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Abstract

Dynamic gene-regulatory networks are complex since the interaction patterns between their components mean
that it is impossible to study parts of the network in separation. This holistic character of gene-regulatory networks
poses a real challenge to any type of modelling. Graphical models are a class of models that connect the network
with a conditional independence relationships between random variables. By interpreting these random variables
as gene activities and the conditional independence relationships as functional non-relatedness, graphical models
have been used to describe gene-regulatory networks. Whereas the literature has been focused on static networks,
most time-course experiments are designed in order to tease out temporal changes in the underlying network. It
is typically reasonable to assume that changes in genomic networks are few, because biological systems tend to
be stable.

We introduce a new model for estimating slow changes in dynamic gene-regulatory networks, which is suitable for
high-dimensional data, e.g. time-course microarray data. Our aim is to estimate a dynamically changing genomic
network based on temporal activity measurements of the genes in the network. Our method is based on the
penalized likelihood with €;-norm, that penalizes conditional dependencies between genes as well as differences
between conditional independence elements across time points. We also present a heuristic search strategy to find
optimal tuning parameters. We re-write the penalized maximum likelihood problem into a standard convex
optimization problem subject to linear equality constraints. We show that our method performs well in simulation

studies. Finally, we apply the proposed model to a time-course T-cell dataset.

Introduction

A single microarray experiment provides a snapshot of
the expression of many genes simultaneously under a
particular condition. Gene expression is a temporal pro-
cess, in which different genes are required and synthe-
sized for different functions and under different
conditions. Even under stable conditions, due to the con-
tinuous degradation of proteins, mRNA is transcribed
continuously and new proteins are generated. This pro-
cess is highly regulated. In many cases, the expression
programme is initiated by the activation of a few tran-
scription factors, which in turn activate many other
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genes that react in response to the newly arisen condi-
tions. Transcription factors are proteins that bind to spe-
cific DNA sequences, thereby controlling the flow of
genetic information from DNA to mRNA. For example,
when cells are faced with a new external environment,
such as starvation [1], infection [2] or stress [3], they
react by activating a particular expression program. Tak-
ing a snapshot of the expression profile following a new
condition can reveal some of the genes that are specifi-
cally expressed under the new condition. However, in
order to discover the interaction between these genes, it
is necessary to measure the genes across time in a time-
course expression experiment. These temporal measure-
ments potentially allow us to determine not only the
stable state following a new condition, but also the gene
interactions that were activated in order to arrive at this
new state. The biological and computational issues
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involved in designing and analyzing gene expression data
in general, and time-course expression data in particular,
is discussed in [4].

In this paper, we propose a graphical model for
describing temporal interaction patterns between genes.
Graphical models explore conditional independence
relationships between random variables. They can be
divide into directed graphical models, e.g. Bayesian net-
works [5,6], undirected graphical models, e.g. Gaussian
graphical models [7,8] and mixed versions, such as
chain graphical models [7]. Bayesian networks have
been successfully used to describe certain types of gene-
regulatory networks [9]. However, Bayesian networks
suffer two major limitations. Firstly, they cannot be used
to describe cyclic graphs. This rules out using them for
describing simultaneous feedback loops in gene regula-
tory networks. Secondly, they perform poorly on sparse
microarray data as shown by [10]. It is possible to
“unroll” cycles into spirals through time, so the first lim-
itation can partially be overcome [11-13]. Instead, we
propose to model such cycles more directly as undir-
ected edges in our conditional independence graph.
Furthermore, our method will allow for “directed” edges
between consecutive time points.

The class of Gaussian graphical models (GGM) have
been particularly popular. The main advantage for
GGMs is that the precision matrix, i.e. the inverse of
the covariance matrix, can be used to “read off” the con-
ditional independence relationships between the random
variables. The literature on estimating the inverse covar-
iance matrix goes back to [14], who also introduced
hypothesis testing approaches to determining whether
particular elements of the inverse covariance matrix are
zero. The more zeroes in the inverse covariance matrix,
the sparser the underlying conditional independence
graph.

