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Abstract

Background: Covariance models (CMs) are probabilistic models of RNA secondary structure,
analogous to profile hidden Markov models of linear sequence. The dynamic programming
algorithm for aligning a CM to an RNA sequence of length N is O(N3) in memory. This is only

practical for small RNAs.

Results: | describe a divide and conquer variant of the alignment algorithm that is analogous to
memory-efficient Myers/Miller dynamic programming algorithms for linear sequence alignment.
The new algorithm has an O(N2 log N) memory complexity, at the expense of a small constant

factor in time.

Conclusions: Optimal ribosomal RNA structural alignments that previously required up to 150

GB of memory now require less than 270 MB.

Background

There are a growing number of RNA gene families and
RNA motifs [1,2]. Many (though not all) RNAs conserve a
base-paired RNA secondary structure. Computational
analyses of RNA sequence families are more powerful if
they take into account both primary sequence and sec-
ondary structure consensus [3,4].

Some excellent approaches have been developed for data-
base searching with RNA secondary structure consensus
patterns. Exact- and approximate-match pattern searches
(analogous to PROSITE patterns for proteins) have been
extended to allow patterns to specify long-range base pair-
ing constraints [5,6]. In several cases, specialized pro-
grams have been developed to recognize specific RNA
structures [4] - for example, programs exist for detecting
transfer RNA genes [7-9], group I catalytic introns [10],
and small nucleolar RNAs [11,12]. All of these approach-
es, though powerful, lack generality, and they require ex-

pert knowledge about each particular RNA family of
interest.

In primary sequence analysis, the most useful analysis
techniques are general primary sequence alignment algo-
rithms with probabilistically based scoring systems - for
example, the BLAST [13], FASTA [14], or CLUSTALW [15]
algorithms, and the PAM [16] or BLOSUM [17] score ma-
trices. Unlike specialized programs, a general alignment
algorithm can be applied to find homologs of any query
sequence(s). Unlike pattern searches, which give yes/no
answers for whether a candidate sequence is a match, a
scoring system gives a meaningful score that allows rank-
ing candidate hits by their statistical significance. It is of
interest to develop general alignment algorithms for RNA
secondary structures.

The problem I consider here is as follows. I am given a
multiple alignment of an RNA sequence family for which
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I know the consensus secondary structure. [ want to search
a sequence database for homologs that significantly
match the sequence and structure of my query. The se-
quence analysis analogue is the use of profile hidden
Markov models (profile HMMs) to model multiple align-
ments of conserved protein domains, and to discover new
homologues in sequence databases [18,19]. For instance,
if we had an RNA structure equivalent of the HMMER pro-
file HMM program suite [http://hmmer.wustl.edu/] it
would be possible to develop and efficiently maintain da-
tabases of conserved RNA structures and multiple align-
ments, analogous to the Pfam or SMART databases of
conserved protein domains [20,21].

Stochastic context free grammar (SCFG) algorithms pro-
vide a general approach to RNA structure alignment [22-
24]. SCFGs allow the strong pairwise residue correlations
in non-pseudoknotted RNA secondary structure to be tak-
en into account in RNA alignments. SCFGs can be aligned
to sequences using a dynamic programming algorithm
that guarantees finding a mathematically optimal solu-
tion in polynomial time. SCFG alignment algorithms can
be thought of as an extension of sequence alignment algo-
rithms (particularly those with fully probabilistic, hidden
Markov model formulations) into an additional dimen-
sion necessary to deal with 2D RNA secondary structure.

While SCFGs provide a natural mathematical framework
for RNA secondary structure alignment problems, SCFG
algorithms have high computational complexity that has
impeded their practical application. Optimal SCFG-based
structural alignment of an RNA structure to a sequence
costs O(N3) memory and O(N#4) time for a sequence of
length N, compared to O(N?) memory and time for se-
quence alignment algorithms. (Corpet and Michot de-
scribed a program that implements a different general
dynamic programming algorithm for RNA alignment;
their algorithm solves the same problem but even less ef-
ficiently, requiring O(N4) memory and O(N°) time [25].)
SCFG-based alignments of small structural RNAs are fea-
sible. Using my COVE software [http://www.genet-
ics.wustl.edu/eddy/software#cove], transfer RNA
alignments (~75 nucleotides) take about 0.2 cpu second
and 3 Mb of memory. Most genome centers now use an
COVE-based search program, tRNAscan-SE, for annotat-
ing transfer RNA genes [9]. However, many larger RNAs of
interest are OUTSIDE the capabilities of the standard
SCFG alignment algorithm. Alignment of a small subunit
(SSU) ribosomal RNA sequence to the SSU rRNA consen-
sus structure would take about 23 GB of RAM and an hour
of CPU time. Applying SCFG methods to RNAs this large
has required clever heuristics, such as using a precalcula-
tion of confidently predicted regions of primary sequence
alignment to strongly constrain which parts of the SCFG
dynamic programming matrix need to be calculated [26].
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The steep memory requirement remains a significant bar-
rier to the practicality of SCFG algorithms.

Notredame et al. pointed specifically to this problem [27].
They described RAGA, a program that uses a genetic algo-
rithm (GA) to optimize a pairwise RNA alignment using
an objective function that includes base pairing terms. Be-
cause GAs have an O(N) memory requirement, RAGA can
find reasonable solutions for large RNA alignment prob-
lems, including ribosomal RNA alignments. A different
memory-efficient approach has also been described
[28,29]. However, both approaches are approximate and
cannot guarantee a mathematically optimal solution, in
contrast to the (mathematically) optimal but more expen-
sive dynamic programming approaches.

Here, I introduce a dynamic programming solution to the
problem of structural alignment of large RNAs. The cen-
tral idea is a divide and conquer strategy. For linear se-
quence alignment, a divide and conquer algorithm was
introduced by Hirschberg [30], an algorithm known in
the computational biology community as the Myers/Mill-
er algorithm [31]. (Ironically, at the time, dynamic pro-
gramming methods for optimal sequence alignment were
well known, but were considered impractical on 1970's
era computers because of the "extreme" O(N2) memory
requirement.) Myers/Miller reduces the memory com-
plexity of a dynamic programming sequence alignment
algorithm from O(N2) to O(N), at the cost of a roughly
two-fold increase in CPU time. Here I show that a divide
and conquer strategy can also be applied to the RNA struc-
tural alignment problem, greatly reducing the memory re-
quirement of SCFG alignments and making optimal
structural alignment of large RNAs possible.

I will strictly be dealing with the problem of aligning a tar-
get sequence of unknown secondary structure to a query
of known RNA structure. By "secondary structure" [ mean
nested (nonpseudoknotted) pairwise RNA secondary
structure interactions, primarily Watson-Crick base pairs
but also permitting noncanonical base pairs. This RNA
structural alignment problem is different from the prob-
lem of aligning two known RNA secondary structures to-
gether [32], and from the problem of aligning two RNA
sequences of unknown structure together under a second-
ary structure-aware scoring system [33-37].

Algorithm

Prelude: the simpler case of sequence alignment

The essential concepts of a divide and conquer alignment
algorithm are most easily understood for the case of linear
sequence alignment [30,31].

