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Abstract
Background: Most profile and motif databases strive to classify protein sequences into a broad
spectrum of protein families. The next step of such database studies should include the
development of classification systems capable of distinguishing between subfamilies within a
structurally and functionally diverse superfamily. This would be helpful in elucidating sequence-
structure-function relationships of proteins.

Results: Here, we present a method to diagnose sequences into subfamilies by employing hidden
Markov models (HMMs) to find windows of residues that are distinct among subfamilies (called
signatures). The method starts with a multiple sequence alignment (MSA) of the subfamily. Then,
we build a HMM database representing all sliding windows of the MSA of a fixed size. Finally, we
construct a HMM histogram of the matches of each sliding window in the entire superfamily. To
illustrate the efficacy of the method, we have applied the analysis to find subfamily signatures in two
well-studied superfamilies: the cadherin and the EF-hand protein superfamilies. As a corollary, the
HMM histograms of the analyzed subfamilies revealed information about their Ca2+ binding sites
and loops.

Conclusions: The method is used to create HMM databases to diagnose subfamilies of protein
superfamilies that complement broad profile and motif databases such as BLOCKS, PROSITE, Pfam,
SMART, PRINTS and InterPro.

Background
The biological function of a protein can often be inferred
from its similarity to sequences of known function in se-
quence databases using single-sequence similarity algo-
rithms such as BLAST [1] or FASTA [2]. Such algorithms
are suitable for determining highly similar sequences, but
are not sensitive enough to capture highly divergent se-
quences. Therefore, many members of an evolutionarily
diverse family of proteins may be overlooked. Within the

last decade, the sensitivity of sequence searching tech-
niques has been improved by profile- or motif-based anal-
ysis, which uses information derived from MSAs to
construct and search for sequence patterns [3–6]. Unlike
single-sequence similarity, a profile or motif can exploit
additional information, such as the position and identity
of residues that are conserved throughout the family, as
well as variable insertion and deletion probabilities.
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Figure 1
Flow diagram of the method. First, filter a primary database using a profile or motif database for a subset of sequences that will
comprise the protein superfamily database. Then, partition the protein superfamily database into subfamilies depending on the
criterion for a subfamily. Then, build an MSA for each subfamily and build HMMs of all w width windows of the MSA. Finally,
tabulate matches with an e-value under 100 to identify subfamily signatures for the HMM database of the superfamily and tabu-
late matches with e-value under 0.1 to identify potentially significant functional regions in the subfamily.
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Currently, the most widely-used profile and motif data-
bases are: BLOCKS [4], which stores ungapped MSAs cor-
responding to the most conserved regions of protein
families; PROSITE [3], which uses single consensus pat-
terns and profiles to characterize each family of sequenc-
es; Pfam [7] or SMART [8], which uses profile hidden
Markov models (HMMs) to find commonly occurring
protein domains; and PRINTS-S [9], which is a database
similar to both PROSITE and BLOCKS, except it uses "fin-
gerprints" composed of more than one pattern to charac-
terize a protein family. Recently, a new profile and motif
database, InterPro [10,11], consisting of an amalgama-
tion of PROSITE, ProDom [12], Pfam and the PRINTS fin-
gerprint database, was used in the automatic annotation
of complete proteomes including fly[13] and human[14].

Most of these databases strive to classify protein sequences
into broad families, with the exception of the PRINTS-S
fingerprint database, which has both family- and subfami-
ly-specific fingerprints [9]. The ability to classify query
proteins into subfamilies within superfamilies is useful in
providing more specific functional annotations. There-
fore, we propose a method based on HMMs to find win-
dows of residues that are distinct in protein subfamilies.
Although HMMs are expensive, both in terms of memory
and computation time, they provide a solid statistical
foundation for the modeling of information in an MSA.
Our method works by constructing an HMM database
representing a sliding window of residues for the MSA of
each subfamily and then comparing the HMM database
across an entire sequence database of the protein super-
family (Fig. 1). To demonstrate the utility of our ap-
proach, it has been applied to two well-studied protein
superfamilies: the cadherin superfamily [15] and the EF-
hand superfamily [16].

