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Abstract
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Background: We apply a new machine learning method, the so-called Support Vector Machine
method, to predict the protein structural class. Support Vector Machine method is performed
based on the database derived from SCOP, in which protein domains are classified based on known
structures and the evolutionary relationships and the principles that govern their 3-D structure.

Results: High rates of both self-consistency and jackknife tests are obtained. The good results
indicate that the structural class of a protein is considerably correlated with its amino acid

composition.

Conclusions:

It is expected that the Support Vector Machine method and the elegant

component-coupled method, also named as the covariant discrimination algorithm, if
complemented with each other, can provide a powerful computational tool for predicting the

structural classes of proteins.

Introduction

The observed results by Muskal and Kim [1] suggested
that the structural class of a protein might basically de-
pend on its amino acid composition. Many efforts
[2,3,4,5,6,7,8,9,10,11,12,13,14] have been made to pre-
dict the structural class of a protein based on its amino
acid composition. The physical mechanism about this
kind of correlation has been discussed by Bahar et al. [14]
and Chou [15]. For a systematic description in this area,
see a comprehensive review by Chou and Zhang [16] and
an updated review [17]. In this paper, we try to apply
Vapnik's Support Vector Machine [18] to approach this
problem. In this work. Support Vector Machine was per-
formed based on the data sets constructed by Zhou [19]
based on SCOP [20]. In ref.19 the reason why these data

sets are more reasonable has also been addressed. As a
result, high rates of self-consistency and jackknife test
were obtained. This has further confirmed that the struc-
tural class of a protein is considerably correlated with its
amino acid composition.

Results and Discussion

Success rate of self-consistency of SVMs

In this research, the examination for the self-consistency
of the SVM method was tested. The following two data
sets from Zhou [19] are used. One consists of 277 do-
mains, of which 70 all-o. domains, 61 all-f domains, 81
o/p domains, and 65 o+ domains. The other data set
consists of 498 domains, of which 107 are all-oc domains,
126 all-B,136 o,/B domains, and 129 o+3 domains. All the
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Table I: Results of Self-Consistency Test
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Dataset Algorithm Rate of correct prediction for each class Overall
Rate of
Correct
all-ou all-B o/ ot+f. Prediction
277 domains component coupled 95.7% 93.4% 95.1% 92.3% 94.2%
neural network 98.6% 93.4% 96.3% 84.6% 93.5%
SVM 100% 100% 100% 100% 100%
498 domains component coupled 95.8% 95.2% 94.9% 95.4% 95.8%
neural network 100% 98.4% 96.3% 84.5% 94.6%
SVM 100% 100% 100% 100% 100%

rates of correct prediction for the four structural classes
of both datasets reach 100%. These rates are "training"
accuracy, indicating that after being trained, the SVM
model has grasped the complicated relationship between
the amino acid composition and protein structure.

Success rate of jackknife test of SVMs

We use jackknife test for cross-validation. The cross-val-
idation by jackknifing is thought the most objective and
rigorous way in comparison with sub-sampling test or
independent dataset test [16, 21,22]. During the process
of jackknife analysis, the datasets are actually open, and
a protein will in turn move from each to the other. As a
result, the overall rate of correct prediction for the four
structural classes of 277 domains (the 1 st set) was 220/
277 = 79.4%; while the rates of correct prediction for the
four structural classes of 498 domains (the 2nd set) was

464/498 = 93.2%.

Comparison to neural network method and elegant com-
ponent-coupled algorithm

Zhou [19] applied the elegant component-coupled algo-
rithm developed by Chou et al. [11,12,13] to protein struc-
ture class prediction. Later Cai and Zhou [23] applied
neural network method to the same problem. The com-
parison of their results to SVM method is given in Table
1 (for self-consistency test) and Table 2 (for jackknife
test).

The comparison should be focused on the jackknife rates
(Table 2) because it represents the rate obtained by fol-
lowing a more objective test procedure [21,22]. From Ta-
ble 2 we can see that the rates of both the SVM and the
component-coupled algorithm are higher than those of
neural network. Although the rates obtained here by
SVM are slightly higher than those by the component-
coupled algorithm, it does not mean the predicted results
by SVM are always better than those by the component-
coupled algorithm. For some cases, the results obtained

by the latter might be better than those by the former.
Accordingly, it is expected, the SVM method and the
component-coupled algorithm, if complemented with
each other, will provide a powerful tool for predicting
protein structural class.

Conclusion

The current study has further supported, from the ap-
proach of SVMs, the conclusion drawn by Chou and his
co-workers [11,12,13] and Zhou [19] that if the coupling
effect among different amino acid components can be
properly taken into account, the prediction quality of
protein structural classes can be significantly improved.

Materials and Methods

Support Vector Machine (SYM)

Support Vector Machine (SVM) is one kind of learning
machine based on statistical learning theory. The basic
idea of applying SVM to pattern classification can be
stated briefly as follows. First, map the input vectors into
one feature space (possible with a higher dimension), ei-
ther linearly or non-linearly, which is relevant with the
selection of the kernel function. Then, within the feature
space from the first step, seek an optimized linear divi-
sion, i.e. construct a hyperplane which separates two
classes(this can be extended to multi-class). SVM train-
ing always seeks a global optimized solution and avoids
over-fitting, so it has the ability to deal with a large
number of features. A complete description to the theory
of SVMs for pattern recognition is in Vapnik's book [24]

SVMs have been used in a wide range of problems in-
cluding drug design [25], image recognition and text
classification [26], microarray gene expression data
analysis [27], and protein fold recognition [28].

