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Abstract
Background: The biomedical community is developing new methods of data analysis to more
efficiently process the massive data sets produced by microarray experiments. Systematic and
global mathematical approaches that can be readily applied to a large number of experimental
designs become fundamental to correctly handle the otherwise overwhelming data sets.

Results: The gene selection model presented herein is based on the observation that: (1) variance
of gene expression is a function of absolute expression; (2) one can model this relationship in order
to set an appropriate lower fold change limit of significance; and (3) this relationship defines a
function that can be used to select differentially expressed genes. The model first evaluates fold
change (FC) across the entire range of absolute expression levels for any number of experimental
conditions. Genes are systematically binned, and those genes within the top X% of highest FCs for
each bin are evaluated both with and without the use of replicates. A function is fitted through the
top X% of each bin, thereby defining a limit fold change. All genes selected by the 5% FC model lie
above measurement variability using a within standard deviation (SDwithin) confidence level of
99.9%. Real time-PCR (RT-PCR) analysis demonstrated 85.7% concordance with microarray data
selected by the limit function.

Conclusion: The FC model can confidently select differentially expressed genes as corroborated
by variance data and RT-PCR. The simplicity of the overall process permits selecting model limits
that best describe experimental data by extracting information on gene expression patterns across
the range of expression levels. Genes selected by this process can be consistently compared
between experiments and enables the user to globally extract information with a high degree of
confidence.

Background
The complete sequencing of several genomes, including

that of the human, has signaled the beginning of a new era
in which scientists are becoming increasingly interested in
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functional genomics; that is, uncovering both the func-
tional roles of different genes, and how these genes inter-
act with, and/or influence, each other. Increasingly, this
question is being addressed through the simultaneous
analysis of hundreds to thousands of unique genetic ele-
ments with microarrays. Already, analytical strategies have
subdivided into distinct 'omic' domains, such as genom-
ics, proteomics, and metabolomics. This enables research-
ers to examine not only genetic elements, but also the
corresponding proteins and metabolites derived from
these genes. All 'omic' technologies share the need for
fresh, innovative looks at data analysis. To date, transcrip-
tomics is the most widely studied molecular approach, en-
abling researchers to examine subtle differences in
thousands of mRNA levels between experimental sam-
ples, medical biopsies, etc. Although mRNA is not the end
product of a gene, the transcription of a gene is both crit-
ical and highly regulated, thereby providing an ideal point
of investigation [1,2]. Development of microarrays has
permitted global measurement of gene expression at the
transcript level and provided a glimpse into the coordinat-
ed control and interactions between genes.

Presently, two technologies dominate the field of high-
density microarrays: cDNA arrays and oligonucleotide ar-
rays. The cDNA array has a long history of development
[3] stemming from immunodiagnostic work in the 1980s;
however, it has been most widely developed in recent
years by Stanford University (California) researchers de-
positing cDNA tags onto glass slides, or chips, with precise
robotic printers [4]. Labeled cDNA fragments are then hy-
bridized to the tags on the chip, scanned, and differences
in mRNA between samples identified and visualized using
a variation of the red/green matrix originally introduced
by Eisen and colleagues [5]. The light-generated oligonu-
cleotide array, developed by Affymetrix, Inc. (Santa Clara,
CA), involves synthesizing short 25-mer oligonucleotide
probes directly onto a glass slide using photolithographic
masks [6,7]. Sample processing includes the production
of labeled cRNA, hybridization to a microarray, and quan-
tification of the obtained signal after laser scanning. Re-
gardless of the array used, the output can be readily
transferred to commercially available data analysis pro-
grams for the selection and clustering of significantly
modified genes.

Differentially expressed genes will be defined herein as
gene data determined to be statistical outliers from some
standard state, and which can not be ascribed to chance or
natural variabilty. Various creative techniques have been
proposed and implemented for the selection of differen-
tially expressed genes; however, none have yet gained
widespread acceptance for microarray analysis. Despite
this, there remains a great impulse to develop new data
analysis techniques, partly driven by the obvious need to

move beyond setting simple fold change cut-offs which
are out of context with the rest of the experimental and bi-
ological data at hand [8–11]. This has been the case for
many studies, where the selection of differential gene ex-
pression is performed through a simple fold change cut-
off, typically between 1.8 and 3.0. There is an inherent
problem with this selection criterion, as genes of low ab-
solute expression have a greater inherent error in their
measured levels. These genes will then tend to numerical-
ly meet any given fold change cut-off even if the gene is
not truly differentially expressed. The inverse also holds
true, where highly expressed genes, having less error in
their measured levels, may not meet an arbitrary fold-
change cut-off of 2.0 even when they are truly differential-
ly expressed [12]. Therefore, selecting differentially regu-
lated genes based only on a single fold change across the
entire range of experimental data preferentially selects
lowly expressed genes [8]. This commonly used approach
does not accommodate for background noise, variability,
non-specific binding, or low copy numbers- characteris-
tics typical of microarray data which may not be homoge-
neously distributed. Other approaches entail the use of
standard statistical measures such as a student's t-test or
ANOVA for every individual gene. However, due to the
cost of repeating microarray experiments, the number of
replicates usually remains low, leading to inaccurate esti-
mates of variance [8]. Furthermore, due to the low
number of replicates, the power of these "gene-by-gene"
statistical tests to differentiate between regulated and non-
regulated genes also remains very low.

The present article describes a model that considers both
expression levels and fold changes for the identification of
significant differentially expressed genes. This simple
model allows the experimenter to estimate the relation-
ship between these two parameters in the absence of large
numbers of experimental replicates, where the inherent
error of measures cannot be accurately estimated. Subse-
quently, gene transcripts determined to be outliers from
the trend can be considered differentially expressed genes.
An added strength to the model lies in its ease of applica-
tion to any data set. This model should be considered a
progressive and cyclical process, where the data analyst
can quickly and globally identify a list of potentially dif-
ferentially regulated genes with confidence, based on the
inherent qualities of the data set under evaluation.

