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Abstract
Background: Ribosomal 16S DNA sequences are an essential tool for identifying and classifying
microbes. High-throughput DNA sequencing now makes it economically possible to produce very
large datasets of 16S rDNA sequences in short time periods, necessitating new computer tools for
analyses. Here we describe FastGroup, a Java program designed to dereplicate libraries of 16S
rDNA sequences. By dereplication we mean to: 1) compare all the sequences in a data set to each
other, 2) group similar sequences together, and 3) output a representative sequence from each
group. In this way, duplicate sequences are removed from a library.

Results: FastGroup was tested using a library of single-pass, bacterial 16S rDNA sequences cloned
from coral-associated bacteria. We found that the optimal strategy for dereplicating these
sequences was to: 1) trim ambiguous bases from the 5' end of the sequences and all sequence 3' of
the conserved Bact517 site, 2) match the sequences from the 3' end, and 3) group sequences
>=97% identical to each other.

Conclusions: The FastGroup program simplifies the dereplication of 16S rDNA sequence
libraries and prepares the raw sequences for subsequent analyses.

Background
High-throughput DNA sequencing makes it economical-

ly possible to produce very large sequence data sets in

short time periods. With this technology it is now possi-

ble to do experiments that were impossible only a couple

of years ago. For example, a series of landmark papers in

the late 1980's and early 1990's showed that microbial

diversity could be analyzed by sequencing 16S rDNAs

from environmental samples (reviewed by [1]). Giovan-

noni used this approach to show that there is a cosmo-

politan marine bacterium, designated SAR11, using 44

16S rDNA sequences [2]. Today, it would be reasonable

to perform the same study with thousands of 16S rDNA
sequences. This exponential increase in the size of se-

quence data sets necessitates new computer tools.

Here we introduce a Java program, FastGroup, that is

appropriate for comparing thousands of sequences to

each other and grouping them based on user-defined cri-

teria. While FastGroup is optimized to dereplicate librar-

ies of 16S rDNA sequences, it can easily be adapted to

dereplicate any protein or DNA sequence library.
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Results and discussion
Description of program and algorithms
Overview of FastGroup program
Figure 1 shows the FastGroup graphical user interface

(GUI). The GUI reflects the order in which operations

are carried out by the FastGroup program. First, se-

quences are loaded into the program from a directory of

files (e.g., seq or txt files) or from a FASTA-formatted

document. The program trims the sequences according

to user-defined parameters and the trimmed sequences

are matched against each other and grouped. In the

Grouping step, the user can either define a percent se-

quence identity (PSI) that will be used to group the se-

quences together or a consecutive number of

mismatches (MM) that will prevent sequences from

grouping together (both algorithms are described be-

low).

Trimming sequences
Sections of the input sequences containing mismatched

and/or ambiguous bases must be removed or they will

prevent proper grouping. To make trimming as flexible
as possible, FastGroup can trim sequences in three ways:

1) a user-specified number of bases from the 5' or 3' ends

can be used (the rest of the sequence is discarded), 2) se-

quence 5' or 3' of a defined site can be removed, or 3) se-

quence with ambiguous bases (i.e., "Ns") can be removed

from the ends. For the latter two methods, trimming cri-

teria can be entered separately for the 5' and 3' ends. If a

primer sequence is specified, the user may adjust the

stringency of the match by varying the PSI or MM pa-

rameter (explained in detail below).

Matching
Both algorithms initiate grouping by first finding a win-

dow (i.e., a short sequence) that is shared between the

two sequences being compared. Both the window size

and direction of matching (e.g., 5' vs. 3') are specified by

the user.

Overview of grouping step
When FastGroup is initiated, the first sequence in the li-

brary is trimmed and placed in a new group, g1. The sec-

ond sequence in the library is then trimmed and

compared against the sequence in g1. If the two sequenc-
es are determined to be similar, as defined by the user-

Figure 1
Graphical User Interface (GUI) for FastGroup.