Dynamic programming (DP) algorithms for sequence

alignment fill in an N x M DP matrix of scores F(i,j) for

Page 2 of 16

(page number not for citation purposes)


http://hmmer.wustl.edu/
http://hmmer.wustl.edu/
http://www.genetics.wustl.edu/eddy/software#cove
http://www.genetics.wustl.edu/eddy/software#cove
http://www.genetics.wustl.edu/eddy/software#cove

BMC Bioinformatics 2002, 3

two sequences of lengths N and M (N <M) [38,39]. Each
score F(i,j) is the score of the optimal alignment of prefix
x1..x; of one sequence to prefix y;..y; of the other. These
scores are calculated iteratively, e.g. for global (Needle-
man/Wunsch) alignment:

F(i-1,j~1)+ score for aligning x;,y;

F(i,j)=max: F(i—1,j)—costofagap character

F(i,j—1)—cost of a gap character

At the end, F(N, M) contains the score of the optimal
alignment. The alignment itself is recovered by tracing the
individual optimal steps backwards through the matrix,
starting from cell (N,M). The algorithm is O(NM) in both
time and memory.

If we are only interested in the score, not the alignment it-
self, the whole F matrix does not have to be kept in mem-
ory. The iterative calculation only depends on the current
and previous row of the matrix. Keeping two rows in
memory suffices (in fact, a compulsively efficient imple-
mentation can get away with N + 1 cells). A score-only cal-
culation can be done in O(N) space.

The fill stage of DP alignment algorithms may be run ei-
ther forwards and backwards. We can just as easily calcu-
late the optimal score B(i, j) of the best alignment of the
suffix i + 1..N of sequence 1 to the suffix j + 1..M of se-
quence 2, until one obtains B(0,0), the overall optimal
score - the same number as F(N,M).

The sum of F(i,j) and B(i,j) at any cell in the optimal path
through the DP matrix is also the optimal overall align-
ment score. More generally, F(i,j) + B(i,j) atany cell (i,j) is
the score of the best alignment that uses that cell. There-
fore, since we know the optimal alignment must pass
through any given row i somewhere, we can pick some row
i in the middle of sequence x, run the forward calculation
to i to obtain row F(i), run the backwards calculation back
to i to get row B(i), and then find argmax; F(i,j)+B(i,j).
Now I know the optimal alignment passes through cell
(i,j). (For clarity, I am leaving out details of how indels
and local alignments are handled.)

This divides the alignment into two smaller alignment
problems, and these smaller problems can themselves be
subdivided by the same trick. Thus, the complete optimal
alignment can be found by a recursive series of split point
calculations. Although this seems laborious - each calcu-
lation is giving us only a single point in the alignment - if
we choose our split row i to be in the middle, the size of
the two smaller DP problems is decreased by about 4-fold
at each split. A complete alignment thus costs only about
1+ 2 + 4 +.=2
4 16
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times as much CPU time as doing the alignment in a sin-
gle DP matrix calculation, but the algorithm is O(N) in
memory.

A standard dynamic programming alignment algorithm
for SCFGs is the Cocke-Younger-Kasami (CYK) algorithm,
which finds an optimal parse tree (e.g. alignment) for a
model and a sequence [24,40-42]. (CYK is usually de-
scribed in the literature as a dynamic programming recog-
nition algorithm for nonstochastic CFGs in Chomsky
normal form, rather than as a dynamic programming
parsing algorithm for SCFGs in any form. The use of the
name "CYK" here is therefore a little imprecise [24].) CYK
can be run in a memory-saving "score only" mode. The
DP matrix for CYK can also be filled in two opposite direc-
tions - either "inside" or "outside", analogous to forward
and backward DP matrix fills for linear sequence align-
ment. [ will refer to these algorithms as CYK/inside and
CYK/outside (or just inside and outside), but readers fa-
miliar with SCFG algorithms should not confuse them
with the SCFG Inside and Outside algorithms [43,44]
which sum over all possible parse trees rather than finding
one optimal parse tree. I am always talking about the CYK
algorithm in this paper, and by "inside" and "outside" 1
am only referring generically to the direction of the CYK
DP calculation.

The CYK/inside and CYK/outside algorithms are not as
nicely symmetrical as the forward and backward DP fills
are in sequence alignment algorithms. The splitting proce-
dure that one obtains does not generate identical types of
subproblems, so the divide and conquer procedure for
SCFG-based RNA alignment is not as obvious.

Definition and construction of a covariance model

The divide and conquer algorithm I will describe is specif-
ic for RNA "covariance models" (CMs). A covariance
model is a profile stochastic context free grammar de-
signed to model a consensus RNA secondary structure
with position-specific scores [22,24]. My algorithm takes
advantage of features of CMs that do not apply to SCFGs
in general. Therefore I start with an introduction to what
CMs are, how they correspond to a known RNA secondary
structure, and how they are built and parameterized.

Definition of a stochastic context free grammar
A stochastic context free grammar (SCFG) consists of the
following:

e M different nonterminals (here called states). I will use
capital letters to refer to specific nonterminals; V and Y
will be used to refer generically to unspecified nontermi-
nals.
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Table I:

State type  Description Production  Emission Transition
P (pair emitting) P — aYb e, (a,b) t,(Y)

L (left emitting) L — aY e (a) t,(Y)

R (right emitting) R — Ya e (a) t,(Y)

B (bifurcation) B—SS | |

D (delete) D—Y | t,(Y)

S (start) S—>Y | t,(Y)

E (end) E—e | |

e K different terminal symbols (e.g. the observable alpha-
bet, a,c,g,u for RNA). [ will use small letters a, b to refer ge-
nerically to terminal symbols.

¢ a number of production rules of the form: V — vy, where y
can be any string of nonterminal and/or terminal sym-
bols, including (as a special case) the empty string e.

e Each production rule is associated with a probability,
such that the sum of the production probabilities for any
given nonterminal V is equal to 1.

SCFG productions allowed in covariance models

A covariance model is a specific repetitive "profile SCFG"
architecture consisting of groups of model states that are
associated with base pairs and single-stranded positions
in an RNA secondary structure consensus. A covariance
model has seven types of states and production rules (Ta-
ble 1).

Each overall production probability is the independent
product of an emission probability e, and a transition
probability t,, both of which are position-dependent pa-
rameters that depend on the state v (analogous to hidden
Markov models). For example, a particular pair (P) state v
produces two correlated letters a and b (e.g. one of 16 pos-
sible base pairs) with probability e (a, b) and transits to
one of several possible new states Y of various types with
probability ¢,(Y). A bifurcation (B) state splits into two
new start (S) states with probability 1. The E state is a spe-
cial case € production that terminates a derivation.