The model presented herein was developed with a data set
from a nutritional experiment in a mouse model using Af-
fymetrix Mu11K chips, where the effects of four diets were
compared in a number of organs (pool of five mice for
each sample in each organ): (1) control diet A in duplicate
from the same pool; (2) diet B; (3) diet C; and (4) diet D.
Details of the dietary treatments will be reported else-
where. The present article will take only the data from the
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liver as an example for the development of a gene selec-
tion model. The model was validated by real-time
polymerase chain reaction (RT-PCR) and indicates good
concordance between the two experimental techniques.

Results and Discussion
Selection of differentially regulated genes and data analy-
sis
The method developed herein includes: (A) determina-
tion of the upper X% of highest fold changes within nar-
row bins of absolute expression levels in order to generate
a limit fold change (LFC) function; and (B) subsequent
ranking of genes by a combined fold change/absolute ex-
pression calculation. The following discussions describe
the development of the model within the context of our
nutritional study; however, a generic protocol can be
found in the Materials and Methods section.

(A) Selection of the upper X% of highest fold changes with-
in binned absolute expression levels
The principal parameter for gene expression data stem-
ming from a typical Affymetrix experiment is the average
difference intensity (ADI), which is a representation of the
absolute expression of a gene. As indicated in the litera-
ture, it is common practice to establish a minimal expres-
sion threshold below which data are considered to be
noise. In the case of Affymetrix data, it is often necessary
to discard minimal and negative ADIs, as these data are
both biologically and mathematically difficult to inter-
pret.

A number of previous reports have used an ADI threshold
(At) value of 20 in the standard Affymetrix range [13–16],
i.e. probe sets with ADI's of less than 20 would either be
rejected or set to 20 as meaningful differences in gene ex-
pression can purportedly be evaluated above this level. Al-
though empirically supported, an At of 20 is essentially an
arbitrary selection and not all groups select the same
threshold value. The exact setting of this lower At is not in-
herent to the LFC modeling process, and the reader is en-
couraged to set the At value based on additional criteria,
such as that previously published by Gerhold et al. [17]
and Dieckgraefe et al. [18]. However, an At of 20 will be
used in the present work, for which the selection of differ-
entially expressed genes in the context of ADI dependent
variance is the central focus. Therefore, all ADI's less than
20 were set to 20 and any probe set with a value of 20
across all dietary treatments were discarded. After elimi-
nating the probe sets which met these criteria there re-
mained 9391 genes out of the original 13179 genes
represented on the Mu11K GeneChip.

An additional parameter, highest fold change (HFC), was
then applied to these remaining genes. HFC is defined as:

where A, B, C, and D represent the individual microarray
results for each gene. The HFC is inherently a ratio metric
of the maximum change in measured gene expression be-
tween any combination of experimental treatments. The
present experiment has four dietary conditions with
microarray data; however, it should be noted that the HFC
equation could be expanded to any number of conditions
or experimental treatments.

The determination of HFC is highly influenced by abso-
lute expression, and trends can be readily observed in our
data set where HFC is negatively correlated with absolute
expression (Figure 1a). For example, with absolute expres-
sion values greater than 5000 it is of low probability to ob-
serve an HFC greater than 2. However, with absolute
expression values near 50, an HFC of greater than 2 is
readily seen. Although not shown in Figure 1a, this trend
could be observed for any pair or triplet of experimental
comparison in the current data set, i.e. AB, AC, AD, BC,
BD, ABC, BCD. It has also been observed across multiple
experiments examined in our laboratory (data not
shown). This consistancy can be explained by the fact that
there are very few genes out of the entire transcriptome
which are differentially expressed due to treatment. There-
fore, most measured gene transcripts display a typical co-
efficient of variation independent of treatment. The few
genes which are differentially expressed do not unduly af-
fect the overall trend. Therefore, the trend lends itself to
characterization and may be used as a metric for deter-
mining differential gene expression across multiple exper-
iments.

This empirically implies that natural variation, expressed
here as HFC, tends to be much greater at low expression
levels. This concept is supported in the literature [12] and
questions the appropriateness of using a linear fold
change cut-off in a system characterized by heterogenous
variance.

As stated previously, the selection of differentially ex-
pressed genes is essentially a search for outliers, i.e. gene
data lying outside some standard distribution of differ-
ences relative to a control state, and which cannot be as-
cribed to chance or natural variabilty. To determine those
genes which are outliers, it is necessary to measure either
the variability of the system or to make valid assumptions
regarding the distribution of variability. In the present
model we assume that: (1) as mentioned above, variabil-
ity in the measurement of gene expression is related to the
ADI; and (2) if a broad sampling of the transcriptome is

HFC
ADI A,B,C,D

ADI A,B,C,D
=

( )
( )

max

min
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measured, only a small number of genes will actually be
outliers even in the harshest of experimental conditions.
Assumption (1) is a fairly general analytical concept, i.e.
the closer data is to the measurement threshold, the high-

er the variability is in that measurement [12,19]. Assump-
tion (2) appears to be empiricaly valid when surveying the
literature for high-density microarray experiments which
evaluate severe biological events, from caloric restriction
[20,21] to apoptosis [22,23]. In these experiments [20–
23], regardless of the gene selection method used, less
than 5% of the total number of genes probed were differ-
entially regulated. Therefore, to develop the present mod-
el of gene selection, the validity of selecting outliers was
evaluated for a range of highly variable genes using the
top 5% as a benchmark. Model trends were then exam-
ined from 1% to 10%.