Results and discussion
Subfamily partitioning
The purpose of subfamily partitioning is to create an MSA
of each subfamily, however, if quality MSAs of sub-
families already exist, it is possible to commence with the
analysis at that point, as is done for PRINTS-S [9]. This sec-
tion outlines a simple procedure for partitioning, however
other methods exist which may be more preferable [17–
21]. Many methods, like the one described herein, use a
tree clustering approach based on sequence distance or
identity.

The members of a protein family can be identified by col-
lecting the matching sequences to profile or motif data-
bases such as the ones described in the Background. This
initial set of sequences is designated as the superfamily da-
tabase and let the total number of sequences in this data-
base be represented by nT. The method of selecting a
protein subfamily and defining its limits depends on the

researcher who defines it. Subfamilies can be partitioned
based on sequence or function and while function-based
methods are valid, sequence-based methods can be auto-
mated.

To divide the sequences into subfamilies, construct a
square similarity matrix, S, of dimensions nT by nT. Si,j is
the percent similarity between the sequence i and se-
quence j. The alignment between a pair of sequences is de-
termined in CLUSTALW by performing a global
alignment [22] with an opening gap penalty of 10, an ex-
tension gap penalty of 0.1 and a Gonnet scoring matrix
[23,24]. The percent similarity is estimated by the division
of the alignment score by the maximum alignment score
between each sequence aligned to itself.

The similarity matrix is used to build a tree by the UPGMA
(unweighted pair group method using arithmetic averag-
es) clustering algorithm [25] for the purpose of partition-
ing sequences based on sequence similarity. At this point,
Sjolander [20] pointed out that any partition of the tree
may be meaningful. Indeed, there is no partitioning crite-
rion that is impartially better than another. In the end, the
biologist must decide the most appropriate partitioning
criterion from their perspective given their experience
with the protein superfamily. Therefore, the introduction
of complementary methods may be important for consist-
ent and reproducible analysis.

Our aim is to achieve a high quality MSA of each subfami-
ly. A benchmark of the quality of an MSA is how well it re-
flects the structural alignment. Comparative homology
modeling allows us to predict the three-dimensional
structure of a target protein based on its alignment to one
or more proteins with a known template structure [26]. It
has been observed that as the sequence identity between
the target sequence and the template increases, the aver-
age structural similarity between the template and the tar-
get also increases and for closely related protein sequences
with identity over 40%, the alignment is almost always
correct [27]. Therefore, if a similarity threshold greater
than 40% is used for partitioning, the resulting MSAs
should be reasonably high quality and well correlated
with the structure. Since Dayhoff used a 60% identity for
the threshold for a subfamily [17], we adopt a 60% uni-
versal similarity threshold as a slight modification. This
strict threshold may create multiple partitions of the same
subfamily, however, careful inspection of the sequence
descriptions hint at what partitions can be joined.
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Let nS be the number of subfamilies and ni be the number
of sequences in the ith subfamily. Therefore, the number
of sequences that cannot be partitioned, nH, can be ex-
pressed in the following equation:

These sequences are less than 60% similar to each other
and to sequences in any subfamily. Note that nH will nev-
er be zero due to the intermediate nodes of the initial tree.
Also note that nH will increase as the similarity of the se-
quences in the superfamily decreases.

Creating an HMM histogram for one subfamily
The creation of an HMM histogram for a subfamily com-
mences with an MSA, which can be acquired from manual
or automatic sequence alignment of the sequences in each
subfamily. If another method was used for partitioning
subfamilies, it is necessary to check if the automatically
generated MSAs are correct; however, using the outlined
partitioning procedure, an automatic MSA method such
as CLUSTALW should produce a structurally correlated
MSA, since the sequences in the subfamilies have a greater
than 40% sequence identity.

Sliding MSA windows with a width of w are created. Let ai
be the width of the MSA of the ith subfamily, then the
number of MSA windows for the ith subfamily, bi, is:

bi = ai - w - 1

An HMM is created for each sliding MSA window of the
subfamily by the HMMER software package [28]. The
HMM database of the subfamily is created from the con-
catenation of all these individual HMMs and calibrated
with a sample size of 10000 sequences. The superfamily
sequence database is then searched with the HMM data-
base and an HMM histogram is constructed from the
number of matches of each window. Let the HMM histo-
gram of the ith subfamily be represented by, fi(x), where x
is the starting position of the window.