A CM consists of many states of these seven basic types,
each with its own emission and transition probability dis-
tributions, and its own set of states that it can transition
to. Consensus base pairs will be modeled by P states, con-
sensus single stranded residues by L and R states, inser-
tions relative to the consensus by more L and R states,
deletions relative to consensus by D states, and the
branching topology of the RNA secondary structure by B,

http://www.biomedcentral.com/1471-2105/3/18

input multiple alignment:

[structure] . xXx>>>XXXX<X<<X>>X>.XXX.<<<.
human . AAGACUUCGGAUCUGGCG.ACA.CCC.
mouse aUACACUUCGGAUG-CACC.AAA.GUGa

orc .AGGUCUUC-GCACGGGCAgCCAcéJUCZ.8
1 5 10 15 20 5

. ucC
example structure: U G
C'G 10
A
sA-U
G'C 15
A 1
A VagCeh
.CC.Cn
Figure |

An example RNA sequence family. Top: a toy multiple
alignment of three sequences, with 28 total columns, 24 of
which will be modeled as consensus positions. The [struc-
ture] line annotates the consensus secondary structure: >
and < symbols mark base pairs, x's mark consensus single
stranded positions, and .'s mark "insert" columns that will not
be considered part of the consensus model. Bottom: the sec-
ondary structure of the "human" sequence.

S, and E states. The procedure for starting from an input
multiple alignment and determining how many states,
what types of states, and how they are interconnected by
transition probabilities is described next.

From consensus structural alignment to guide tree

Figure 1 shows an example input file: a multiple sequence
alignment of homologous RNAs, with a line describing
the consensus RNA secondary structure. The first step of
building a CM is to produce a binary guide tree of nodes
representing the consensus secondary structure. The guide
tree is a parse tree for the consensus structure, with nodes
as nonterminals and alignment columns as terminals.

The guide tree has eight types of nodes (Table 2).

These consensus node types correspond closely with a
CM's final state types. Each node will eventually contain
one or more states. The guide tree deals with the consen-
sus structure. For individual sequences, we will need to
deal with insertions and deletions with respect to this con-
sensus. The guide tree is the skeleton on which we will or-
ganize the CM. For example, a MATP node will contain a
P-type state to model a consensus base pair; but it will also
contain several other states to model infrequent insertions
and deletions at or adjacent to this pair.

The input alignment is first used to construct a consensus
secondary structure (Figure 2) that defines which aligned
columns will be ignored as non-consensus (and later
modeled as insertions relative to the consensus), and
which consensus alignment columns are base-paired to
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Table 2:
Node Description Main state type
MATP (pair) P
MATL (single strand, left) L
MATR (single strand, right) R
BIF (bifurcation) B
ROOT (root) S
BEGL (begin, left) S
BEGR (begin, right) S
END (end) E

each other. Here I assume that both the structural annota-
tion and the labeling of insert versus consensus columns
is given in the input file, as shown in the line marked
"[structure]" in the alignment in Figure 1. Alternatively,
automatic methods might be employed. A consensus
structure could be predicted from comparative analysis of
the alignment [22,45,46]. The consensus columns could
be chosen as those columns with less than a certain frac-
tion of gap symbols, or by a maximum likelihood criteri-
on, as is done for profile HMM construction [18,24].

Given the consensus structure, consensus base pairs are
assigned to MATP nodes and consensus unpaired col-
umns are assigned to MATL or MATR nodes. One ROOT
node is used at the head of the tree. Multifurcation loops
and/or multiple stems are dealt with by assigning one or
more BIF nodes that branch to subtrees starting with
BEGL or BEGR head nodes. (ROOT, BEGL, and BEGR start
nodes are labeled differently because they will be expand-
ed to different groups of states; this has to do with avoid-
ing ambiguous parse trees for individual sequences, as
described below.) Alignment columns that are considered
to be insertions relative to the consensus structure are ig-
nored at this stage.

In general there will be more than one possible guide tree
for any given consensus structure. Almost all of this ambi-
guity is eliminated by three conventions: (1) MATL nodes
are always used instead of MATR nodes where possible,
for instance in hairpin loops; (2) in describing interior
loops, MATL nodes are used before MATR nodes; and (3)
BIF nodes are only invoked where necessary to explain
branching secondary structure stems (as opposed to un-
necessarily bifurcating in single stranded sequence). One
source of ambiguity remains. In invoking a bifurcation to
explain alignment columns i..j by two substructures on
columns i..k and k + 1..j, there will be more than one pos-
sible choice of k if i..j is a multifurcation loop containing
three or more stems. The choice of k impacts the perform-
ance of the divide and conquer algorithm; for optimal

http://www.biomedcentral.com/1471-2105/3/18

consensus structure: guide tree: 2{MATL_2]
3 MATL 3]
4qMATP 614 15 MATL 16]
5qMATP_7p13  164qMATP 17 )27
(MATR 812 174 MATP 1826
6qMATP 911 18<[MATL 19]
7{{[MATL 10] 194 MATP 20 )25
8<[[MATL 11] 21 MATL 21]
9 MATL 12] 22 MATL 22]
10 MATL 13] 23MATL 23]

Figure 2

The structural alignment is converted to a guide
tree. Left: the consensus secondary structure is derived
from the annotated alignment in Figure |. Numbers in the
circles indicate alignment column coordinates: e.g. column 4
base pairs with column 14, and so on. Right: the CM guide
tree corresponding to this consensus structure. The nodes
of the tree are numbered |..24 in preorder traversal (see
text). MATP, MATL, and MATR nodes are associated with
the columns they generate: e.g,, node 6 is a MATP (pair)
node that is associated with the base-paired columns 4 and
14.

time performance, we will want bifurcations to split into
roughly equal sized alignment problems, so I choose the
k that makes i..k and k + 1..j as close to the same length as
possible.

The result of this procedure is the guide tree. The nodes of
the guide tree are numbered in preorder traversal (e.g. a
recursion of "number the current node, visit its left child,
visit its right child": thus parent nodes always have lower
indices than their children). The guide tree corresponding
to the input multiple alignment in Figure 1 is shown in
Figure 2.

From guide tree to covariance model

A CM must deal with insertions and deletions in individ-
ual sequences relative to the consensus structure. For ex-
ample, for a consensus base pair, either partner may be
deleted leaving a single unpaired residue, or the pair may
be entirely deleted; additionally, there may be inserted
nonconsensus residues between this pair and the next pair
in the stem. Accordingly, each node in the master tree is
expanded into one or more states in the CM as follows (Ta-
ble 3)

Here we distinguish between consensus ("M", for
"match") states and insert ("I") states. ML and IL, for ex-
ample, are both L type states with L type productions, but
they will have slightly different properties, as described
below.
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Table 3:
Node States total # states # of split states # of insert states
MATP [MPMLMRD]ILIR 6 4 2
MATL [MLD] IL 3 2 |
MATR [MR D] IR 3 2 |
BIF [B] | | 0
ROOT [STILIR 3 | 2
BEGL [S] | | 0
BEGR [STIL 2 | |
END [E] | | 0

The states are grouped into a split set of 1-4 states (shown
in brackets above) and an insert set of 0-2 insert states. The
split set includes the main consensus state, which by con-
vention is first. One and only one of the states in the split
set must be visited in every parse tree (and this fact will be
exploited by the divide and conquer algorithm). The in-
sert state(s) are not obligately visited, and they have self-
transitions, so they will be visited zero or more times in
any given parse tree.

