads with low map-
ping quality scores. There exists some reads with multi
hits, but in fact they come from the unique regions of
the genome. Even for the repeat regions, two repeats of
one type also have small differences. To uniquely map
the reads in the repeat regions is also possible, if the
characterized differences are involved in the alignment,
rather than the sequencing errors. Our method can con-
trol the possible mismatches and emphasize the charac-
terized differences in the alignment. Thus, for these
reads with low mapping quality scores, RAUR can figure
out their longest and confident fragments and try to
find out their correct positions.

RAUR also can efficiently align long reads against a
reference sequence, which is a new challenge to many
alignment tools. As we known, the length of reads com-
ing from the new sequencing technologies become
longer and longer[24], which makes many of the align-
ment tools exclusively designed for reads no longer than
100 bp inefficient. However, RAUR can employ these
short read alignment tools to align long reads.

Conclusion

In this paper, by analyzing the base quality distributions
of sequencing errors, a method (RAUR) is proposed to
re-align the unmapped reads and the reads with low
mapping quality scores. The key strategy adopted in our
method is to align the most reliable and informative
part of the read. We evaluate the method by comparing
the Alignment rates and Precision on both simulated
data and real data with different lengths. Combined with
BWA or Bowtie2, RAUR can align more reads confi-
dently than BWA and Bowtie2, with comparative Preci-
sion. Furthermore, the performance of RAUR is seldom
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affected with the increasing of read length. Moreover,
RAUR outperforms BWA-MEM and the local mode of
Bowtie2 in some cases.
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