Regulatory elements in genetic networks are highly
structured. In order to guarantee an appropriate
response to a particular change in the environment,
most gene interactions are highly specific. The detailed
molecular structure of genes and gene products are
responsible for this level of specificity. Another biologi-
cal requirement is that gene regulation is fast in reacting
to changes in the environment. Heat shocks should
almost instantaneously result in an adaptive response
from the yeast cell. From this point of view signals
should be able to travel fast through the gene regulatory
network: the network should have a small world prop-
erty. Consequently, most gene regulatory networks are
sparse small-world graphs. If the expression of the genes
can be assumed to be normally distributed, then this
means that most of the elements in the precision matrix
are equal to zero. A standard approach in statistical
modelling to identify zeroes in the precision matrix is
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the backward stepwise selection method, which starts by
removing the least significant edges from a fully con-
nected graph, and continues removing edges until all
remaining edges are significant according to individual
partial correlation tests. A conservative simultaneous
testing procedure was proposed by [15]. However, [16]
showed that this two-step procedure, in which para-
meter estimation and model selection are done sepa-
rately, can lead to instability: small perturbations in the
data can result in completely different graph structures
estimates.

[17] showed that ¢, penalized likelihood is a sensible
way to introduce sparse solutions in a regression setting.
The same idea can be used to estimate sparse Gaussian
graphical models, i.e. to induce zeroes in the estimated
inverse covariance matrix. By penalizing the likelihood
by a multiple of the £;-norm of the elements of the
inverse of the covariance matrix results into exact zeroes
in the penalized maximum likelihood estimate. The lar-
ger the value of this multiplicative tuning parameter the
more zeroes will be estimated in the precision matrix.
[18] introduced the ¢; penalized Gaussian graphical
model and [19] showed that it is possible to select the
tuning parameter in such a way as to control the family-
wise error rate. [20] introduced a fast and efficient algo-
rithm to calculate the so-called graphical lasso solution.
The graphical lasso estimates a single static network for
a single condition. When there are multiple conditions,
it may be sensible to presuppose a roughly common
structure and jointly estimate common links across the
graphs. [21] proposed a method that links the estima-
tion of several graphical models through a hierarchical
penalty. This graphical model leads to improvements
compared to fitting separate models, since it borrows
strength from other related graphs. Recently, [22] pro-
posed a factorially coloured graph to estimate a com-
mon dynamic structure across time.

In this paper we propose a model to estimate slowly
changing dynamic graphs using the ¢;-regularization fra-
mework. The main idea is to impose the ¢;-penalty not
only on the inverse covariance matrix, but also on
changes in the inverse covariance matrix over time. The
new method is suitable for studying high-dimensional
time-course gene activity data. In order to solve the
penalized maximum likelihood problem, we take advan-
tage of an efficient solver developed by [23] to solve the
optimization problem with linear constraints. We pro-
pose a heuristic search algorithm to fix the tuning para-
meters, that regulate sparsity and dynamic changes in
the networks.

The rest of this paper is organized as follows. The
next section gives a description of our motivating exam-
ple and a brief overview of Gaussian graphical models.
In Methods, we describe the slowly changing dynamic
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network model and its estimation. In Results, we show
the results of a simulation study and apply our method
to the time-course T-cell dataset. Finally, we discuss the
advantages of our method and point out further direc-
tions for development.

Motivation: T-cell activation

T-cells are white bloods cell that play a central role in
cell-mediated immunity. Activation of T-cells occurs
through the simultaneous engagement of the T-cell
receptor and a costimulatory molecule, like CD28 or
ICOS. Both are required for the production of an
immune response. The signalling pathways downstream
from activation usually engages the PI3K pathway and
the recruiting PH domain containing signaling molecules,
like PDK1, that are essential for the activation of PKC-6,
and eventual IL-2 production. Although certain things
are known about the structure of the T-cell pathway, its
timing and its precise structure are still unknown.

Two ¢cDNA microarray experiments were performed
to collect gene expression levels for analyzing T-cell
activation. Human T-cells coming from the cell line
Jakart were cultured in a laboratory. When the culture
reached a consistency of 10° cells/ml, the cells were
treated with two treatments, the calcium ionosphere and
the PKC activator phrorbolester PMA. This stimulation
of the T-cells resulted in their activation. Gene expres-
sion levels for 88 genes were collected across 10 time
points: the first one just before T-cell activation, at a
nominal time-point 0, and 9 time points at 2, 4, 6, 8, 18,
24, 32, 48, 72 hours after T-cell activation. In the first
experiment the microarray was divided such that 34
sub-arrays were obtained. Each of these 34 sub-arrays
contained the strands of 88 genes under investigation.
Strands are the complementary bases for the mRNA,
which is the single-stranded transcribed copy of the
DNA. In the second microarray experiment the microar-
ray was dived into 10 sub-arrays. Each of these 10 sub-
arrays contained the strands of the same 88 genes. Both
microarray experiments used 10 different slides to col-
lect the 10 temporal measurements. The experiment is
described in detail in [24].