The model was developed by first binning gene expression
data into tight classes across the entire range of absolute
expression values, where genes with an equal absolute ex-
pression value were randomly ordered, and then selecting
the upper 5% of HFC values for further consideration.
Binning was carried out to divide the entire range of abso-
lute expression values into bins containing an equal
number, m, of genes, where m = 200. Therefore, bin
widths (ADI) were not necessarily equal, yet the number
of genes contained in each bin was equivalent. For the first
round of analysis, the upper 5%, or 95th percentile, of
HFC genes in each bin were selected for further consider-
ation (Figure 1a). It was possible to search separately for
the 5% of genes with the greatest HFCs in each class; how-
ever, in order to simplify the overall selection, we plotted
the relationship between absolute expression, defined as
min ADI (A,B,C,D), and HFC, in order to set the LFC func-
tion. Herein, the min ADI (A,B,C,D) will simply be re-
ferred to as min ADI. This relationship was then modeled
using a simple equation of the form LFC = a + (b/min
ADI), which is fitted to the 95th percentile of each bin
(Figure 1a) to produce the LFC curve that best models the
expression data. This modeled LFC curve (5% LFC model
= 1.74 + 91.55/min ADI) fit the data well (R2 = 0.98) and
further analysis indicated the residuals were randomly
distributed (data not shown). The equation for the line of
best fit contains two parameters that have various reper-
cussions on gene selection, both of which can be defined
in commercially available software using common
"solve" functions (e.g. Microsoft Excel). First, a sets the as-
ymptote, which corresponds to the minimum HFC value
that can be observed at any given ADI. Second, b raises/
lowers the limit function at a given ADI, and is therefore
highly influenced by this latter value. For example, the
smaller the ADI the greater the LFC, and vice versa. Figure
1b shows that as the selection criteria becomes more strict
(top 5% → 1% of genes), the curve shifts (1% LFC model
= 2.43 + 166.12/min ADI) and becomes more restrictive
in the selection of differential genes, i.e. at any given abso-
lute expression level a higher fold change must be ob-
served for a gene to be considered differentially expressed.
The opposite is true when the selection criteria becomes

Figure 1
The relationship between absolute value, limit fold
change (LFC), and variance across the absolute
expression range. A) The x-axis threshold indicates those
genes that have a minimum ADI of 20. Genes in bins of 200
are examined for the top 5% highest fold changes (red hori-
zontal lines indicate the 95th percentile for each bin). The line
of best fit, drawn through each bin in blue, identifies the
overall LFC cut-off and is described by the simple equation
5% LFC = 1.74 + 91.55/min ADI. B) Identifying the top 1%
(black line) or 10% (red line) highest fold changes in each bin
shifts the LFC curve, when compared to the 5% LFC model
(blue line), and alters the severity for the selection of differ-
entially expressed genes (1% LFC = 2.43 + 166.12/min ADI;
10% LFC = 1.59 + 69.47/min ADI). C) The upper 99.9% con-
fidence limit (CL) of a robust estimation of the coefficient of
variance (CV) for replicates (within-treatment variability) has
been modeled as a function of absolute minimum expression
of all treatments, as indicated by the blue line. Overlaying the
99.9% CL on the data selected by the 5% LFC model (red
dots) ensures high confidence in the selected genes.
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less strict (top 5% → 10% of genes), where the curve shifts
(10% LFC model = 1.59 + 69.47/min ADI) and results in
a more permissive selection of differential genes.

Using the aforementioned equations the selection of
genes for further consideration becomes simple and 'glo-
bal' (i.e. across the entire range of expression levels);
where a gene is selected with the HFC approach if max
ADI/min ADI > a+(b/min ADI). After applying the 10%
LFC gene filter, 869 genes remained in the list out of the
9391 candidate genes selected from the original 13179
genes on the GeneChip. When interested in the top 5%
and 1% of significant genes, the total number of genes
that meet the LFC requirements is 471 and 82, respective-
ly.

Lastly it should be noted that the LFC, i.e. the modeled
trend of HFC vs. min ADI, is based on binned data of hun-
dreds of genes across multiple conditions leading to a
highly powerful characterization of a given threshold. In
other words, there is a large amount of data available in
order to accurately characterize the trend. The same argu-
ment holds for the generation of a modeled confidence
interval based on low numbers of replicates, as will be de-
scribed below. This is in contrast to the relatively low sta-
tistical power of conventional "gene-by-gene" tests such as
the t-test or ANOVA, often used for the selection of differ-
entially expressed genes [8].

(B) Assignment of gene rank
Following gene selection, a rank of 'importance' or 'inter-
est level' was assigned to each selected gene. It should be
noted that the LFC is not dependent on the rank calcula-
tion; rather rank simply lends relative 'importance' to se-
lected genes by incorporating both the magnitude of fold
change and absolute expression values. The rank number
(RN) for each gene was determined by first calculating a
rank value (RV), which can be defined as: RV = HFC *
(max ADI – min ADI). After calculation of RV, gene lists
were sorted and then assigned a simple RN of 1,2,3,4...,
where a gene with a RN of 1 corresponds to the gene with
the highest RV. The RV is an arbitrary value that simply
lends importance to selected genes with both high fold
changes and high differences in absolute expression. Both
RV and RN aid in the discussion of differential gene effects
by adding the concept of relative weight or importance
amongst selected genes. This concept aids in the choice of
genes for validation or follow-up studies, as detailed be-
low.