The window width (w) is a critical parameter in the gener-
ation of the HMM histogram. A small value w is desirable
because it allows the features of an HMM histogram to be
more evident. As the size of w increases from 20 to 80, it
has the effect of smoothing the shape of the HMM histo-
gram (Fig. 2). Empirically, it was determined that a good
value of w is approximately 20 because lower values may
create models that are statistically insignificant. If neces-
sary, we suggest gradually increasing that number to

achieve an acceptable balance between significance and
window resolution.

Using HMM histograms to find subfamily signatures
Finding signatures involves discovering MSA windows
that can distinguish this subfamily from all other sub-
families. A particular MSA window can fall into one of
three categories: divergent window (a window that is not
shared by the subfamily), superfamily window (shared by
the superfamily), or subfamily window (shared by the
subfamily). Divergent windows can be easily identified
from an MSA by a stretch of positions that do not align
well; however, superfamily and subfamily windows can-
not be separated because they will both align well.

However, from an HMM histogram, subfamily windows
have an equal number of matches (fi(x)) to the number of
sequences in the subfamily MSA (ni), fi(x) = ni; superfami-
ly windows, fi(x) > ni; divergent windows, fi(x) < ni. Since
the HMM histogram sweeps across the MSA with a win-
dow size of w, if there is a subfamily signature greater than
w positions, it will be identified by consecutive subfamily
windows.

To define an HMM match, HMMER returns both a score
and an e-value. The score is the base two logarithm of the
ratio between the probability that the query sequence is a
significant match to the probability that it is generated by
a random model. The e-value represents the expected
number of sequences with a score greater than or equal to
the returned HMM score. While decreasing the e-value
threshold favors finding true positives, increasing the e-
value threshold favors finding true negatives. For finding
subfamily signatures, a tolerant e-value of 100 is used be-
cause windows matching only sequences in the subfami-
ly, under loose conditions, are characteristic to the
subfamily.

The complete set of HMMs created from all subfamily sig-
natures is concatenated to build the HMM database for
the protein superfamily. The analysis of a query sequence
follows a two-step process. First, search the query se-
quence for the conserved domain of the protein super-
family (i.e. presence of the cadherin repeat or EF-hand
motif). If the conserved domain is found, then search for
subfamily signatures. If subfamily signatures are found,
the sequence belongs to the subfamily whose signature
has the lowest e-value (Fig. 3). Otherwise, the sequence is
classified to the protein superfamily and the classification
system has achieved an equivalent level of success as most
profile and motif databases. To cross-validate the analysis,
remove 5% of the sequences in the initial superfamily da-
tabase (the test set) prior to building the HMM histo-
grams. The test set is checked with the constructed HMM
database of the superfamily and the sequences in the test
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Figure 2
HMM histograms of epithelial cadherin. This figure shows the HMM histograms of epithelial cadherin with varying window
widths (w). The x-axis represents the starting position of the window in the MSA of the subfamily; the y-axis represents the
number of times that window was found in the cadherin superfamily database. The shape of the HMM histogram becomes
smoother as the size of w increases from 20 to 40 to 80 residues because the score is calculated over a larger region.
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set should fall into the expected subfamilies within an ac-
ceptable error rate. We suggest a 5% acceptable error rate,
but other more stringent rates may also be appropriate.

Using HMM histograms to visualize functional regions
In the previous section, to identify subfamily signatures,
we focused on subfamily windows. However, superfamily
windows also may provide insight into which regions in
the subfamily share functional significance relative to the
superfamily. Peaks in the HMM histogram can suggest
which regions are particularly well conserved across the
entire superfamily.

To extract this data, a few modifications are needed to the
method. First, create a HMM histogram of the ith subfami-
ly as previously described, but instead with an e-value
threshold of 0.1. This is a stringent threshold because for
this purpose, it is important to favor true positives. Thus
far, the HMM histograms presented are functions of the
starting position of the window (fi(x)) and while this is
convenient for identifying subfamily signatures, HMM
histograms as a function of the position in the alignment,
gi(x), are useful to assess the contribution of individual
positions.