State transitions are then assigned as follows. For bifurca-
tion nodes, the B state makes obligate transitions to the S
states of the child BEGL and BEGR nodes. For other nodes,
each state in a split set has a possible transition to every in-
sert state in the same node, and to every state in the split
set of the next node. An IL state makes a transition to itself,
to the IR state in the same node (if present), and to every
state in the split set of the next node. An IR state makes a
transition to itself and to every state in the split set of the
next node.

This arrangement of transitions guarantees that (given the
guide tree) there is unambiguously one and only one
parse tree for any given individual structure. This is impor-
tant. The algorithm will find a maximum likelihood parse
tree for a given sequence, and we wish to interpret this re-
sult as a maximum likelihood structure, so there must be
a one to one relationship between parse trees and second-
ary structures [47].

The final CM is an array of M states, connected as a direct-
ed graph by transitions ¢, (y) (or probability 1 transitions
v — (y,z) for bifurcations) with the states numbered such
that (y,z) 2 v. There are no cycles in the directed graph oth-
er than cycles of length one (e.g. the self-transitions of the
insert states). We can think of the CM as an array of states
in which all transition dependencies run in one direction;
we can do an iterative dynamic programming calculation
through the model states starting with the last numbered
end state M and ending in the root state 1. An example

CM, corresponding to the input alignment of Figure 1, is
shown in Figure 3.

As a convenient side effect of the construction procedure,
it is guaranteed that the transitions from any state are to a
contiguous set of child states, so the transitions for state v
may be kept as an offset and a count. For example, in Fig-
ure 3, state 12 (an MP) connects to states 16, 17, 18, 19,
20, and 21. We can store this as an offset of 4 to the first
connected state, and a total count of 6 connected states.
We know that the offset is the distance to the next non-
split state in the current node; we also know that the count
is equal to the number of insert states in the current node,
plus the number of split set states in the next node. These
properties make establishing the connectivity of the CM
trivial. Similarly, all the parents of any given state are also
contiguously numbered, and can be determined analo-
gously. We are also guaranteed that the states in a split set
are numbered contiguously. This contiguity is exploited
by the divide and conquer implementation.

Parameterization

Using the guide tree and the final CM, each individual se-
quence in the input multiple alignment can be converted
unambiguously to a CM parse tree, as shown in Figure 4.
Counts for observed state transitions and singlet/pair
emissions are then collected from these parse trees. The
observed counts are converted to transition and emission
probabilities by standard procedures. I calculate maxi-
mum a posteriori parameters, using Dirichlet priors.

Comparison to profile HMMs

The relationship between an SCFG and a covariance mod-
el is analogous to the relationship of hidden Markov mod-
els (HMMs) and profile HMMs for modeling multiple
sequence alignments [18,19,24]. A comparison may be
instructive to readers familiar with profile HMMs. A pro-
file HMM is a repetitive HMM architecture that associates
each consensus column of a multiple alignment with a
single type of model node - a MATL node, in the above
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IL_2]ROOT 1

MATL 2

MATL 3

B 10| BIF 4
s 11|BEGL 5

MATP 6 ML 13

"split set"

inserts MATP 6

N A )
.'}Zg Wy2-e¥ ?i X
VOo<NoN

"split set" MR 20| yiaTP 7

MATP 7 2

D 25| MATR 8

inserts

"split set" MATE 9

MATR 8 L35

D 341 MATL 10

insert

D 37| MATL 11

D 40| MATL 12

D 43| MATL 13

E 45|END 14
S 46
T 27| BEGR 15
ML 48
D 49| MATL 16
IL_50
MP 51
ML 52
MR 53
D 54
IL_55
IR_56
7~ vp 57
ML 58
MR 59
D_60
IL_61
IR_62
ML 63
D 64| MATL 19
IL_65
MP 66
ML 67
MR 68
D 69
IL_70
IR_71
ML 72
D 73| MATL 21
IL_74
ML 75
D 76| MATL 22
IL_77
ML 78
D 79| MATL 23
IL_80
E 81|END 24

MATP 17

MATP 18

MATP 20

Figure 3

A%:omplete covariance model. Right: the CM corresponding to the alignment in Figure |. The model has 81 states (boxes,
stacked in a vertical array). Each state is associated with one of the 24 nodes of the guide tree (text to the right of the state
array). States corresponding to the consensus are in white. States responsible for insertions and deletions are gray. The transi-
tions from bifurcation state BIO to start states S| | and S46 are in bold because they are special: they are an obligate (probabil-
ity 1) bifurcation. All other transitions (thin arrows) are associated with transition probabilities. Emission probability
distributions are not represented in the figure. Left: the states are also arranged according to the guide tree. A blow up of part
of the model corresponding to nodes 6, 7, and 8 shows more clearly the logic of the connectivity of transition probabilities (see
main text), and also shows why any parse tree must transit through one and only one state in each "split set".
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human: mouse: orc:
ALzl Alvu_<]
AV 4] A GO—7]
Alvc 7] U L]
A 7]
[B_10]
G 2]C  Glwss]
Gve=2]C U [wag] Ulveis]A  GIves]C
Alvrs]U GLwrs1C Clvr2]G vr24]C  GLve=]U
vr2a]A  G@ves7]C Alveie]U ClweslG Clve27]G Clvies]
Clvr27]G Cvies] [vR24] A Alve=7]U U[wss] Alvrss]U
U ss] GLvees]C Clvr=27]G Clvies] U se] GLOE=e]
U se] AvC72] U s3] Clveee]G Cvzse] Clvczz]
Clvise] Clvczs] U se] AL 72] Clvzs]
GlvLaz] AvLze] Clvzse] AvLzs] AlvLzs]
G[vaz] A[vi7e] C[=a
Figure 4

Example parse trees. Parse trees are shown for the three sequences/structures from Figure |, given the CM in Figure 3. For
each sequence, each residue must be associated with a state in the parse tree. (The sequences can be read off its parse tree by
starting at the upper left and reading counterclockwise around the edge of parse tree.) Each parse tree corresponds directly to
a secondary structure — base pairs are pairs of residues aligned to MP states. A collection of parse trees also corresponds to a
multiple alignment, by aligning residues that are associated with the same state — for example, all three trees have a residue
aligned to state ML4, so these three residues would be aligned together. Insertions and deletions relative to the consensus use

nonconsensus states, shown in gray.

notation. Each node contains a "match", "delete", and
"insert" HMM state - ML, IL, and D states, in the above
notation. The profile HMM also has special begin and end
states. Profile HMMs could therefore be thought of as a
special case of CMs. An unstructured RNA multiple align-
ment would be modeled by a guide tree of all MATL
nodes, and converted to an unbifurcated CM that would
essentially be identical to a profile HMM. (The only differ-
ence is trivial; the CM root node includes a IR state, where-
as the start node of a profile HMM does not.) All the other
node types (especially MATP, MATR, and BIF) and state
types (e.g. MP, MR, IR, and B) are SCFG augmentations
necessary to extend profile HMMs to deal with RNA sec-
ondary structure.

The SCFG Inside and Outside algorithms are analogous to
the Forward and Backward algorithms for HMMs [24,48].
The CYK/inside parsing algorithm is analogous to the Vi-
terbi HMM alignment algorithm run in the forward direc-
tion. CYK/outside is analogous to a Viterbi DP algorithm
run in the backwards direction.