(C) Model validation
Validation of the LFC model via characterization of measurement 
variability
Hess and colleagues have recently examined the concept
that variability and absolute expression are related; how-

ever, they examined only the variability of replicate spots
on a single slide [24]. Herein, we extended this concept to
examine the variability between genes on different micro-
arrays. Measurement variance was examined following
the development of the LFC model, and was therefore
used simply as a confirmation of this model. To further
understand the nature of measurement variability within
the current study, duplicate Mu11K Affymetrix microar-
rays for the controls were examined (see Materials and
Methods section). A pooled RNA sample from mice (n =
5) fed the control diet was hybridized to two different
chips, and the data was analyzed to characterize measure-
ment variability. It was apparent from the trend that as ab-
solute expression levels (ADI) increase, the coefficient of
variation (CV= SD/MAE) decreases. The trendline was cal-
culated as detailed in the Materials and Methods section.
This trendline was overlayed on the entire data set, in ad-
dition to the 5% LFC selected data (shown in red), in Fig-
ure 1c. By overlaying the trendline of the within variability
data on those genes determined to be significantly regulat-
ed by the LFC model, the CV upper confidence limit for
these selected genes had a p value ≤ 0.001. Thus, the 5%
LFC-selected data lies outside the 99.9% confidence inter-
val surrounding measurement variability, reinforcing the
validity of the results.

Real-time polymerase chain reaction (RT-PCR)
The results obtained from a microarray experiment are in-
fluenced by each step in the experimental procedure, from
array manufacturing to sample preparation and applica-
tion to image analysis [25]. The preparation of the cRNA
sample is highly correlated to the efficiency of the reverse
transcription step, where reagents and enzymes alike can
influence the reaction outcome. These factors affect the
representation of transcripts in the cRNA sample, necessi-
tating the need for validations by complementary tech-
niques. Analyses by northern blot and RNAse protection
assays are commonly reported; however, the emerging
'gold-standard' validation technique is RT-PCR [26].
Microarrays tend to have a low dynamic range, which can
lead to small yet significant under-representations of fold
changes in gene expression [27]. As RT-PCR has a greater
dynamic range, it is often used to validate the observed
trends rather than duplicate the fold changes obtained by
chip experiments [26,28,29].

Having chosen genes that lie across the range of RN, and
therefore the range of model selection criteria, RT-PCR
was performed in triplicate for each experimental condi-
tion (Diet A,B,C,D) using the same pooled stocks of liver
RNA (5 mice per experiment). Genes were compared to
the endogenous controls β-actin and GAPDH, which did
not significantly change across the dietary treatments. As
determined by our LFC selection model, the GeneChip
microarrays indicated no significant differences amongst
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the 4 diets for either GAPDH or β-actin. Subsequent con-
firmation that both GAPDH and β-actin did not change
was provided by RT-PCR, where a simple student's t-test
with a predefined nominal α level of 0.05 indicated no
significant differences between the experimental diets
(B,C,D) and the control diet A. RT-PCR provided a means
to confirm the effects of the 3 dietary treatments on 9
genes (Table 1) and the concordance between these 27
microarray and RT-PCR results was examined. Perfect con-
cordance was not to be expected due to the inherent dif-
ferences in sensitivity and dynamic range between the two
techniques. However, a good overall concordance of
77.7% for differential gene expression was observed, i.e.
the fold change for a given gene seen by microarray was
directionally consistent with that seen by RT-PCR, regard-
less whether the results were significant by either the 5%
LFC model (for microarray data) or a student's T-test (for
RT-PCR data). When examining only those genes consid-
ered significantly changed by RT-PCR (α = 0.05, starred
values in Table 1), concordance increases to 85.7%. There-
fore, the value of 85.7% indicates the overall concordance
between significantly changed genes seen by RT-PCR and

those microarray pairwise comparisons (treatment vs.
control) that meet the LFC model criteria (§ values in Ta-
ble 1).

What is noticeable through the color scheme (Table 1) is
genes with high RN (low RV) have relatively less concord-
ance between the two techniques; where red indicates no
concordance and blue indicates only one or two (out of
three) of the results agreed. However, the majority of
genes are colored in green, indicating perfect directional
concordance. When specifically examining fatty acid syn-
thase (FAS), a highly expressed gene, microarray fold
changes of less than 2 can be corroborated between the
two experimental techniques, reinforcing the strength of
this fold change model. Furthermore, it is clear from the
RT-PCR data that at very low expression levels, high fold
changes are still problematic to verify and remain ques-
tionable. The present model takes this into account by
raising the criteria appropriately at the low expression
range, i.e. a higher fold change at low expression levels is
required for a gene to be considered differentially ex-
pressed.

Table 1: Concordance data between an Affymetrix 11MuK microarray and RT-PCR.

The fold changes observed with microarray and RT-PCR analysis are indicated, where a positive value indicates an increase in gene expression and 
a negative value a decrease in gene expression. Through the coloring scheme, validation (confirmation by RT-PCR of the direction of fold change 
seen with microarrays) of low RV genes is not achieved; however, as RV increases, concordance increases (red = genes with no concordance across 
the 3 diets; blue = genes with either one or two measurements in agreement; green = genes with 100% concordance). Overall concordance with 
the 5% LFC model was 77.7%, which includes measurements found to be both significant and non-significant by microarray analysis. Underlined 
numbers indicate the HFC that resulted in this gene being selected as significantly different by the 5% LFC model (77.7% concordance with RT-PCR 
results). Starred-numbers indicate significant fold changes, determined by a student's t-test using α = 0.05, seen by RT-PCR. § indicates those pair-
wise comparisons (treatment vs. control) that meet the 5% LFC model criteria. 85.7% concordance is seen when comparing significant fold changes 
by RT-PCR with significant fold changes using the 5% LFC model.
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As the selection criteria with microarray data was that the
HFC must be greater than the LFC model limits, the expec-
tation was that the LFC function could be validated by RT-
PCR (underlined values in Table 1 indicate HFC for each
gene). This is predominantly the case across the full dy-
namic range of data selected by the model (77.7% / 85.7
% concordance), except for very lowly expressed genes
such as the RAS oncogene. For genes with a slightly lower
RN (higher RV), such as ABC1 member 7, some concord-
ance is seen, indicating confidence is gaining as RV in-
creases. For genes with an RN lower than 130 (RV > 1156;
e.g. USF-2) concordance quickly approaches 100%, indi-
cating high confidence when discussing gene trends or in-
dividual gene results. These results reinforce the concept
that RN is correlated with confidence and validity when
discussing the gene set produced by the LFC model.