BMC Bioinformatics 2001, 2:9 http://www.biomedcentral.com/1471-2105/2/9
derived matching and grouping criteria, both sequences

are placed in group g1. If the sequences are not similar,

the first sequence is placed into g1 and the second se-

quence is placed into a new group, g2. The next sequence
in the input library is then retrieved, trimmed, and com-

pared against the sequences in the groups. This process

is repeated with every sequence in the library until all se-

quences belong to a group. New groups are created as

necessary. Sequences in groups are Targets. A sequence

being compared to the Targets is a Query sequence. It is

important to note that the first sequence used to create a

group is the sequence used for comparison against all

subsequent sequences. The name for each group begins

with "g#-", where the # is assigned sequentially as

groups are found by the program. After the hyphen, the

name of the first sequence put into the group is given.

Percent Sequence Identity (PSI) algorithm
The PSI algorithm starts at the first position after the

matching window and compares each base in the Query

sequence to that of the Target sequence. This is done in

sequential order and at each position the algorithm

records if the bases match. This process is repeated

through the length of the smaller sequence. The PSI is

calculated by dividing the number of bases found to be

the same in both sequences by the number of bases in the

smaller sequence. If two sequences have a percent se-

quence identity that is greater than or equal to the value

entered by the user into the Percent Sequence Identity
window, then the Query sequence is added to a Target se-

quence group.

Mismatching (MM) algorithm
The MM algorithm starts at the first position after the

matching window and compares the bases in the Query

sequence to the Target. If these two bases are the same,

the program moves on to the next pair. If the bases are

not equal, a one base pair gap is inserted into the Query

sequence, effectively sliding the Query sequence relative

to the Target sequence. The base in the Query sequence

is then compared to the newly aligned Target base. If the

bases match, the algorithm leaves the gap and moves to

the next base for comparison. If the bases do not match,

the gap in the Query sequence is removed and a gap is

placed in the Target sequence. The newly aligned bases

are then checked. If they are the same, the program

moves to the next base in both sequences. However, if

the gap in the Target sequence does not cause the bases

to pair this is considered one mismatch. If the user-de-

fined MM is <=1, the sequences will not be grouped. If a

2 base MM is assigned, the algorithm will also try using

this size of the gap in both the Target and Query se-

quence, after initially using a 1 base gap. This algorithm

is essentially the same as bounded diagonal band align-
ment [3].

Output files
Once all sequences in a data set have been analyzed by

FastGroup, five output text files are produced. The

fasta_groups.txt output file contains the group name and

a representative sequence from each group in FASTA

format. The fasta_groups.txt file is particularly useful for

subsequent Clustal X (Clustal X Help  [http://www-igb-

mc.u-strasbg.fr/BioInfo/ClustalX/Top.html] ; [4,5]) and

BLAST analyses (BLAST  [http://www.nc-

bi.nlm.nih.gov/BLAST/] ; [6]). The second output file,

group_seqs.txt, contains the group name and all se-

quences from the group. This file is most useful for visual

confirmation of groupings. The third output file,

group_files.txt, contains the group name, name of each
sequence in the group, and the percent that each group

makes of the total. The fourth output file, coverage.txt,

shows how many sequences are in each group and calcu-

lates coverage by the method of Good [7]. Finally, the in-

file.txt file contains all the user specified parameters for

a record of the analysis.

Testing of FastGroup
The library used to test FastGroup consisted of 94 bacte-

rial 16S rDNA obtained from an environmental sample.

The library was made by PCR amplifying with the bacte-

rial-specific primers Bact27F and Bact1492R, cloning

into a plasmid vector, and then sequencing the inserts

using the Bact27F primer (Figure 2). All sequences were

single-pass and unedited.

A number of factors were considered when designing an

approach for dereplicating 16S rDNA libraries. First,

miscalled bases would prevent related sequences from

grouping together. To remove these bases, it was as-

sumed that: 1) miscalled and ambiguous bases occur to-

Figure 2
Schematic of bacterial 16S rDNA showing conserved and
hypervariable regions. Detailed information about the prim-
ers and their superposition on the bacterial 16S rDNA can
be found at  [http://rrna.uia.ac.be/primers/data/BS/
sec_model_fw.html] . Bact27F (5' AGA GTT TGA TCM
TGG CTC AG 3') corresponds to positions 9–27 of the E.
coli 16S rDNA and is similar to BSF8/20. Bact517 (5' ATT
ACC GCG GCT GCT GG 3') corresponds to positions 517–
534 of the E. coli 16S rDNA and is similar to BSF517/17.
Bact1492R (5' TAC GGY TAC CTT GTT ACG ACT T 3')
corresponds to positions 1492–1514 of the E. coli 16S rDNA.
The approximate sites for hypervariable regions (V1-V3) are
shown as shaded boxes.