Divide and conquer algorithm

Notation

[ user, v, w, y, and z as indices of states in the model,
where r < (v,w,y) < z. These indices will range from 1..M,
for a CM G that contains M states. G, refers to a subgraph

of the model, rooted at state r and ending at state z, for a
contiguous set of states r..z. G', without a subscript, refers
to a subgraph of the model rooted at state r and ending at
the highest numbered E state descendant from state r. The
complete model is G}\,I ,or Gl, orjustG.

S, refers to the type of state v; it will be one of seven types
{D,P,LR,S,E,B}. C, is a list of children for state v (e.g. the
states that v can transit to); it will contain up to six contig-
uous indices y with v <y <M. P, is a list of parents for state
v (states that could have transited to state v); it will contain
up to six contiguous indices y with 1 <y <. (P, parent lists
should not be confused with P state types.)

luseg h, i, j, k p, and ¢ as indices referring to positions in
a sequence x, where g < h <p < g and i <j for all subse-
quences of nonzero length. These indices range from 1..L,
for a sequence of length L. Some algorithms will also use
d to refer to a subsequence length, whered =j-i+ 1 fora
subsequence x;..x;.

The algorithms will have to account for subsequences of
zero length (because of deletions). By convention, these
will be in the off-diagonal wherej=1i-1 ori=j+ 1. This
special case (usually an initialization condition) is the rea-
son for the qualification that i < j for subsequences of
nonzero length.
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The CYK/inside algorithm calculates a three-dimensional
matrix of numbers o,(i,j), and CYK/outside calculates
numbers B,(i,j). I will refer to v (state indices) as deck co-
ordinates in the three-dimensional matrices, whereas j
and i (sequence positions) are row and column coordi-
nates within each deck. o, and B, refer to whole two-di-
mensional decks containing scores o, (i,j) and B, (i,j) for
a particular state v. The dividing and conquering will be
done in the v dimension, by choosing particular decks as
split points.

The CYK/inside algorithm

The CYK/inside algorithm iteratively calculates o, (i,j) -
the log probability of the most likely CM parse subtree
rooted at state v that generates subsequence x;..x; of se-
quence x. The calculation initializes at the smallest sub-
graphs and subsequences (e.g. subgraphs rooted at E
states, generating subsequences of length 0), and iterates
outwards to progessively longer subsequences and larger
CM subgraphs.

For example, if we're calculating o,(i,j) and S, = P (that is,
v is a pair state), v will generate the pair x;, x; and transit to
a new state y (one of its possible transitions C,) which
then will have to account for the smaller subsequence
Xi.1--%j.1. The log probability for a particular choice of next
state y is the sum of three terms: an emission term log
e,(x;x;), a transition term log ¢,(y), and an already calcu-
lated solution for the smaller optimal parse tree rooted at
¥, 0y (i + 1,j - 1). The answer for a, (i,j) is the maximum
over all possible choices of child states y that v can transit
to.

The algorithm INSIDE is as follows:

Input: A CM subgraph G} and subsequence x,..x,.
Output: Scoring matrix decks a,..o.,.
INSIDE(r,z; g.q)
forv< zdown tor
forj«—g-1togq
fori<j+1downtog
de—j-i+1
if S,=DorS$:
oy, (i j) = HEI%X [(xy (i, j) +log t, ()]
elseif S, = Pyan"d d=2:
o, (i, j) = log e, (x; x;) + max [oy, (i+ 1,j-1) +
logt, ()] reGy
elseif S,=Landd = 1:
a, (i, j) = loge, (x;) + max [o, (i +1,)) +logt,
03] et
elseif S,=Randd=>1:

a, (i, j) =loge, (x]) + mzéx [OLy (i,j-1)+logt, (y)]
rely
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else if S, = B:
(y, z) « left and right S children of state v
o, (i j) = max [oy, (i k) + oz (ke + 1, )]
elseif S, =Eandd=0:
o,(i, j) = 0 (initializations)
else
a,(i, j) = -e° (initializations)

Given a sequence x of length L and a CM G of length M,
we could call INSIDE (1, M; 1, L) to align the whole model
(states 1..M) to the whole sequence (x;..x; ). When INSIDE
returns, o.1(1, L) would contain the log probability of the
best parse of the complete sequence with the complete
model.

We do not have to keep the entire o three-dimensional
matrix in memory to calculate these scores. As we reach
higher decks o, in the three dimensional dynamic pro-
gramming matrix, our calculations no longer depend on
certain lower decks. A lower deck y can be deallocated
whenever all the parent decks P, that depend on it have
been calculated. (The implementation goes even further
and recycles decks when possible, saving some initializa-
tion steps and many memory allocation calls; for exam-
ple, since values in all E decks are identical, only one E
deck needs to be calculated and that precalculated deck
can be reused whenever S = E.)

This deallocation rule has an important property that the
divide and conquer algorithm takes advantage of when
solving smaller subproblems for CM subgraphs rooted at
some state w. When the root state w is an S state, the o ma-
trix returned by INSIDE contains only one active deck o,
(No lower state > w can be reached from any state <w with-
out going through w, so all lower decks are deallocated
once deck w is completed.) When the root state w is the
first state in a split set w..y (see below for more explana-
tion), all (and only) the decks o,..0, are active when IN-
SIDE returns.

In some cases we want to recover the optimal parse tree it-
self, not just its score. The INSIDET routine is a modified
version of INSIDE. It keeps an additional "shadow ma-
trix" t,(i,j). A t,(i,j) traceback pointer either records the in-
dex y that maximized o, (i,j) (for state types D,S,P,L,R) or
records the split point k that maximized o,,(i,j) for a bifur-
cation (B) state. The T shadow matrix does not use the
deallocation rules - INSIDET can only be called for prob-
lems small enough that they can be solved within our
available memory space. Thus the INSIDET? routine works
by calling INSIDE in a mode that also keeps a shadow ma-
trix T, and then calls a recursive traceback starting with v,

i, J:
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Input: A shadow matrix t for CM subgraph GV rooted at
state v, and subsequence x;..x;.
Output: An optimal parse tree T.
TRACEBACK(v,1,j)
if S, = E:
attach v
elseif S, =S or D:
attach v
TRACEBACK(t, (i,§), i, j))
elseif S, = P:
attach x;, v, x;
TRACEBACK(t,(i, j), i+ 1,j- 1)
elseif S, = L:
attach x;, v
TRACEBACK(1,(i, j), i + 1, j)
elseif S, = R:
attach v, x;
TRACEBACK(t,(i, ), i, j - 1)
else if S, = B:
(y, z) « left and right S children of state v
attach v
TRACEBACK(y, i, 1,(i, j))
TRACEBACK(z, 1,(i, j) + 1, j)

The CYK/outside algorithm

The CYK/outside algorithm iteratively calculates B,(i, j),
the log probability of the most likely CM parse tree for a
CM generating a sequence x..x; excluding the optimal
parse subtree rooted at state v that accounts for the subse-
quence x;..x;. The calculation initializes with the entire se-
quence excluded (e.g. (1, L) = 0), and iterates inward to
progressively shorter and shorter excluded subsequences
and smaller CM subgraphs.