Interestingly, one might expect that genes with an RN low-
er then 130 would be concentrated only at higher expres-
sion levels; however, when the spread of genes with an RN
between 1-130 were examined, these genes were found to
lie across the entire range of absolute expressions (data
not shown). This indicates that a 5% LFC model is confi-
dently selecting differentially regulated genes across the
full range of absolute expression. Therefore, the 5% LFC
model appears to be an appropriate selection criteria for

the present experimental data set; however, the fold
change percentage could easily be varied to meet other ac-
ceptable levels of risk, as is done with conventional hy-
pothesis testing (e.g. α-, p-, and χ2-values). The X%
selection criteria should then be re-evaluated for other ex-
perimental data sets in relation to the variance and valida-
tion data at hand.

Conclusions
The analysis of microarray data is a developing field of
study aimed at enabling the biomedical community to
cope with the waves of large microarray data sets. Already,
an evolution can be observed with respect to the methods
for selecting significantly changed genes. Researchers are
moving away from simple fold change cut-offs and incor-
porating the use of robust statistical concepts. The conclu-
sion that highly expressed genes will rarely have a 2-fold
change in mRNA levels and that lowly expressed genes
will commonly have a greater than 2-fold change led to
the development of a model that would accommodate for
this real biological characteristic of gene expression meas-
urements. The fold change model presented in this paper
considers both the absolute expression level and fold
change of every gene across the entire range of observed
absolute expressions. In addition, the concept of in-
creased variation in lowly expressed genes is incorporated
into the selection model through the higher fold change
requirements for differential gene selection at low expres-
sion levels. Following gene selection using an initial crite-
rion of X%, gene rank was introduced as a basis for
choosing genes to validate the model. Therefore, a limited
but judicious choice of model parameters to select genes
across a broad range of gene rank can then be used to reset
the X% in order to correspond with the data at hand (Fig-
ure 2). The variance data characterizing measurement var-
iability supports the selection model, indicating that
selected genes lie outside measurement variability at very
high confidence limits (> 99.9% CL). Further validation
of this model in the current data set by RT-PCR confirmed
these relationships, reinforcing that genes with fold
changes even less than 1.8 can be measured, assuming ad-
equate absolute expression levels. This demonstrates that
biological changes in sample concentration of mRNA,
even at low fold change levels, can be confidently deter-
mined.

In summary, the X% LFC model enables one to define ex-
periment specific selection stringency while maintaining
simplicity and ensuring global coverage for the detection
of differential gene selection.

Materials and Methods
Mice and feeding conditions
Mice were male Rj:NMRI mice from Elevage Janvier, Le
Genest-Saint-Isle France, weighing 10-11 g at delivery and

Figure 2
Schematic representation of the cyclical nature of
the limit fold change (LFC) model. Selecting an initial
X% LFC model (1) provides a starting point for the identifica-
tion of those genes differentially regulated. Genes can then
be ranked (2) by a calculation combining fold change and
absolute expression in order to assign a degree of impor-
tance. Validation of the chosen LFC model by a complemen-
tary technique such as RT-PCR (3) and/or the
characterization of variance (4) enables the analyst to reex-
amine the initial LFC model and determine the confidence
level for the results. Depending on the data set, one could
redefine the LFC model and repeat the cycle.
Page 7 of 11
(page number not for citation purposes)



BMC Bioinformatics 2002, 3 http://www.biomedcentral.com/1471-2105/3/17
33-51 grams on day 42, were housed 10 per cage. Mice re-
ceived ad libitum quantities of bottled distilled water and
purified powdered diets (7.5 g/mouse) in ceramic cups
(10/group) for 42 d. Experimental diets will be described
in detail in a biological follow up publication.

Dissection of mice
After administration of the aforementioned diets to 10
mice per group, 5 mice were randomly selected for inclu-
sion in the gene expression analysis experiment. Organs
were dissected according to standard protocols, then cut
into 100-150 mg subsections, flash frozen in liquid nitro-
gen, and stored at -80°C until gene expression analysis.

Nucleic acid preparation
Tissue from each organ was extracted from 5 individual
mice and extracted separately using Qiagen RNeasy mini-
kits (Basel, Switzerland) according to manufacturer's in-
structions with one exception: During extractions, all
RNeasy columns were impregnated with DNase I (Roche,
Basel, Switzerland) to remove possible genomic DNA
contamination. After extraction, equal amounts of materi-
al were pooled to obtain 10 µg total RNA per dietary
group. RNA samples were quantified with the RiboGreen
RNA Quantification Kit according to manufacturer's in-
structions (Molecular Probes, Eugene Oregon), and then
analyzed via agarose gel electrophoresis for intact 18 and
28s rRNA. All samples included in the study were judged
to contain high-quality RNA in sufficient amounts for hy-
bridization.

Gene expression analysis using the murine 11k GeneChip
cRNA preparation
Total RNA (15 µg) was used as starting material for all
samples. In all cases, a "test chip" provided by the manu-
facturer was run prior to using the Murine 11k GeneChip.
In each case this confirmed that sufficient high quality
RNA was present to detect gene expression in the various
tissue samples. The first and second strand cDNA synthe-
sis was performed using the SuperScript Choice System
(Life Technologies) according to manufacturer's instruc-
tions, but using oligo-dT primer containing a T7 RNA
polymerase binding site. Labeled cRNA was prepared us-
ing the MEGAscript, In Vitro Transcription kit (Ambion).
Biotin labeled CTP and UTP (Enzo) was used together
with unlabeled NTP's in the reaction. Following the in vit-
ro transcription reaction, unincorporated nucleotides
were removed using RNeasy columns (Qiagen).