Two further steps were conducted by [24] to obtain a set
of genes that were highly expressed and normalized across
the two microarray experiments. Firstly, genes with high
variability between the two microarrays and within the
same time point were removed. No further information is
available about the minimum level of reproducibility they
adopted. According to [24], thirty-one genes were to be
removed since they did not show enough reproducibility.
Secondly, normalization methods were applied to remove
systematic variation due to experimental artifacts. The
normalization method used is described in [25].

Page 3 of 11

At this point we assume that the 44 sub-array repli-
cates are independent samples and that the temporal
replicates across these sub-arrays are functionally depen-
dent replicates. These two assumptions result in a data-
set of 44 independent replicates across 57 genes and 10
time points.

Methods

In this section, we describe the model that we adopt in
order to study the underlying time-varying genomic net-
work for the T-cell data. We argue that time-course
datasets should be analyzed in a way, that is sensitive to
the underlying biology. If one does not use a model that
is able to describe a time-varying network, there would
not have been a point in performing a time-course
experiment. The bioinformatic tools should be adjusted
to the needs of the biologist, who wants to infer particu-
lar aspects of the system. In this section, we first intro-
duce a general graphical model. Secondly, we extend
this model to the slowly changing graphical lasso model.
Finally, we describe the computational details of per-
forming penalized maximum likelihood.

Gaussian graphical model

A graphical model is a tuple (G, P), where G = (V, E) is
a graph with edges E that describe the conditional inde-
pendence relationships of probability measure P on the
vertices V. This means that one can use the graph G to
read off the functional relationships between the ran-
dom variables associated with the vertices. In particular,
for any triple (4, B, S) of disjoint subsets of V such that
S separates A from B in G, we have that for Y ~ P,

Yalp Yp|Ysl

This so-called global Markov property in turn implies
the local and pairwise Markov properties.

In this paper, we will assume that the gene activity
data Y; has a multivariate normal distribution, i.e., ¥ ~
P, x, with mean g and covariance matrix X. Together
with conditional independence graph G = (V, E),
(G, P, x) constitutes a Gaussian graphical model or a
covariance selection model [14]. This Gaussian graphical
model puts some conditions on the covariance matrix X.
Let ® = ! be the precision or concentration matrix,
then ® contains all conditional independence informa-
tion for the Gaussian graphical model. In particular,

0 =0 (i,j) ¢ E & YiLY;|Y_ij).

In fact, it is easy to show that given the set of E° = {(;, j)
|0;; = 0}, a multivariate normal probability distribution f
(y) can be factorized as a product of functions f which do
not jointly depend to y; and y; when (i, j) € E°.
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Given a set of n observations on the Gaussian graphi-
cal model, y3,...,5,, the log-likelihood can be written as

I(n, ©) = Z{log 1] — TE(SO) — (1 — 1)’ O (1 — 7)),

where S =Y}, (¥ — ¥)(y& — 7)'/n is the sample covar-
iance matrix. From the form of the likelihood, it is clear
that i = y is the maximum likelihood estimate of y irre-
spective of the number of observations and the underly-
ing graph G. For the MLE for ®, the story is more
complicated. For the complete graph, the maximum
likelihood estimate is not uniquely defined when the
number of observations is less than the number of ver-
tices, n < |V|. This situation is really common for
experiments to infer genomic networks. On the other
hand, a gene-regulatory network is typically sparse,
which means that the number of links is small with
respect to the possible number of connections. This
may mean that ® is estimable with respect to the under-
lying true sparse graph, G. The only problem is that we
don’t know which sparse graph that is. Therefore, we
impose an additional constraint,

(:)p = arg max I(y, ®),

subject to

p=1 p
181 =3 > 1851 < p,

i=1 j=i+l

where typically we do not penalize the diagonal of the
precision matrix. Sparsity of the genomic network is not
only our current best knowledge of the gene-regulatory
system, but coincidently it is also computationally useful.
[26] formally defines a graph G = (V, E) to be sparse, if
|E| = O(|V]), where | V] is the number of vertices and |E|
is the number of edges. A graph G is said to be dense, if
|E| = O(|V]?). By constraining the estimate to satisfy
an ¢ constraint, it is possible to combine estimation of
the precision matrix ® with the estimation of the under-
lying graph G.