A complete implementation of the CYK/outside algo-
rithm requires first calculating the CYK/inside matrix o
because it is needed to calculate 3, when the parent of v is
a bifurcation [24,43,44]. However, the divide and con-
quer algorithm described here only calls OUTSIDE on
unbifurcated, linear CM subgraphs (only the final state z
may be a B state; there are no internal bifurcations that
lead to branches in the model). Thus the parent of a state
v is never a bifurcation, and the implementation can
therefore be streamlined as follows:

Input: An unbifurcated CM subgraph @I and subse-
quence X,..x;.

Output: Scoring matrix decks j3,..3,.
OUTSIDE(r,z; g,q)

Byli,j) = -V v, i, j

B8 q) <0

http://www.biomedcentral.com/1471-2105/3/18

forve—r+1toz
forj< gdowntog-1
fori—gtoj+1

By (i.j)+logt,(v):S, =D,SE
By (i—1,j+1)+logt, (v)+loge, (xi1,xj41): S, =P
By (i,j) = max o
yeP, B, (i-1j)+logt,(v)+loge,(xiy):S, =L
By (i,j+1)+logt, (v)+loge, (xj1 ): S, =R

As with INSIDE, we do not keep the entire B matrix in
memory. A deck B, can be deallocated when all child
decks C, that depend on the values in B, have been calcu-
lated. This means that if the last deck z is a bifurcation or
end state, B, will be the only active allocated deck when
OUTSIDE returns. If z is the last state in a split set w..z, all
(and only) the split set decks B,,.., will be active when
OUTSIDE returns.

Using CYKl/inside and CYK/outside to divide and conquer

Now, for any chosen state v, argmax;; [o, (i, j) + B,(1,j)]
tells us which cell v, i, j the optimal parse tree passes
through, conditional on using state v in the parse. We
know that any parse tree must include all the bifurcation
and start states of the CM, so we know that the optimal
alignment must use any chosen bifurcation state v and its
child start states w and y. Thus, we are guaranteed that
(when S,=Band C, =w, y):

Tﬁ[ﬁv(i'j)+aw(i'k)+ay(k+1'j)]

is the optimal overall alignment score, and we also know
that

(i,k,j) = arg;pilx[ﬁv(i'ljr)+ocw(i’,k')+
Lk

ocy(k’+1,j')]

gives us a triplet that identifies three cells that must be in
the optimal alignment - (v, i, j), (w, i, k), and (y, k + 1, j).
This splits the remaining problem into three smaller sub-
problems - an alignment of the sequence x;..x;, to a CM
subgraph w..y - 1, an alignment of the sequence x;, ;..x; to
a CM subgraph y..M, and an alignment of the two-piece
sequence X1..2;.1//xj,1..X to a CM subgraph 1..v.

The subproblems are then themselves split, and this split-
ting can continue recursively until all the bifurcation tri-
plets on the optimal parse tree have been determined.
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At this point the remaining alignment subproblems might
be small enough to be solved by straightforward applica-
tion of the standard CYK/inside algorithm (e.g. INSIDE?).
However, this is not guaranteed to be the case. A more
general division strategy is needed that does not depend
on splitting at bifurcations.

For the more general strategy we take advantage of the fact
that we know that the optimal parse tree must also in-
clude one and only one state from the split set of each
node (e.g. the non-insert states in the node). Let w..y be
the indices of a split set of states in the middle of the cur-
rent model subgraph. (w..y can be at most 4 states.) We
know that

(Vrifj) = a}rgm?;x_/[av' ( i,'j,) +By ( i,'j,)]
vew..y,i,j

gives us a new cell (v, i, j) in the optimal parse tree, and
splits the problem into two smaller problems. This strate-
gy can be applied recursively all the way down to single
nodes, if necessary. We can therefore guarantee that we
will never need to carry out a full CYK/inside alignment
algorithm on any subproblem. The most memory-inten-
sive alignment problem that needs to be solved is the very
first split. The properties of the first split determine the
memory complexity of the algorithm.

The bifurcation-dependent strategy is a special case of this
more general splitting strategy, where the B state is the
only member of its split set, and where we also take ad-
vantage of the fact that a,(i,j) = max;, o, (i, k) + o, (k + 1,j).
By carrying out the max;, operation during the split, rather
than before, we can split the current problem into three
optimal pieces instead of just two.

If we look at the consequences of these splitting strategies,
we see we will have to deal with three types of problems

(Figure 5):

e A generic problem means finding the optimal alignment
of a CM subgraph G to a contiguous subsequence Xg.-Xg.
The subgraph G, corresponds to a complete subtree of
the CM's guide tree - e.g. state r is a start (S), and state z is
an end (E). G, may contain bifurcations. The problem is
solved in one of two ways. If G, contains no bifurcations,
it is solved as a wedge problem (see below). Else, the
problem is subdivided by the bifurcation-dependent strat-
egy: an optimal triple (i, k, j) is found for a bifurcation
state v and its children w, y, splitting the problem intoa V
problem and two generic problems.

® A wedge problem means finding the optimal alignment of
an unbifurcated CM subgraph G, to a contiguous subse-
quence x,..x;. State z does not have to be a start state (S);
it may be a state in a split set (MP, ML, MR, or D). State z
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generic_splitter
(rz; g,9) w y

VANJN

ioq i ko k+1 i
v generic generic
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fnoBinr.2) (rv; g,i; j,a), (w,y-15 k), (y,z; k+1,j)
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wedge_splitter v
> >
(rz; 9,9) v ii
g ia g i ia i i
v wedge
(r,v; g,i; ,a), (v,2; irj)
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v
V_splitter >~ >~ V)
(rz; g,h; p,q)
2 2
h h
g i P iaq g i v iq i v P
(rv; i3 ,a), (v.z; ih; p.j)
Figure 5

The three types of problems that need to be split.
The sequence axis (e.g. Xg..Xg) is horizontal. The model sub-
graph axis for a contiguous set of states (e.g. states r..z) is
vertical, where a solid lines means an unbifurcated model
subgraph, and a dashed line means a model subgraph that
may contain bifurcations. Closed circles indicate "inclusive
of", and open circles indicate "exclusive of".

is an end (E). A wedge problem is solved by the split set-
dependent strategy: an optimal (v, i, j) is found, splitting
the problem into a V problem and a smaller wedge prob-
lem.

e A V problem consists of finding the optimal alignment of
an unbifurcated CM subgraph G, to a noncontiguous,
two-piece sequence x,..x,//x,..Xy, exclusive of the residues
x, and x,, (open circles in Figure 5). State r can be a start
state or any state in a split set; the same is true forz. AV
problem is solved by a split set-dependent strategy: an op-
timal (v, i, j) is found, splitting the problem into two V
problems.

The three recursive splitting algorithms to solve these
problems are as follows:

The generic_splitter routine

Input: A generic problem, for CM subgraph G, and sub-
sequence X, ;.

Output: An optimal parse subtree T.