Array hybridization and scanning
cRNA (10 µg) was fragmented at 94°C for 35 min in buffer
containing 40 mM/L Tris-acetate pH 8.1, 100 mM/L KO-
Ac, 30 mM/L MgOAc. Prior to hybridization, fragmented
cRNA in a 6×SSPE-T hybridization buffer (1 M/L NaCl, 10
mM Tris pH 7.6, 0.005% Triton), was heated to 95°C for

5 min, cooled to 40°C, and then loaded onto the Affyme-
trix probe array cartridge. The probe array was incubated
for 16 h at 40° C at 60 rpm. The probe array was washed
10× in 6×SSPE-T at 25°C followed by 4 washes in
0.5×SSPE-T at 50°C. The biotinylated cRNA was stained
with a streptavidin-phycoerythrin conjugate, 10 g/ml
(Molecular Probes) in 6×SSPE-T for 30 min at 25°C fol-
lowed by 10 washes in 6×SSPE-T at 25°C. The probe arrays
were scanned at 560 nm using a confocal laser-scanning
microscope (made for Affymetrix by Hewlett-Packard).
Readings from the quantitative scanning were analyzed
with Affymetrix Gene Expression Analysis Software.

A step-by-step method to apply the LFC model to an ex-
perimental data set
The LFC-model follows a three-step approach. This ap-
proach is discussed below as a general protocol and illus-
trated with the current data set.

1. Data handling and 2-dimensional visualization
Overall, the values of all genes are compared across any
number (p) of experimental conditions. The absolute ex-
pression value of the k-th gene for the j-th treatment is
coded Zkj. When considering any given gene, the follow-
ing data-handling rules are applied:

• All values below an ADI threshold (At) are set to At.

• If the values for gene k are At for all p treatments, the
gene is defined as not expressed and isn't considered fur-
ther.

• The absolute expression value for gene k is defined as
min(Zk1, ..., Zkp).

• The highest fold change (HFC) of gene k is defined as the
following:

When visualizing all genes on a bivariate plot according to
absolute expression and fold change, one obtains a data
distribution similar to that of Figure 1a.

2. Modeling a discrete limit fold change model
The goal is to select the upper X% of genes with highest
fold change across the entire range of expression levels.
Therefore, the following rules are applied:

• Genes are ordered according to their absolute expression
value min(Zk1, ..., Zkp), where equally expressed genes are
randomly ordered.

HFC
Z Z

Z Z

kl kp

kl kp

=
( )
( )

max ,...,

min ,...,
.eqn 1
Page 8 of 11
(page number not for citation purposes)



BMC Bioinformatics 2002, 3 http://www.biomedcentral.com/1471-2105/3/17
• The overall expression range is divided into bins of dif-
ferent width, but containing an equal number m of genes.

• In each bin, the (1-X)-percentile fold change corre-
sponding to a fold change that is exceeded by X% of genes
in the bin is determined. For X% between 1% and 10%, m
= 200 appears to be suitable.

When visualizing the (1-X)-percentile fold change in each
bin, one obtains a data distribution similar to that seen in
Figure 1a.

3. Modeling a continuous limit fold change (LFC) model
A continuous model is derived from the discrete one by
relating the mean expressions of each bin with the corre-
sponding (1-X)-limit fold change, using a least squares fit
of the equation:

(1-X)-LFC = a + b/Z (minimum expression)

This equation appears to fit the data very well and, the in-
terpretation of the parameters (a and b) is straightforward:

• Parameter a represents the asymptote of the curve. For
very large expressions, the (1-X)-limit fold change tends to
be equal to parameter a.

• Parameter b is proportional to the difference between
the (1-X)-limit fold change of small and high expressions.

When visualizing this continuous limit fold change mod-
el, one obtains a curve similar to that observed in Figure
1a. In addition, increasing the (1-X)-percentile fold
change shifts the curve up the y-axis and results in an in-
creased stringency for gene selection, i.e. fewer genes meet
the LFC requirement (Figure 1b).

Validation by Coefficient of Variance
For experiments that are performed without replicates, the
LFC-model selects genes with the highest between-treat-
ment variability (previously defined as fold change) at
any expression level. If replicates are available, the inher-
ent error of measures, the within-treatment variability,
can be estimated. Therefore, it becomes possible to select
the genes with the highest ratio of between-treatment-var-
iability / within-treatment-variability.

In the data set that was used for illustrating the develop-
ment of the LFC-model, duplicate measures were availa-
ble for one of the four treatments. The within-treatment-
variability appears to be highly dependent of the expres-
sion level of the gene, confirming the findings of Hess et
al.[24].

In order to estimate the CV without taking into account
extreme values of the duplicate we used a robust estima-
tor, represented by the following equation:

where the χinverse function returns the inverse of the one-
tailed probability of the χ-squared distribution.

Applying the CV derived from replicate sample data (eqn.
2) to the quadruplicate diet data enabled the calculation
of the CV upper confidence level (by bins of absolute ex-
pression level) using the following equation:

where the χinverse function returns the inverse of the one-
tailed probability of the χ-squared distribution.

Eqn. 3 allows one to identify genes with a variance above
measurement variability. This greater variability arose due
to combined pool (biological) and treatment variabilities.

This confidence level could be raised or lowered according
to the level of confidence desired by altering the p value.
Therefore, modeling the variance data provides a compli-
mentary method for examining the variation of genes
across the complete range of absolute expression values.

The upper 99.9% confidence limit (CL) of a robust esti-
mation of the coefficient of variance (CV) for replicates
(within-treatment variability) has been modeled as a
function of absolute minimum expression of all treat-
ments using the following model:

Upper 99.9% CL = c + d/mean expression

The selected genes are now those for which the CV of treat-
ment expressions (between-treatment variability) is larger
than this limit (Figure 1c). By overlapping those genes se-
lected by the LFC model (red dots) on the graph indicat-
ing the 99.9% CL (blue line), one observes that the LFC
model is considerably more restrictive when selecting
lowly expressed genes (Figure 1c).