Figure 3
                     Flow diagram of a query into the HMM database of the superfamily                  
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The mapping from fi(x) → gi(x) is determined by tabulat-
ing a count of 1 for each position in the window when a
match is found. Therefore, the mapping equation is ex-
pressed as follows:

Peaks in gi(x) may hint at positions that may have func-
tional importance.

Analysis of the cadherin superfamily
Cadherins represent a large family of proteins having di-
verse functions including cell-cell adhesion, morphogen-
esis, synapse formation, cell polarization, cell sorting, cell
migration, and cell rearrangements [15]. All members of
the cadherin superfamily possess a cadherin repeat (CR)
and by using Pfam's HMM of the CR, 203 sequences were
filtered that match the model below a 0.1 e-value from the
SWISS PROT sequence database (Release 39).

Subfamily clustering produced 21 known subfamilies of
cadherins with on average 8 members (Table 1). To cross-

validate the effectiveness of the final HMM database of the
superfamily in classifying subfamilies, 11 sequences (rep-
resenting 5% of the sequence data) were removed to form
the test set. The analysis to create the HMM database of
the superfamily was performed using the sequences in the
superfamily database minus the test set. HMM histograms
of the subfamilies were created from MSAs generated by
CLUSTALW (Fig. 4). 95 total subfamily signatures were
extracted from the consolidation of consecutive subfamily
windows. Finally, the HMM database of the superfamily
was created from the concatenation of HMMs constructed
from the subfamily signatures. Cross-validation revealed
that all the sequences in the test set were classified into the
expected subfamily.

From the solved crystal structure of the first and second N-
terminal CRs (CR1 and CR2) of epithelial cadherin [29],
it was shown that the homodimerization of epithelial cad-
herin is stabilized by the Ca2+ ions bound in the linker re-
gion between CRs. Single amino acid substitutions in the
Ca2+ binding site could disrupt the cell adhesion function

Table 1: Tabulation of sequences in cadherin subfamilies

Cadherin subfamilies Number of sequences (ni)

Arcadlin 3
Desmosomal Cadherin 10
Epithelial Cadherin 7
FAT-like Cadherin 3
Flamingo Cadherin 3
Kidney Cadherin 7
Kidney Specific Cadherin 2
Liver Intestine Cadherin 4
Muscle Cadherin 2
Neural Cadherin 12
Osteoblast Cadherin 5
PB Cadherin 2
Placental Cadherin 2
Protocadherinα 28
Protocadherinβ 14
ProtocadherinγA 26
ProtocadherinγB 10
ProtocadherinγC 8
Truncated Cadherin 4
Tyrosine Receptor Kinase 6
Vascular Endothelial Cadherin 5
Unpartitioned (nH) 40
Average 8
Total (nT) 203
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n x w

x
( ) = ( )

= − −
∑

1

Table 2: Tabulation of sequences in EF-hand subfamilies

EF-hand subfamilies Number of sequences (ni)

Aequorin 2
α-spectrin 7
Calbindin D28k 5
Ca2+ Dependent Protein Kinase 33
Calcineurin B 9
Muscle Calexcitin 3
Neural Calexcitin 4
Calpain 29
Calretinin 4
Caltractin 25
Diacylglglyerol Kinase 7
α-actinin 13
Calmodulin 49
Fimbrin 3
Glycerol-3-Phosphate Dehydrogenase 4
Guanylyl Cyclase Activating Protein 5
Myosin Essential 26
Myosin Regulatory 47
P22 2
ParvalbuminA 14
ParvalbuminB 22
Phospholipase 4
Ryanodine Receptor 5
Recoverin 25
Sorcin 3
Troponin C 39
Unpartitioned (nH) 347
Average 15
Total (nT) 736
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[30]. The HMM histogram of the epithelial cadherin sub-
family was plotted on the solved crystal structure (Fig. 5A)
where interestingly, the Ca2+ binding linker between CR1
and CR2 had the highest counts. Furthermore, the peaks
of the HMM histogram were found within one or two po-
sitions in 6 of 8 residues critical in Ca2+ binding (Fig.
5B,C).