http://www-igbmc.u-strasbg.fr/BioInfo/ClustalX/Top.html
http://www-igbmc.u-strasbg.fr/BioInfo/ClustalX/Top.html
http://www.ncbi.nlm.nih.gov/BLAST/
http://www.ncbi.nlm.nih.gov/BLAST/
http://rrna.uia.ac.be/primers/data/BS/sec_model_fw.html
http://rrna.uia.ac.be/primers/data/BS/sec_model_fw.html
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gether (i.e., the presence of N's could be used to

differentiate "bad" sequence), and 2) as you move 3' of

the sequencing primer miscalled and ambiguous bases

become more prevalent, especially beyond ~600 bp.
Therefore, trimming criteria that remove 3' sequence are

necessary. A second factor influencing our trimming

strategy arises from the fact that FastGroup must find a

window in common between two sequences before it

starts the grouping algorithm. Therefore, a conserved re-

gion at the matching end would be expected to increase

analysis speed. For bacterial 16S rDNAs (Figure 2) se-

quenced using Bact27F, the Bact517 conserved site is ide-

al because: 1) the Bact517 site is highly conserved and

should be easy to find in most bacterial 16S rDNA se-

quences 2) the site is ~500 bp away from the sequencing

primer, therefore sequence 5' of this site should be good

quality, and 3) the Bact517 site is just 3' of the V3 region.

This final point is important because the V3 region is

highly variable and usually contains information suffi-

cient to differentiate between different bacterial species.

Therefore, including the V3 region increases the resolv-

ing power of this approach for measuring bacterial diver-

sity.

Analyses of trimming and matching parameters
Our analysis strategy necessitated that the Bact517 site

be accurately identified in the 16S rDNA sequences. As

shown in Table 1, if the Bact517 site must be perfectly

matched to be identified (PSI for primer matching =
100%), 75 out of the 94 sequences (80%) were trimmed

correctly. If the PSI parameter for matching to the

Bact517 site was lowered to 70%, 82 out of the 94 se-

quences (87%) were correctly trimmed. However, lower-

ing the detection stringency for the Bact517 site also

increased the possibility that false positive sites would be

detected, resulting in prematurely trimmed sequences.

False sites did not appear to be a problem with

PSI>=70%, but lowering the PSI for finding the Bact517

site to 60% did result in 9 false positives (Table 1). There-

fore, for our data set, using a 70% PSI for finding the

Bact517 site appeared optimal. We specifically chose a li-

brary of low quality sequences for the FastGroup analy-

ses. Therefore, the bact517 position was not found in

many of the test sequences because of sequencing errors.

As predicted, using the 3' conserved region for trimming

and matching from the 3' end resulted in quicker Fast-

Group analysis (Table 2), presumably because the con-

served region increases the chance that a window will be

quickly found. Aligning from the 3' end also increased

grouping frequency (Table 2), possibly because the con-

served region increased the accuracy of the matching

step. Because both algorithms require accurate matching

for initiation, the added accuracy offered by the con-
served regions as the matching sites increased the effi-

ciency of grouping. Even when the trimming criteria did

utilize the Bact517 site, the presence of this site in the se-

quence increased grouping efficiency. For an example of

this phenomenon, compare the analyses where the se-

quence was trimmed by taking the first 500 bases and
then was matched from the 5' versus the 3' ends (Table

2). The presence of the conserved sequence increased the

grouping efficiency. Trimming to the Bact517 site also al-

lowed smaller windows to be used, which dramatically

increased grouping speed (Table 2). Trimming sections

of sequence with ambiguous bases did not improve the

sequence quality enough for accurate grouping (Table 2).