Validation by real-time PCR (RT-PCR)
A subset of differentially expressed genes were selected to
confirm the LFC model, where genes were selected across
the range of absolute expressions and with varying fold
changes. Although not discussed in the present manu-
script, a good description of the technique and an exam-

Median CV
n

p n
CV eduplicate sample

inverse
population.

,⋅ ∗ −
−( ) =1

1χ
qqn.2

CV
p n

n
CV upper confidence level epopulation

inverse∗
−( )

−
=
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ple of an excellent experimental design can be found in
previous publications [26,30], respectively. In brief, all
genes were amplified in the Applied Biosystems 5700 in-
strument using SYBR® green (Molecular Probes), a dye
that binds double-stranded DNA. Data represented means
of triplicates for each experimental treatment using
pooled RNA samples (n = 5). Amplification was per-
formed using an ABI 5700 machine (Applied Biosystems,
Foster City, CA, USA) with a hot start at 95°C for 10 min-
utes, followed by 40 cycles of 95°C for 15 s and 60°C for
1 min for denaturation, annealing and elongation. Genes
were normalized to either β-actin or GAPDH, and then ex-
perimental diets (B,C,D) were compared to the control
diet (A). All fold changes were subjected to a student's t-
test (α = 0.05) to ensure fold changes observed by RT-PCR
were statistically significant. Comparisons between
microarray data and RT-PCR were then performed.

Abbreviations
CV: coefficient of variation

FC: fold change

HFC: highest fold change

LFC: limit fold change function

MAE: mean absolute expression

RN: rank number

RT-PCR: real time polymerase chain reaction

RV: rank value

SD: standard deviation

Definitions
Average Difference Intensity (ADI): average measure of
intensity of hybridization for a series of match and mis-
match probe pairs tiled across a particular gene transcript.
ADI is an indicator of the absolute expression of a gene.

Concordance: state of agreement between two comple-
mentary measurement techniques which is directionally
consistent, e.g. two techniques determine that values are
statistically significant and that they are both either posi-
tive or negative.

Author contributions
DM integrated the mathematical and biological interpre-
tation of the experiment that resulted in the writing of this
manuscript. AR and RM developed the mathematical for-
mula describing the limit fold change model. AB and MR
designed and carried out the DNA microarray studies in

mice. MR initiated the development of robust mathemat-
ical techniques to evaluate microarray data at the Nestlé
Research Center.

All authors read and approved the final manuscript.

Acknowledgements
The authors would like to thank Professor Juan Medrano from the Univer-
sity of Davis, California for his critical review and discussion of this manu-
script.

References
1. Brazma A, Vilo J: Gene expression data analysis. FEBS Lett 2000,

480:17-24
2. Ptashne M, Gann A: Genes & Signals. Cold Spring Harbor, New York:

Cold Spring Harbor Laboratory Press 2002
3. Ekins RP: Ligand assays: from electrophoresis to miniaturized

microarrays. Clin Chem 1998, 44:2015-2030
4. DeRisi JL, Iyer VR, Brown PO: Exploring the metabolic and ge-

netic control of gene expression on a genomic scale. Science
1997, 278:680-686

5. Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis
and display of genome-wide expression patterns. Proc Natl
Acad Sci U S A 1998, 95:14863-14868

6. Barone AD, Beecher JE, Bury PA, Chen C, Doede T, Fidanza JA, Mc-
Gall GH: Photolithographic synthesis of high-density oligonu-
cleotide probe arrays. Nucleosides Nucleotides Nucleic Acids 2001,
20:525-531

7. Pease AC, Solas D, Sullivan EJ, Cronin MT, Holmes CP, Fodor SP:
Light-generated oligonucleotide arrays for rapid DNA se-
quence analysis. Proc Natl Acad Sci U S A 1994, 91:5022-5026

8. Baldi P, Long AD: A Bayesian framework for the analysis of
microarray expression data: regularized t-test and statistical
inferences of gene changes. Bioinformatics 2001, 17:509-519

9. Quackenbush J: Computational analysis of microarray data.
Nat Rev Genet 2001, 2:418-427

10. Woolf PJ, Wang Y: A fuzzy logic approach to analyzing gene ex-
pression data. Physiol Genomics 2000, 3:9-15

11. Thomas JG, Olson JM, Tapscott SJ, Zhao LP: An efficient and ro-
bust statistical modeling approach to discover differentially
expressed genes using genomic expression profiles. Genome
Res 2001, 11:1227-1236

12. Claverie JM: Computational methods for the identification of
differential and coordinated gene expression. Hum Mol Genet
1999, 8:1821-1832

13. Kersten S, Mandard S, Escher P, Gonzalez FJ, Tafuri S, Desvergne B,
Wahli W: The peroxisome proliferator-activated receptor al-
pha regulates amino acid metabolism. Faseb J 2001, 15:1971-
1978

14. Coller HA, Grandori C, Tamayo P, Colbert T, Lander ES, Eisenman
RN, Golub TR: Expression analysis with oligonucleotide
microarrays reveals that MYC regulates genes involved in
growth, cell cycle, signaling, and adhesion. Proc Natl Acad Sci U
S A 2000, 97:3260-3265

15. Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmitrovsky E,
Lander ES, Golub TR: Interpreting patterns of gene expression
with self-organizing maps: methods and application to he-
matopoietic differentiation. Proc Natl Acad Sci U S A 1999,
96:2907-2912

16. Zou S, Meadows S, Sharp L, Jan LY, Jan YN: Genome-wide study
of aging and oxidative stress response in Drosophila mela-
nogaster. Proc Natl Acad Sci U S A 2000, 97:13726-13731