Various biochemical and structural studies have suggested
that Ca2+ binding occurs between all CRs [31]. These Ca2+

binding linkers seem to play critical roles in the cell-adhe-
sion function of cadherins, as they are directly involved in
molecular assembly [29]. The high peak between linker of
CR2 and CR3 in the HMM histogram (Fig. 5B) strongly
suggests the functional importance of this domain linker.
Interestingly, the two linkers between the last 3 CRs do
not display an intense peak in the HMM histogram. These
findings may suggest that the two N-terminal linkers are
functionally more essential than the two C-terminal link-
ers. Further structural and mutagenesis studies are re-
quired to test this hypothesis derived from our sequence
analysis.

Analysis of the EF-hand superfamily
Kretsinger and Nockolds [32] discovered the EF-hand mo-
tif in the crystal structure of parvalbumin in 1973. The EF-
hand motif has a characteristic helix-loop-helix structure,
consisting of approximately 30 residues. Numerous pro-
teins that interact with Ca2+ contain the EF-hand motif
[33]. The most prevalent classification of the EF-hand su-
perfamily based on domain relations has been reported
previously [16].

Using Pfam's HMM of the EF-hand, 736 sequences were
filtered from SWISS-PROT (Rel. 39) to comprise our EF-
hand superfamily database. The subfamily partitioning
methodology presented here produced 26 known EF-
hand subfamilies, each consisting of approximately 15
members (Table 2). The subfamily partitioning identified
a significant portion of classified EF-hand subfamilies,
however not all. This is because our subfamily partition-
ing is based entirely on sequence similarity while previous
classifications utilized not only sequence similarities but
also other information available from experimental stud-
ies. In addition, there was a large portion of the super-
family which could not be partitioned using strictly
sequence similarity, suggesting that sequences in the EF-
hand superfamily are significantly dissimilar and that a
complementary approach may be need to fully partition
all subfamilies.

Similar to the cross-validation analysis on the cadherin
superfamily, 37 sequences (representing 5% of the se-
quence data) were removed to form the test set. Again,
HMM histograms of the subfamilies were created from the

reduced set of superfamily sequences (Fig. 6). In total, 40
subfamily signatures were extracted. The HMM database
of the EF-hand superfamily was created from the subfami-
ly signatures. Again, cross-validation revealed that all the
sequences in the test set were classified into the expected
subfamily. This suggested that the method can classify se-
quences with a high specificity.

The peaks in the HMM histograms corresponded to win-
dows that include EF-hand motifs (Fig. 6). Calbindin
D28k, for example, has six EF-hands (designated EF1-
EF6). Ca2+ binding studies have shown that EF2 does not
bind Ca2+ and EF6 binds Ca2+ with a lower affinity than
the other four functional sites [34]. Interestingly, the
HMM histogram of Calbindin D28k shows no peaks at
the locations of EF2 and EF6 (Fig. 6A). Calcineurin B con-
tains four EF-hands, all shown to bind Ca2+[35]. The
HMM histogram clearly shows the presence of four func-
tionally active Ca2+ binding EF-hands in calcineurin B
(Fig. 6B). Caltractin also possesses four EF-hands: two
higher affinity and two lower affinity [36]. Similarly, the
HMM histogram shows the four peaks corresponding to
four EF-hands (Fig. 6C). Parvalbumin is a Ca2+ buffering
protein involved in the relaxation of muscle after contrac-
tion by binding up free Ca2+ in the cell [37,38]. The HMM
histogram was mapped onto the solved crystal structure of
parvalbumin B [39] (Fig. 7A). Parvalbumin B has three EF-
hands and the first N-terminal EF-hand does not bind
Ca2+[39]. The HMM histogram clearly displayed the lack
of the functional N-terminal EF-hand and the existence of
two active C-terminal EF-hands (Fig. 7B,C). These exam-
ples demonstrated that HMM histograms are not only
useful for finding subfamily signatures but also in locating
functionally significant regions of subfamilies.

Conclusions
We developed a method to decipher signature regions of
protein subfamilies, which can be used to build HMM da-
tabases for diagnosing subfamilies of large protein super-
families. Using this method, we identified subfamily
signatures and built HMM databases for two well-studied
superfamilies of cadherins and EF-hand proteins. Addi-
tionally, peaks in the HMM histogram plots of sub-
families were found to coincide with functionally
important regions (i.e. Ca2+ binding sites and loops). Fu-
ture work should include the comparison between differ-
ent subfamily partitioning techniques and also the
creation of richly annotated databases for subfamilies of
superfamilies for possible application in automated ge-
nomic annotation in conjunction with other motif and
profile databases.