Dynamic Gaussian graphical models

In this section, we introduce the concept of a dynamic
Gaussian graphical model, which extends the static Gaus-
sian graphical model that was introduced in the previous
section. We first define a dynamic graph G = (V, E). Con-
sider a set of genes I' = {}3,.., 7,} and a set of time points
where these genes were observed 7 = {¢1,..., t7}. We define
the vertices of the dynamic graph as the Cartesian product
of the genes and time points, V' = I" x 7. Therefore, a ver-
tex in this graph is an element (y, £,). The edges are some
subset of the Cartesian product of vertices, E € V x V. An
element of E will be written as {(%, ), (Vg ts')}, stressing
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the fact that it links one gene at a particular time point
with another gene at another time point. We will associate
with each node of the graph a random variable Y, which
represents the amount of gene activity of gene g at time s.

With the above ingredients, we can now define a
dynamic Gaussian graphical model as the tuple (G,
P.e), where G = (I' x 7, E) is a dynamic graph and P, 5
is a collection of multivariate Gaussian distributions
with mean g and inverse covariance matrix O, that are
compatible with the conditional independence relation-
ships described in the edge set E.

In principle, the ordering of the vertices is arbitrary.
For interpretation purposes, it helps to sort the vertices
by time points and within time points by genes. This
results in a natural partition {(N,, S)) |/ = 0,..., t - 1} of
the inverse covariance matrix 0,

FSYNY S NLISE NG ... 7

Sy | N1 ST [N3SH | .o
S3 N | ST N2 | S5 N2

Sy |N2ST |N2S3

0 1+1

where S; represent the self-self interactions of the
genes and N, the network interactions between the
genes, at time lag /. The self-self interactions therefore
represent the diagonal and subsequent off-diagonals of
the matrix ®, whereas N; are the diagonal blocks and
subsequent off-diagonal blocks minus the diagonal. Each
of these subsets can be further partitioned, as indicated
by Sj and Nj. In these sub-partitions, Sj is the persis-
tence of genes from time point ¢ until time point ¢ + [.
Similarly, N} are the network interactions between genes
at time points ¢ and ¢ + L.

As the full dynamic Gaussian graphical model is still
heavily parameterized with a typically big pT x pT
inverse covariance matrix, it makes sense to consider
relevant model subclasses. It is for example not particu-
larly likely that two genes are related across a large time
lag, conditional on the intermediate states. We therefore
define the autoregressive Gaussian graphical model of
order k (G, P, 0, AR(k)) as a dynamic Gaussian graphi-
cal model (G, P, ¢), for which

Vli>k:N; =8 =0.

This model assumes that genes are conditionally
uncorrelated for time lags larger than k. In practice, we
typically consider k = 1 or k = 2, which from an inter-
pretational point of view are most interesting. It is
important to note that the autoregressive Gaussian
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graphical model is directly associated to a particular net-
work structure G, which represents the conditional
dependence graph of the random variables associated
with the vertices of the graph.

Slowly changing dynamic graphical models

The main question this paper wants to answer is how to
infer a meaningful biological dynamic network from
noisy data on the nodes, such as, e.g., RNA seq values
or protein levels. The two features we will assume parti-
cularly relevant of a gene network are its sparsity and its
persistence. DNA, RNA and proteins are very specific
molecules that are capable of interacting, typically, with
only a very limited number of other molecules. This
means that a genetic network is highly structured and
selective, and, therefore, characterized by a high degree
of sparsity. As genetic interactions depend very much
on the basic molecular structure of its constitutive parts,
the potential to interact between various genes will typi-
cally not change over time, unless particular regime
changes in the cell affect its thermo-dynamic properties.
Interactions in the dynamic network G therefore tend to
persist over time. We will show in this subsection how
we can incorporate these two ideas, sparsity and persis-
tence of the network, in the interferential objective func-
tion by means of a penalized likelihood function.