17. Gerhold D, Lu M, Xu J, Austin C, Caskey CT, Rushmore T: Monitor-
ing expression of genes involved in drug metabolism and tox-
icology using DNA microarrays. Physiol Genomics 2001, 5:161-
170

18. Dieckgraefe BK, Stenson WF, Korzenik JR, Swanson PE, Harrington
CA: Analysis of mucosal gene expression in inflammatory
bowel disease by parallel oligonucleotide arrays. Physiol Ge-
nomics 2000, 4:1-11

19. Baggerly KA, Coombes KR, Hess KR, Stivers DN, Abruzzo LV, Zhang
W: Identifying differentially expressed genes in cDNA micro-
array experiments. J Comput Biol 2001, 8:639-659
Page 10 of 11
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10967323
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10967323
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9733000
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9733000
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9733000
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9381177
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9381177
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9381177
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9843981
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9843981
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9843981
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11563069
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11563069
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11563069
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11563069
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8197176
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8197176
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8197176
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8197176
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11395427
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11395427
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11395427
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11395427
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11389458
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11389458
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11015595
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11015595
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11015595
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11435405
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11435405
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11435405
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11435405
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10469833
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10469833
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10469833
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11532977
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11532977
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11532977
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11532977
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10737792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10737792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10737792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10737792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10737792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10077610
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10077610
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10077610
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10077610
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10077610
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11095759
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11095759
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11095759
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11095759
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11328961
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11328961
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11328961
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11328961
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11074008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11074008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11074008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11074008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11747617
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11747617
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11747617
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11747617


BMC Bioinformatics 2002, 3 http://www.biomedcentral.com/1471-2105/3/17
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMedcentral will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Paul Nurse, Director-General, Imperial Cancer Research Fund

Publish with BMC and your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours - you keep the copyright

editorial@biomedcentral.com
Submit your manuscript here:
http://www.biomedcentral.com/manuscript/

BioMedcentral.com

20. Lee CK, Klopp RG, Weindruch R, Prolla TA: Gene expression pro-
file of aging and its retardation by caloric restriction. Science
1999, 285:1390-1393

21. Kayo T, Allison DB, Weindruch R, Prolla TA: Influences of aging
and caloric restriction on the transcriptional profile of skele-
tal muscle from rhesus monkeys. Proc Natl Acad Sci U S A 2001,
98:5093-5098

22. Voehringer DW, Hirschberg DL, Xiao J, Lu Q, Roederer M, Lock CB,
Herzenberg LA, Steinman L: Gene microarray identification of
redox and mitochondrial elements that control resistance or
sensitivity to apoptosis. Proc Natl Acad Sci U S A 2000, 97:2680-
2685

23. Cardozo AK, Kruhoffer M, Leeman R, Orntoft T, Eizirik DL: Identi-
fication of novel cytokine-induced genes in pancreatic beta-
cells by high-density oligonucleotide arrays. Diabetes 2001,
50:909-920

24. Hess KR, Zhang W, Baggerly KA, Stivers DN, Coombes KR: Micro-
arrays: handling the deluge of data and extracting reliable in-
formation. Trends Biotechnol 2001, 19:463-468

25. Rajeevan MS, Vernon SD, Taysavang N, Unger ER: Validation of ar-
ray-based gene expression profiles by real-time (kinetic) RT-
PCR. J Mol Diagn 2001, 3:26-31

26. Snider JV, Wechser MA, Lossos IS: Human disease characteriza-
tion: real-time quantitative PCR analysis of gene expression.
Drug Discov Today 2001, 6:1062-1067

27. Chang BD, Watanabe K, Broude EV, Fang J, Poole JC, Kalinichenko
TV, Roninson IB: Effects of p21Waf1/Cip1/Sdi1 on cellular gene
expression: implications for carcinogenesis, senescence, and
age-related diseases. Proc Natl Acad Sci U S A 2000, 97:4291-4296

28. Mayanil CS, George D, Freilich L, Miljan EJ, Mania-Farnell B, McLone
DG, Bremer EG: Microarray analysis detects novel Pax3 down-
stream target genes. J Biol Chem 2001, 276:49299-49309

29. Wurmbach E, Yuen T, Ebersole BJ, Sealfon SC: Gonadotropin re-
leasing hormone receptor-coupled gene gene network or-
ganization. J Biol Chem 2001, 276:47195-47201

30. Kielar D, Dietmaier W, Langmann T, Aslanidis C, Probst M, Narusze-
wicz M, Schmitz G: Rapid quantification of human ABCA1
mRNA in various cell types and tissues by real-time reverse
transcription-PCR. Clin Chem 2001, 47:2089-2097
Page 11 of 11
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10464095
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10464095
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10464095
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11309484
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11309484
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11309484
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11309484
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10716996
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10716996
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10716996
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10716996
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10716996
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11334433
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11334433
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11334433
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11334433
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11602311
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11602311
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11602311
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11602311
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11227069
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11227069
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11227069
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11227069
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11590035
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11590035
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11590035
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10760295
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10760295
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10760295
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10760295
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10760295
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11590174
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11590174
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11590174
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11590174
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11581274
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11581274
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11581274
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11581274
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11719471
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11719471
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11719471
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11719471
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11719471
http://www.biomedcentral.com/
http://www.biomedcentral.com/manuscript/
http://www.biomedcentral.com/manuscript/
http://www.ncbi.nlm.nih.gov/PubMed/
http://www.pubmedcentral.nih.gov/

	The limit fold change model: A practical approach for selecting differentially expressed genes fr...
	Abstract
	Background
	Results and Discussion
	Conclusions
	Materials and Methods
	Abbreviations
	Definitions
	Author contributions
	Acknowledgements
	References