In this paper, we apply Vapnik's Support Vector Machine
[18] for the structural classes of proteins. We download
the SVMIight, which is an implementation (in C Lan-
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Table 2: Results of Jackknife Test
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Dataset Algorithm Rate of correct prediction for each class Overall
Rate of
Correct
all-o. all-B o/ ot+p Prediction
277 domains  component coupled 84.3% 82.0% 81.5% 67.7% 79.1%
neural network 68.6% 85.2% 86.4% 56.9% 74.7%
SVM 74.3% 82.0% 87.7% 72.3% 79.4%
498 domains  component coupled 93.5% 88.9% 90.4% 84.5% 89.2%
neural network 86.0% 96.0% 88.2% 86.0% 89.2%
SVM 88.8% 95.2% 96.3% 91.5% 93.2%

guage) of SVM for the problem of pattern recognition.
The optimization algorithm used in SVMIight can be
found in [29,30]. The code has been used in text classifi-
cation, image recognition [26], microarray gene expres-
sion data analysis [27] and protein fold recognition [28].

Suppose we are given a set of samples, i.e, a series of in-
d /.
putvectors X e R°(i=1,...,N)

with corresponding labels ¥, € {+1,-1}(i =1,..., N).

Where -1 and +1 are used to stand respectively for the
two classes. The goal here is to construct one binary clas-
sifier or derive one decision function from the available
samples, which has small probability of misclassifying a
future sample. Both the basic linear separable case and
the most useful linear non-separable case for most real
life problems are considered here:

The linear separable case
In this case, there exists a separating hyper plane whose

function is Jj e X + b = (), which implies:
y,(Wex +b)>1,i=1,.,N

— 2
By minimizing lHWH subject to this constraint, the
2
SVM approach tries to find a unique separating hyper-

—_ 2 —

W)|| is the Euclidean norm of w, which
maximizes the distance between the hyper plane, i.e. Op-
timal Separating Hyperplane or OSH [31], and the near-
est data points of each class. The classifier is called the
largest margin classifier. By introducing Lagrange multi-

plane. Here

pliers (X;,the SVM training procedure amounts to solv-
ing a convex QP problem. The solution is a unique
globally optimized result can be shown having the fol-
lowing expansion:

— N —
W= Zlyia".x'

Only if the corresponding O, ~ 0 these are _)_(,: ;called
Support Vectors. When a SVM is trained, the decision
function can be written as:

f(@)=sgn(}y, at;- X OX +b)

Where sgn() in the above formula is the given sign func-
tion.

The linear non-separable case
(i) "soft margin" technique.

In order to allow for training errors, ref.31 introduced
slack variables:

&>o0,i=1,..,N

And relaxed separation constraint is given as:

Y (e +b) 21—5_ L(i=1..,N)
And the OSH can be found by minimizing

e—lp
W +CX¢,
i=1

2
Where C is a regularization parameter used to decide a
trade- off between the training error and the margin.

(ii) "kernel substitution" technique

SVM performs a nonline=r mapping of the input vector
X from the input space R into a higher dimensional

Hilbert space, where the mapping is determined by the
kernel function. Then like in case (i), it finds the OSH in
the space H corresponding to a non-linear boundary in
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the input space. Two typical kernel functions are listed
below:

KG-%)=(% 9% +1)
o 2
K% X)) =exp(—i’H76i_fjH )

And the form of the decision function is

f(&®) =sgn> y,a, - K(3.5%,)+b)

i=1

For a given data set, only the kernel function and the reg-
ularity parameter C must be selected to specify one SVM.

The Training and Prediction of Protein Structural Class
According to the SCOP database, the protein domains
generally fall into one of the following four classes: (1)
all-a, (2) all-B, (3) /B, (4) o+P.

According to its amino acid composition, a protein do-
main can be represented by a point or a vector in a 20-D
space. However, of the 20 amino acid composition com-
ponents, only 19 are independent due to the normalisa-
tion condition [11]. Accordingly, strictly speaking, if
based on amino acid composition, a protein should be
represented by a point or a vector in a 19-D space rather
than 20-D space as defined in a conventional manner.
Furthermore, according to Chou's invariance theorem,
the final predicted result will remain the same regardless
of which one of the 20 components is left out for forming
the 19-D space. It is extremely important to realize this,
particularly when the calculations involve a covariance
matrix such as in the case ofrefs.11-14. For the current
study, the amino acid composition was used as the input
of the SVM.

The SVM method applies to two-class problems. In this
paper, for the four-class problems, we use a simple and
effective method: "one-against-others" method [27, 28]
to transfer it into two-class problems.

The computations were carried out on a Silicon Graphics
IRIS Indigo work station (Elan 4000).

In this research, for the SVM, the width of the Gaussian
RBFs is selected as that which minimized an estimate of
the VC-dimension. The parameter C that controls the er-
ror-margin tradeoff is set at 100. After being trained, the
hyperplane output by the SVM was obtained. This indi-
cates that the trained model, i.e. hyperplane output
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which is including the important information, has the
function to identify protein structural classes.

We first test the self-consistency of the method, latterly
is to test the method by cross-validation (jackknife test).
As a result, the rates of both self-consistency and cross-
validation were quite high.
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