Comparison of the PSI and MM algorithms
As shown in Table 3, the MM algorithm was much faster

than PSI. The sequence composition of Groups obtained

using a PSI value of 97% were roughly equivalent with

those obtained using a MM = 2. The MM = 2 did result in

some of the bigger groups being broken into two or more

smaller groups. We believe that the PSI algorithm was

more appropriate for analyses of 16S rDNA for a number

of reasons. First, gaps in unedited sequences were not as

big of a problem as we initially believed. We have ana-

lyzed one bacterial 16S rDNA library in which 96% of the

sequences were grouped together using the PSI algo-

rithm. This result would not have been obtained if gaps

were a major problem. The second reason we prefer the

PSI algorithm for analyses of 16S rDNA is that there are

reasons to believe that bacteria with 16S rDNA >=97%

identity belong to closely related bacteria [8].

Analyzing partial sequences to increase speed of Fast-
Group analyses
With a large data set, it may be desirable to speed up the

FastGroup analysis, possibly by using only part of the in-

Table 1: Effects of varying PSI on ability of FastGroup to correctly 
identify Bact517 site. To determine the number of times that the 
site was found by FastGroup, the sequences were displayed from 
the 3' direction and visually analyzed in the group_seqs.txt output 
file. The number of false positives were determined by looking for 
significantly truncated sequences (e.g., <400 bp) and then visually 
confirming that a false site was identified

PSI Value (%) # of times 
Bact517 site 

found

# of False 
Positives

(out of 94 total)

100 75 0
90 79 0
80 81 0
70 83 0
60 92 9
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put sequence during grouping. This approach would only

work if most of the information positions are not lost by

the truncation. That is, if a sequence is 500 bp after trim-

ming and only 80% of the sequence (i.e., 400 bp) is used

in the Grouping step, how representative are the results?

It was expected that, since the hypervariable region V3 is

immediately 5' of the Bact517 site, grouping should be

much faster and representative if matching was initiated

from the 3' end. As shown in Table 4, using partial se-

quence does dramatically speed up FastGroup, but with

a significant loss of resolution. The loss of resolution oc-

curred even though the V3 region was included in the

portion of the sequence analyzed. For this reason, we
suggest using the longest sequence possible.

Comparison of FastGroup with ClustalX output
ClustalX [4] uses the ClustalW algorithm [5] to align se-

quences using a combination of progressive alignment

and dynamic programming, making this algorithm sen-

sitive to divergence between closely related sequences

(<35% identity). The ClustalW algorithm was used to

align the 94 test sequences using default parameters. A

tree was generated from aligned sequences using Clus-

talX's Draw Neighbor Joining (NJ) Tree program. The

resulting tree data were plotted (Figures 3) using NJ-

PLOT, which was included as part of ClustalX software

distribution. The average running time to produce an

alignment from 94 sequences was one hour and 20 min-

utes plus an average of 5 minutes to generate tree data

using Draw NJ tree.

FastGroup was used to group the same test sequences us-

ing the PSI algorithm. Sequences were trimmed at the 5'

end for every N occurring within 50 bases, and at the 3'

end to 70% of the Bact517 site. Trimmed sequences were

Table 2: Effects of matching direction and window size on grouping results and time to analyze data using the PSI algorithm.

Matching 5' Trim 3' Trim Window # of Groups Analysis
Direction Size Time (~min)

5' 1 N in 50 bp Bact517 10 54 8
3' 1 N in 50 bp Bact517 10 48 4
5' 1 N in 50 bp 1 N in 50 bp 10 92 12
3' 1 N in 50 bp 1 N in 50 bp 10 94 30
5' 500 bp* 1 N in 50 bp 10 64 5
3' 500 bp* 1 N in 50 bp 10 55 3
3' 1 N in 50 bp Bact517 5 49 <1
3' 1 N in 50 bp Bact517 10 48 4
3' 1 N in 50 bp Bact517 25 51 67

* FastGroup it is not capable of both using a specific number of bp from one end and trimming the other end using one of the other parameters. In 
these examples, this limitation was circumvented by first trimming the sequences using the 1 N in 50 bp criteria. The output fasta_groups.txt file 
was then used as the input file for a second FastGroup analysis where 500 bp from the 5' end were used for grouping.

Table 3: Comparison of PSI and MM Algorithms.