In the T-cell experiment, we assume we have 44
observations from the 57 x 10 dimensional autoregres-
sive Gaussian graphical model of order k = 1. Not only
do we want to infer a sparse network G, but also one
for which the wunderlying network partitions
Ny ={N},..., Nj, ...,Nl} (1=0,1) change only
slowly across time. This requires an additional set of
constraints in our maximum likelihood inference. In
general, we assume we have n observations y,..., ¥,
each coming from the autoregressive k dynamic Gaus-
sian graphical model (G, P, e, AR(K)).

Given two tuning parameters p; and p,, we define a
slowly changing dynamic network as the solution of the
penalized maximum likelihood of the autoregressive k
dynamic Gaussian graphical model,

I(1,©) =’ {10g|O] —Tr(S0) = (11 = PO — P}, (1)

subject to
[1Oll1 < p1 (2)
k T—1
Y2 UINT =N < o2 3)
1=0 s=1
Vi>kN=8=0 (4)

Whereas the first constraint induces a generally sparse
dynamic network, the second constraint penalizes large
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changes in the network coefficients, thereby inducing a
slowly changing or persistent network through time.
Therefore, the penalty parameters are directly related to
the zero and persistence structure of the estimate @ 1,02
and, therefore, to the estimate of the dynamic genetic
graph é,01,,02'

Solving the above penalized maximization problem is
an active field of research in optimization. We use the
log determinant proximal point approximation method
developed by [23]. Each constraint gets coded into a lin-
ear map. We consider A(®) = ||®||; associated with
constraint (2), B(®) = Zf:o S ING — N3ty asso-
ciated with constraint (3) and C;(®) = (S; N;) associated
with constraint (4). This method introduces two sets of
slack variables to deal with the two inequality con-
straints. The constraint optimization problem (1) is now
written as:

0 argmin{—1og|®| + Tr(SO®) + A1V + LV + Aoaw" + Ayw™ }
<)

subjectto A(®)—v'+v =0
BO®)—-wr+w =0
Ci(®)=0, 1=0,...,k

®>0,v,v,w,w >0,

where 1; and A, are functions of p; and p, respec-
tively. In this format, the optimization can be solved
directly by LogDetPPA.

The non-negative tuning parameters A, and 4, effectively
determine the sparsity and the persistence of the network
through time, respectively. Selecting these tuning para-
meters is a form of model selection. Depending on the
interests of the user, which can be maximizing posterior
model probability or minimizing prediction error, either a
BIC-type criterion or an AIC-type criterion is proposed.
We consider a grid of values (15, A,) and minimize infor-
mation criterion scores such as AIC, AICc, and BIC. Then
we use stability selection to select a more stable graph [27].

Example: T-cell We consider a subset of the T-cell data
to illustrate the performance of the autoregressive Gaus-
sian graphical model approach with a slowly changing net-
work penalty. Only 4 genes and 2 time points were
considered. Table 1 shows the estimated precision matrix,
fixing the tuning parameters A; = 0.01 and A, = 0.1. It can
be seen that N is a network with three edges (1, 3), (1, 4),
(2, 4), which in the next time point N} slowly changes to
another network with edges (1, 2), (1, 4), (2, 4). In section
we consider the full dataset.

Results

Simulation study: comparison with other methods

In this section we compare the dynamic network infer-
ence method with other methods proposed in the litera-
ture to estimate networks. [28] suggest a procedure
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Table 1. Conditional covariance ¢ based on 44 replicates
for 4 genes measured across 2 time points. The tuning
parameters 1, and A, were fixed to 0.01 and 0.1,
respectively

Time 1 2
Gene ZNF CCN SIV SCY ZNF CCN SIV ScYy
I ZNF 124 000 -026 018 -022 -011 -011 -007
CCN - 149 000 -017 -018 -084 006 012
SV - - 144 000 -015 008 -069 -001
SCY - - - 109 002 013 041 -070
2 INF - - - - 107 -002 000 012
CCN - - - - - 155 000 024
SIV - - - - - - 152 000
SCY - - - - - - - 108