Materials and methods
The studies were performed using a variety of tools and
whenever necessary, in-house programs were written to
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Figure 4
HMM histograms of cadherin subfamilies. The HMM histograms were constructed with a window width of 20 and an e-value
threshold of 100. The signature regions are highlighted in yellow for various subfamilies in the cadherin superfamily. A) Proto-
cadherin-γA B) Liver Intestine cadherinC) Truncated cadherin
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Figure 5
Mapping the HMM histogram to the crystal structure of epithelial cadherin. A) The HMM histogram mapped onto the crystal
structure (PDB code: 1EDH) of the first and second cadherin repeats of epithelial cadherin. Ca2+ ions are depicted as yellow
spheres. The regions of high occurrence map to the Ca2+ binding site (blue represents low occurrence and red represents high
occurrence)B) The HMM histogram of the epithelial cadherin subfamily with an e-value cutoff of 0.1. The orange bars in the
histogram reflect positions involved in Ca2+ binding. Below the histogram is the domain layout. The features are colored: cad-
herin repeat (CR), blue rectangle; cytoplasmic domain (Cyt), green rectangle; catenin binding sites in the cytoplasmic domain,
pink rectangles. The segment between the last CR and the cytoplasmic domain is the single pass transmembrane domain.C)
The MSA of the segment involved in Ca2+ binding between the first and second CRs. The SWISS PROT code of the sequence
is shown in the left and the 8 residues involved in Ca2+ binding are highlighted orange.
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Figure 6
HMM histograms of EF-hand subfamilies. Using the same conventions as Fig. 4, the HMM histograms were constructed for var-
ious subfamilies in the EF-hand superfamily. A) Calbindin D28k B) Calcineurin B C) Caltractin.
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Figure 7
Mapping the HMM histogram to the crystal structure of parvalbumin B. A) The HMM histogram mapped onto the crystal
structure (PDB code: 1CDP) of parvalbumin B. Using the same conventions as Fig. 5A, the Ca2+ binding loops of two EF-hand
motifs have a high occurrence level. B) The HMM histogram of the parvalbumin B subfamily with an e-value cutoff of 0.1. The
orange regions in the histogram reflect the segments encoding the Ca2+ binding loops. Below the histogram is the domain lay-
out. The blue rectangle represents the EF-hand motif (EF). C) The MSA of the parvalbumin B subfamily. Using the same con-
ventions as Fig. 5C, the Ca2+ binding loops are highlighted orange.
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pre- and post-process data from the different applications.
MSAs were generated using CLUSTALW [40] and all
HMMs were created using the HMMER package [28]. Data
was stored on the Oracle relational database management
system and Microsoft FoxPro was used as an ODBC
(Open Database Connectivity) client for querying and
joining tables from the database. Microsoft Excel was used
for dynamic charting of data. Perl was used for shell script-
ing, text manipulation and pattern matching with regular
expressions. HMMER, CLUSTALW, Oracle database server
(version 8) and Perl scripts were executed on a machine
with a dual 750 MHz UltraSPARC-111 processor and 4 G
of RAM running SunOS 5.8. Microsoft FoxPro and Excel
were executed on a 500 MHz Intel Celeron processor and
128 MB of RAM running a Windows 98 operating system.

The time required to analyze one superfamily depended
largely on the computation platform, the number of se-
quences of the superfamily and the average width of sub-
family MSAs. Using the computation platforms described,
the computation time to generate the MSA using CLUS-
TALW for the cadherin superfamily (~200 sequences,
~800 average width) was ~3 hours and for the EF-hand su-
perfamily (~700 sequence, ~200 average width) was ~9
hours. The computation time for the creation of a calibrat-
ed HMM database (window size of 20) for an average cad-
herin subfamily was ~6 hours; for an EF-hand subfamily,
~45 minutes. The execution time for an average HMM da-
tabase of cadherin subfamily over the superfamily data-
base was ~12 hours; for an EF-hand sub-family, ~7 hours.
The computation time was extensive but could easily be
adapted to a parallel computing system.

The HMM database created for the cadherin and EF-hand
superfamilies and all glue programs that were used for the
analysis are available upon request.
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