Algorithm % PSI or # of Groups Analysis Time
# of Mismatches (~min)

PSI 100 85 7
PSI 97 48 4
PSI 95 45 4
PSI 93 41 3
MM 1 62 <1
MM 2 42 <1
MM 3 36 <1
MM 4 30 <1
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grouped at 97% PSI. All other FastGroup parameters

were left at default values. Run time was ~25 seconds.

The NJ tree from the ClustalX analysis is shown in Figure

3. The groups from FastGroup are color coded on the

Tree (Figure 3). In general, the ClustalX Clades and Fast-

Groups are identical. The main exception were the Fast-

Groups 1 and 8, which corresponds to ClustalX Clades 1–

5. If the PSI is raised to 99% (i.e., 1 bp change per 100 bp)

in FastGroup, then the two major ClustalX Groups be-

come apparent (e.g., Group 1 includes Clades 1–4 and
Group 2 is equivalent to Clade 5). The FastGroup 8 con-

tain sequences that differ from FastGroup 1 by a one bp

gap, which explains the reason that ClustalX placed these

sequences in Clade 1. Because this gap occurred in all

four FastGroup 8 sequences, and not in any of the Fast-

Group 1 sequences, these two groups probably represent

different 16S rDNAs and possibly two bacterial species.

What other options exist for dereplicating large libraries

of 16S rDNA besides FastGroup? One possibility is to

align the sequences with Clustal X and then use the

alignments to determine which sequences are the same.

This approach is time consuming because it requires

that: 1) the sequences be trimmed individually before the

alignment, and 2) duplicate sequences be manually re-

moved from the original library after the alignment. Ad-

vantages of the Clustal X approach is that visual

confirmation of grouping is easy. However, results can

also be visualized in FastGroup by having the program

display the sequences from the 3' end and looking at the

group_seqs.txt output file. FastGroup can also speed up

alignment analysis by rapidly trimming, dereplicating,

and outputting sequences to the fasta_groups.txt file,

which is ideal for Clustal X alignments. A second possible

approach to library dereplication is to compare sequenc-
es against each other using BLAST2  [http://www.nc-

bi.nlm.nih.gov/blast/bl2seq/bl2.html]  and then delete

duplicates. This approach works well but is too time con-

suming for libraries over a couple of hundred sequences.

A third way that large libraries are often dereplicated re-

quires submitting the sequences as batch files to a data-

base (either local or remote), then searching the same

sequences against the updated database using BLAST or

Sequence Similarity  [http://www.cme.msu.edu/RDP/

docs/sim_matrix_issues.html] . Again, this method

works well for a small number of sequences but is very

time intensive with large data sets.

Due to technological advances, it is now possible to

cheaply sequence thousands of 16S rDNA per day. This

change in sequencing power necessitates a reassessment
of how microbial diversity and biogeography is studied.

Many of the techniques commonly used for these sorts of

studies were designed to minimize efforts and cost in the

pre-genomics era [9,10]. However, these techniques suf-

fer from a number of limitations. In the case of denatur-

ing gradient gel electrophoresis (DGGE) it is essentially

impossible to compare samples from one gel to another.

Because the DGGE banding patterns can not be stand-

ardized, DGGE data does not represent a permanent

record of microbial diversity or biogeography. In fact, to

get a permanent record of what microbe each band on

the DGGE represents it is necessary to clone and se-

quence the band. This is costly both in time and reagents.

Terminal-restriction fragment length polymorphism (T-

RFLP) banding patterns can be standardized. Therefore,

T-RFLP data represents a permanent record of microbial

diversity. T-RFLP resolution is, however, limited (e.g., it

is dependent on the different restriction sites being

present) and it is hard to link the T-RFLP pattern to a

specific microbial species. To make this connection, it is

necessary to analyze clones both by T-RFLP and by se-

quencing. In contrast, 16S rDNA sequences allow bacte-

ria to be placed in taxonomical groups. Ribosomal 16S

DNA sequences also allow the occurrence of a specific

phylotype to be documented in an unequivocal manner.
This, in turn, will allow databases of microbial biogeog-

raphy to be constructed.

Sequencing large 16S rDNA libraries as we have outlined

here offers the advantages of sequence data, while mini-

Table 4: Effects of using only partial sequences during the Grouping step.