based on large-scale hypothesis testing of partial correla-
tions in combination with false discovery rate cut-offs,
implemented in the R-package GeneNet. [29] propose
an empirical bayes method for estimating biological net-
works from temporal microarray data. Their method
aims to infer a directed graphical model, a so-called
Bayesian network, that remains constant through time.
This method is implemented in the R-package ebdbNet.
There is a whole class of methods based on the graphi-
cal lasso [20]. Besides the original method, [22] pro-
posed a factorial graphical lasso, implemented in the
sglasso R-package and [30] consider a sparse autore-
gressive network inference method using chain graphical
models, implemented in the R-package SparseTSCGM.
We simulate data from a network along six time-points
that is affected by a regime change between time points 3
and 4. Figure 1 shows the original networks, interpreted
as lag zero conditional independence graphs Ny. We
simulate # = 100 observations and report the results of
the methods described above. Due to the large number of
links, GeneNet by default corrects for multiple testing,
resulting in a very sparse graph. In fact, it merely detects
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seven edges throughout the whole time-course, when
correcting at the 0.9 local FDR rate. In Figure 2, we low-
ered the local FDR to 0.5, which allows us to pick up
additional edges, but it clearly lacks consistency across
the various time points. Roughly the same results crystal-
ize, when applying separate graphical lassos to each of
the time-points. The tuning parameter is selected by
using the RIC. Figure 3 shows that some structure of the
underlying graph has been recovered, but with disap-
pointing consistency across the time-points. Factorial
graphical lasso, sparse TSCGM and ebdbNet all infer a
constant graph across time, which indeed captures some
aspects of the underlying structure, but fails to detect the
change point (cf. Figure 4). Although not perfect, the
slowly changing graphical model approach correctly bor-
rows strength across the 6 time-points to more accurately
infer the underlying graph and at the same time to cor-
rectly detect the underlying changes in the dynamics (cf.
Figure 5).

Simulation study: varying network size

We perform a simulation study to show the perfor-
mance of the autoregressive Gaussian graphical model
of order one. We consider four different scenarios with
a varying number of genes p € {20, 40, 60, 80}, each
with n = 50 observations across 7 = 3 time points. For
each scenario we simulate 100 datasets from a multivari-
ate normal distribution with g equal to zero and X
equal to the inverse of a precision matrix @. The struc-
ture of the graph slowly changes across time and obser-
vations are conditionally independent for time lags
greater than one. Note that in all four scenarios the
number of replicates # is fewer than the number of ran-
dom variables pT.

Table 2 shows the average of false positive, false nega-
tive, false discovery, false non-discovery rates as well as
the average F; score overr 100 simulations. We use the
corrected and normal AIC, as well as the BIC to select

Network at times 1-3 Network at times 4-6
@ Q
©) Q
O] O]
@ @
® ®
Figure 1. A regime change between time-points 3 and 4. Data are simulated from a network that is subject to a regime change between
time-points 3 and 4.
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Time 1: GeneNet with fdr 0.5

©)

Time 4: GeneNet with fdr 0.5

@

@
(©)

-

Time 2: GeneNet with fdr 0.5

@

Time 5: GeneNet with fdr 0.5

@

@
®

N

Time 3: GeneNet with fdr 0.5

@

Time 6: GeneNet with fdr 0.5

@]

@
®

Figure 2. GeneNet's performance. GeneNet infers links by means of multiple testing. By lowering the local FDR to 0.5, we recover some of the
network structure, but consistency across the time-points is absent.

-

Time 1: Separate Glasso with RIC

©)]

Time 4: Separate Glasso with RIC

©)

@
®

Time 2: Separate Glasso with RIC

@

Time 5: Separate Glasso with RIC

@

€]
®

Time 3: Separate Glasso with RIC

@

Time 6: Separate Glasso with RIC

@

€]
®

Figure 3. Graphical lasso’s performance. Graphical lasso estimates a sparse network for each of the time points separately. Although it
recovers some of the network structure, there is little consistency across the time-points.

\




Wit and Abbruzzo BMC Bioinformatics 2015, 16(Suppl 6):S5
http://www.biomedcentral.com/1471-2105/16/56/S5

Page 8 of 11

Network: factorial glasso

@

(O] @
@

point.

Network: Sparse TSCGM

Figure 4. Performance of Facorial Graphical lasso, Sparse TSCGM and ebdbNet. Facorial Graphical lasso, Sparse TSCGM and ebdbNet each
recover a constant network across the 6 time points. It shows the general underlying structure of the network, but fails to detect the change

Network: ebdbNet

@ @

@
@® @

the tuning parameters in the models. The corrected AIC
adds an additional penalty to account for the small
number of observations. These results show that the
slowly changing autoregressive Gaussian graphical
model is very reliable even with small numbers of obser-
vations and that it can be used for real applications
when few changes in different time points are present
using any type of model selection method.