GENERIC_SPLITTER(r, z; g,q)

if no bifurcation in G :

return WEDGE_SPLITTER(r,z; g,q)
else
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v < lowest numbered bifurcation state in subgraph
Gl
w,y < left and right S children of v.
B, < OUTSIDE(r,w; g,q)
o, < INSIDE(w,y-1; g,q)
0Ly INSIDE(y,z; g,q)
(i,kj) < arg;,rlflx[aw(i',k')+ay (k'+1,j')+|3,,(i',j')]
Lk
T; < V_SPLITTER(r,v; gi; j.q)
T, < GENERIC_SPLITTER(w,y-1; i,k)
T3 < GENERIC_SPLITTER(y,z; k+1,j)
Attach S state w of T, as left child of B state v in T;.
Attach S state y of T3 as right child of B state v in T,.
return T;.

The wedge_splitter routine
Input: A wedge problem, for unbifurcated CM subgraph
G; and subsequence x, .
Output: An optimal parse subtree T.
WEDGE_SPLITTER(r,z; g,q)
(w..y) < a split set chosen from middle of G,
(OLw..OLy) « INSIDE(w,z; g,q)
(Buw--By) < OUTSIDE(ry; g8.9)
(v.i,j) < argmax[ ooy (,§°)+ By (1',77) ]
vi,j
T; < V_SPLITTER(r,v; gi; j,q)
T, < WEDGE_SPLITTER(v,Z; i,j)
Attach T, to T; by merging at state v.
return T;.

The V_splitter routine
Input: A V problem, for unbifurcated CM subgraph G,
and two-part subsequence X, ;,//x, 4.

Output: An optimal parse subtree T.
V_SPLITTER(r,z gh; p.q)
(w..y) « asplit set chosen from middle of G,
(o--0,) <= VINSIDE(w,z; g h; p,q)
(Bu--By) < VOUTSIDE(ry; gh; p.q)

arg max

Lo (°5) + By (7.57) ]
v=w.y,i'=g.h,j=p..q
T, < V_SPLITTER(r,v; gi; j,q)

T, « V_SPLITTER(v,z; i,h; p,j)
Attach T, to T; by merging at state v.

(v,i,j)«

return T;.

The vinside and voutside routines

The VINSIDE and VOUTSIDE routines are just INSIDE
and OUTSIDE, modified to deal with a two-piece subse-
quence Xg..xp//x,..x, instead of a contiguous sequence
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xg..x,. These modifications are fairly obvious. The range of
i, j is restricted so that i < h and j > p. Also, VINSIDE (w, z;
g h; p, q) initializes o, (h, p) = 0: that is, we know that se-
quence xy,..x, has already been accounted for by a CM
parse tree rooted at z.

Implementation

In the description of the algorithms above, some technical
detail has been omitted - in particular, a detailed descrip-
tion of efficient initialization steps, and details of how the
the dynamic programming matrices are laid out in mem-
ory. These details are not necessary for a high level under-
standing of the divide and conquer algorithm. However,
they may be necessary for reproducing a working imple-
mentation. Commented ANSI/C source code for a refer-
ence implementation is therefore freely available at
[http://www.genetics.wustl.edu/eddy/infernal/] under a
GNU General Public License. This code has been tested on
GNU/Linux platforms.

In this codebase, the CM data structure is defined in
structs.h. The CM construction procedure is in model-
maker. cHandmodelmaker(). The guide tree is construct-
ed in HandModelmaker(). A CM is constructed from the
guide tree by cm_from_master(). Individual parse trees
are constructed using the guide tree by transmogrify().
The divide and conquer algorithm is implemented in
smallcyk. c:CYKDivideAndConquer(), which will recur-
sively call a set of functions: the three splitting routines
GENERIC_SPLITTER(), wedge_splitter(), and v_splitter();
the four alignment engines INSIDE(), OUTSIDE(), VIN-
SIDE(), and VOUTSIDE(); and the two traceback routines
INSIDET() and VINSIDET().

Results and discussion

Memory complexity analysis

The memory complexity of normal CYK/inside is
O(N2M), for a model of M states and a query sequence of
N residues, since the full 3D dynamic programming ma-
trix is indexed N x N x M (and since N o< M, we can alter-
natively state the upper bound as O(N3)). The memory
complexity of the divide and conquer algorithm is O(N2
log M). The analysis that leads to this conclusion is as fol-
lows.

For a model with no bifurcations, the divide and conquer
algorithm will never require more than 10 decks in mem-
ory at once. In the case of two adjacent MATP nodes, we
will need six decks to store the scores for the current node
we're calculating, and four decks for the split set of the ad-
jacent node that we're connecting to (and dependent up-
on) (Figure 3).

Bifurcations will require some number of additional

decks for start states (BEGL_S and BEGR_S) to be kept. In
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INSIDE, whenever we reach a deck for a start state, we will
keep that deck in memory until we reach the parent bifur-
cation state. Half the time, that will mean waiting until
another complete subgraph of the model is calculated
(e.g. the subgraph rooted at the other start child of that bi-
furcation); that is, to calculate deck o, for a bifurcation v,
we need both decks o, and a,, for its child start states w
and y, so we have to hold on to o, until we reach a,,. In
turn, the subgraph rooted at w might contain bifurcations,
so our calculation of o, might require additional decks to
be kept. Each start deck we reach in the INSIDE iteration
means holding one extra deck in memory, and each bifur-
cation we reach means deallocating the two start decks it
depends on; therefore we can iteratively calculate the max-
imum number of extra decks we will require:

.XM<—-1

forve—M-1to1l
xv+1+1:SU =S,
Xy;1—2:S, =B,

X,41 : elsewise.

Xy

return max, x,,

This number depends on the topology and order of eval-
uation of the states in the CM. Think of the bifurcating
structure of the CM as a binary tree numbered in preorder
traversal (e.g. left children are visited first, and have lower
indices than right children). If this is a complete balanced
tree with B bifurcations, we will need log,B extra decks. If
it is a maximally unbalanced tree in which bifurcations
only occur in left children, we will need B extra decks (all
the right children). If it is a maximally unbalanced tree in
which bifurcations only occur in right children, we will
only ever need 1 extra deck. A left-unbalanced binary tree
can be converted to a right-unbalanced binary tree just by
swapping branches. For a CM, we can't swap branches
without affecting the order of the sequence that's generat-
ed. We can, however, get the same effect by renumbering
the CM states in a modified preorder traversal. Instead of
always visiting the left subtree first, we visit the best sub-
tree first, where "best" means the choice that will optimize
memory usage. This reordering is readily calculated in
O(M) time (not shown; see cm. c:CMRebalance() in the
implementation). This way, we can never do worse than
the balanced case, and we will often do better. We never
need more than log,B extra decks. Since B <M, we can
guarantee a O(N2 log M) bound on memory complexity.

Time complexity analysis

The time complexity of the standard algorithm is O(MN?2
+ BN3), for a model of M states (B of which are bifurca-
tions) aligned to a sequence of N residues. Since B <M,
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and M o« N, we can also state the upper bound as O(MN3)
or O(N4).