Matching Direction % of Sequence Used # of Groups Analysis Time (~min)

5' 100 54 8
5' 90 45 1
5' 80 44 <1
3' 100 48 4
3' 90 37 1
3' 80 28 <1

http://www.ncbi.nlm.nih.gov/blast/bl2seq/bl2.html
http://www.ncbi.nlm.nih.gov/blast/bl2seq/bl2.html
http://www.ncbi.nlm.nih.gov/blast/bl2seq/bl2.html
http://www.cme.msu.edu/RDP/docs/sim_matrix_issues.html
http://www.cme.msu.edu/RDP/docs/sim_matrix_issues.html
http://www.cme.msu.edu/RDP/docs/sim_matrix_issues.html
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Figure 3
Comparison of ClustalX and FastGroup analyses. An alignment of the 16S rDNA library was performed using ClustalX and a
NJ tree was constructed. The "ClustalX Clades" were made by grouping end nodes separated by approximately 3% divergence
(i.e., the combined branch lengths). Sequences grouped together by FastGroup, using default trimming criteria and 97% PSI,
were identified on this tree and color-coded.
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mizing cost (i.e., 1 sequencing reaction per clone). The

disadvantages of this approach include: 1) an underesti-

mation of diversity because only part of the 16S rDNA lo-

cus is used, 2) the smaller sequences (~500 bp) are not
ideal for taxonomical identification, and 3) dirty data

(i.e., sequences with mistakes). A conscious effort should

be made to save these libraries. That way, if the "cleaner"

data or larger sequences are needed in the future, the li-

braries can be resequenced. Another concern with this

approach is that it will cost more money than alternative

methods. High-throughput sequencing is becoming very

cheap. For example, the Joint Genome Institute esti-

mates that each sequencing reaction costs $1.00–1.50

(Paul Predki, personal communication). When com-

pared to the cost of people-power, extra reagents, and

impermanence of the data of the other approaches, se-

quencing of 16S rDNA libraries is probably already a bar-

gain, and it is only getting cheaper.

Conclusions
As high-throughput sequencing of 16S rDNA libraries

becomes more common, data analysis becomes the bot-

tle-neck. The FastGroup program is a first generation bi-

oinformatics tool for analyzing these data sets. It is

designed for moderately sized 16S rDNA libraries pro-

duced in individual laboratories. Future generations of

FastGroup should be incorporated into relational data-

bases that link the sequence to other relevant data (e.g.,

where, when, how the sequence was obtained). These
sorts of databases will allow detailed analyses of microbi-

al biogeography and diversity to be made.

Materials and methods
FastGroup was written in Java 1.3. Unless otherwise stat-

ed, FastGroup was tested on a Compaq Armada E700

(Pentium III, 300 MHz, 300 Mb RAM) running Win-

dows 2000. The FastGroup executable can be found as

an additional file (Additional File 1) . The dataset used in

these analyses are available as a FASTA formatted docu-

ment (Additional File 2). Frequently Asked Questions

(FAQs) and instructions for installing FastGroup are giv-

en in Additional File 3.

The 16S rDNA library was constructed as previously de-

scribed [11]. The clones in the libraries were sequenced

once from the 5' end using Bact27F (ABI PRISM BigDye

Terminators on an ABI377XL sequencer (PE Applied Bi-

osystems, Inc.; Foster City, CA) at the San Diego State

University Microchemical Core Facility). Unedited se-

quence was used in all analyses (i.e., all sequences were

single-pass and exactly as the sequencer software, ABI

Prism Sequencing Analysis v. 3.3, called them).
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Additional material

Additional file 1
This is the FastGroup program.
[http://www.biomedcentral.com/content/supplementary/1471-2105-2-
9-S1.jar]

Additional file 2
The bacterial 16S rDNA sequences that FastGroup was tested on are included 
in a text document.
[http://www.biomedcentral.com/content/supplementary/1471-2105-2-
9-S2.txt]

Additional file 3
A list of FAQs for a user trying to install and execute the FastGroup program.
[http://www.biomedcentral.com/content/supplementary/1471-2105-2-
9-S3.txt]
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