Application to T-cell experiment
We apply the autoregressive Gaussian graphical model of
order one to the human T-cell dataset. We assume that

genes which are two time points apart, i.e. Y, and Y.,
are conditional independent given the intervening obser-
vations. This means that the edge set for networks at
lag 2, i.e. Ny, is an empty set. Figure 6 is obtained from
the estimation procedure. The two upper graphs show
the two networks at time points 1 and 2, respectively.
The bottom left figure, “Intersection,” shows the large
overlap between the two networks, induced by the signif-
icant tuning parameter p,. On the other hand, the bot-
tom right figure shows the changes between these two
time points. It shows, for example, that initially MCL1, a
pro-survival BCL2 family member, is a highly connected

-
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Figure 5. Performance of the Slowly Changing Graphical model. The slowly changing graphical model misses some of the timings of the
changes, but correctly identifies the regime change and it recovers the underlying structure of the changing network.
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Table 2. The average of performance of various model selection algorithms for the four simulation scenarios using
four model selection methods in term of the fraction of correctly estimated link/non-links, i.e. false positives (FP),
false negatives (FN), false discoveries (FD) and false non-discoveries (FnD), as well as the F, = (2 - 2FN)/(2 - FN + FP)
score, which measures the overall average accuracy of recall and precision. The best scores are indicated by bold font

P FP EN FD FnD F1 score
20 AlCc 0.0092 0.0811 0.2000 0.0031 09532
BIC 0.0363 0.0139 04873 0.0005 0.9751
AIC 0.0698 0.0069 0.6470 0.0003 0.9628
40 AlCc 0.0057 0.0447 0.2899 0.0006 09743
BIC 0.0088 0.0321 0.3826 0.0005 0.9793
AlC 0.0437 0.0041 0.7514 0.0001 0.9766
60 AlCc 0.0016 04585 0.2730 0.0036 0.7018
BIC 0.0016 04585 0.2730 0.0036 0.7018
AIC 0.0288 0.1452 0.8088 0.0012 0.9076
80 AlCc 0.0091 0.1034 0.1680 0.0052 09410
BIC 0.03% 0.0517 04527 0.0027 0.9541
AlC 0.0670 0.0000 05704 0.0000 0.9675
N
RAK1 RAK1
SIVA SIVA
FYB
Intersection Difference
SMN1
CCNA2 .
RAK1 RAK1
SIVA SIVA
@
FYB FYB
Figure 6 T-cell network change between t = 1 and t = 2. The lag zero network NO for the T-cell data with changes between time points t =
Tand t=2
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node in the T-cell network. It is known that SCF(FBW?7)
regulates cellular apoptosis by targeting MCL1 for ubi-
quitylation and destruction [31]. This is probably why
initially MCL1 loses connections to other genes.

Conclusion

Many time-course genomic experiments are performed
in order to discover certain regime changes that may
be taking place during that period. Under these cir-
cumstances, representing genomic interactions by
means of a static graphs can be misleading. Certainly,
it would fail to detect any changes in the topology of
the network. We propose a sparse dynamic graphical
model to infer the underlying slowly changing network.
One of the major contributions is that this methodol-
ogy is capable of providing fast inference about the
dynamic network structure in moderately large net-
works. Until now, even sparse static inference could be
painstakingly slow and would typically lack obvious
interpretation. We applied the method to a human T-
cell dataset to study the developmental aspects of the
sparse genomic interactions. One result, backed up by
recent research, is that MCL1 is targeted early on and
thereby loses its connections to the rest of the genomic
network.

Once a graph has been estimated and changes have
been evaluated, other questions on how to analyze time-
evolution networks might be posed. Does the network
retain certain graph properties as it grows and evolves?
Does the graph undergo a phase transition, in which its
behaviour suddenly changes? In answering these ques-
tions it is of interest to have a diagnostic tool for track-
ing graph properties and noting anomalies and graph
characteristics of interest. For example, a useful tool is
ADAGE [32], which is a software package that analyzes
the number of edges over time, the number of nodes
over time, the densification law, the eigenvalues over
increasing nodes, the size of the largest connected com-
ponent, the number of connected components versus
nodes and time and the comparative sizes of the con-
nected components over time.
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