The time complexity of the divide and conquer algorithm
depends on how close each split is to dividing a problem
into equal sized subproblems. In the most ideal case, each
call to GENERIC_SPLITTER could split into three sub-
problems that each contained 1/3 of the states and resi-
dues: splitting those three subproblems would only cost:

1V
3 x (—J x MN3
3

in time, e.g. only about 1/27 the time it took to split the
first problem. Thus in an ideal case the time requirement
is almost completely dominated by the first split, and the
extra time required to do the complete divide and conquer
algorithm could be negligible. In pathological cases, opti-
mal splits might lead to a series of very unequally sized
problems. We never need to do more splits than there are
states in the model, so we cannot do worse than O(M2N3)
in time.

An example of a pathological case is an RNA structure
composed of a series of multifurcation loops such that
each bifurcation leads to a small stem on one side, and the
rest of the structure on the other. In such a case, every call
to GENERIC_SPLITTER will split into a small subproblem
containing a small stem (e.g. only removing a constant
number of states and residues per split) and a large sub-
problem containing all the remaining states and se-
quence. This case can be avoided. It only arises because of
the decision to implement a simplified CYK/OUTSIDE al-
gorithm and always split at the highest bifurcations. Better
time performance could be guaranteed if a complete CYK/
OUTSIDE algorithm were implemented (at the cost of
complexity in the description and implementation of the
algorithm). This would allow us to choose a split point in
a generic problem at any state in the CM (for instance, in
the middle) regardless of its bifurcating structure.

In practice, empirical results on a variety of real RNAs (see
below) indicate that the extra time required to do the di-
vide and conquer is a small constant factor. A more com-
plex implementation does not seem to be necessary.

Empirical results

Six structural RNA families were chosen for empirical eval-
uations of the algorithm, using available RNA database re-
sources - tRNA [49], 5S ribosomal RNA [50], signal
recognition particle (SRP) RNA [51], RNase P [52], small
subunit (SSU) ribosomal RNA [53], and large subunit
(LSU) ribosomal RNA [54]. For each family, a secondary
structure annotated multiple alignment of four or five ex-
ample sequences was extracted, and used to construct a
CM.
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Table 4: Results of empirical tests of memory and CPU time required by CM structural alignment algorithms on six known structural

RNAs of various sizes.

tRNA 5S rRNA SRP RNA RNase P SSU rRNA LSU rRNA
# of consensus columns 72 116 301 379 1545 2898
# of consensus base pairs 21 35 89 113 462 794
# of consensus unpaired 30 46 123 153 621 1310
CM states (M) 230 357 927 1176 4789 9023
bifurcations (B) 2 | 4 7 30 65
Maximum extra decks needed | | 2 2 3 5
Example sequence length (N) 73 120 300 377 1542 2904
Full CYK RAM (MB) 2.6 10.7 168.9 336.7 22705.0 151349.7
Divide & conquer RAM (MB) 0.1 0.4 24 37 66.8 270.9
Full CYK CPU time (sec) 0.2 0.7 12.7 28.6 n.d. nd.
CYK CPU time, no trace (sec) 0.1 0.6 104 23.8 2614.8 25151.2
Divide & conquer time (sec) 0.2 0.9 228 37.8 3594.4 316494

The top of Table 4 shows some statistics about these align-
ments and CMs. The number of consensus columns in the
alignments ranges from 72 (tRNA) to 2898 (LSU rRNA);
about 55-60% are involved in consensus base pairs. The
number of CM states is consistently about 3-fold more
than the consensus alignment length, ranging from 230
states (tRNA) to 9023 (LSU). About 1/150 of the states in
each model are bifurcations. After optimal reordering of
the model states, the number of extra decks required by
the alignment algorithm is small, ranging up to 3 for SSU
and 5 for LSU rRNA. Therefore the minimum constant of
10 decks required in iterations across unbifurcated model
segments dominates the memory requirement. The mem-
ory required for extra decks does not have much impact
even for the largest structural RNAs. (Even without opti-
mal reordering, the number of extra decks required for
SSU and LSU are only 7 and 9, respectively. State reorder-
ing was only needed to assure a O(N2 log M) memory
complexity bound.)

To determine the memory and CPU time requirements for
a structural alignment, one example sequence from each
family was aligned to the CM. CPU time was measured
and memory requirements were calculated for three algo-
rithms: (1) the full CYK/inside algorithm, but in memory-
saving score-only mode (e.g. INSIDE(1,M; 1,L); (2) the
full CYK/inside algorithm, with shadow matrix and trace-
back to recover the optimal alignment (e.g. INSIDE? (1,M;
1,1)); and (3) the divide and conquer algorithm to recover
an optimal alignment (e.g. GENERIC_SPLITTER (1,M;
1,L)). The most important comparison is between the full
CYK/inside algorithm and the divide and conquer algo-
rithm. The score-only CYK/inside algorithm was included,
because a complete CYK alignment couldn't be done on
SSU and LSU rRNA (because of the steep memory require-

ment). In all cases where comparison could be done, the
scores and alignments produced by these algorithms were
verified to be identical.

The results of these tests are shown in the bottom half of
Table 1. The memory required by divide and conquer
alignment ranges up to 271 MB for LSU rRNA, compared
to a prohibitive 151 GB for the standard CYK algorithm.
The extra CPU time required by the divide and conquer is
small; usually about 20% more, with a maximum of
about two-fold more for SRP-RNA.

The same results are plotted in Figure 6. Memory require-
ments scale as expected: N3 for standard CYK alignment,
and better than N2 log N for the divide and conquer algo-
rithm. Empirical CPU time requirements scale similarly
for the two algorithms (N3-24 - N3-29). The observed per-
formance is better than the theoretical worst case of O
(N#). The proportion of extra time required by divide and
conquer is roughly constant over a wide range of RNAs.
The difference shown in Figure 6 is exaggerated because
times are plotted for score-only CYK, not complete CYK
alignment, in order to include CPU times for SSU and LSU
rRNA. Because score-only CYK does not keep a shadow
traceback matrix nor perform the traceback, it is about
20% faster than CYK alignment, as seen in the data in Ta-
ble 4.

Conclusions

The divide and conquer algorithm described here makes it
possible to align even the largest structural RNAs to sec-
ondary structure consensus models, without exceeding
the available memory on current computational hard-
ware. Optimal SSU and LSU rRNA structural alignments
can be performed in 70 MB and 270 MB of memory, re-
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Empirical time and memory requirements for structural alignment. Plots of data from Table 41. Filled circles: divide
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sent weighted least-squares regression fits to the theoretically expected memory scaling: aN2 log N for divide and conquer
(solid line) and aN3 for standard CYK (dashed line). Right: CPU times in seconds on a log-log scale. Lines represent least-
squares regression fits to a power law (aNP). According to this fit, divide and conquer time (solid line) empirically scales as
N3-24 and standard CYK without traceback (dashed line) scales as N329. A line representing O(N4) scaling (the theoretical

upper bound on performance) is shown for comparison.

spectively. Previous structural alignment algorithms had
to sacrifice mathematical optimality to achieve ribosomal
RNA alignments.

The CPU time requirement of the alignment algorithm is
still significant, and even prohibitive for certain important
applications. However, CPU time is generally an easier is-
sue to deal with. A variety of simple parallelization strate-
gies are possible. Banded dynamic programming
algorithms (e.g. calculating only relevant parts of the ma-
trix) of various forms can also be explored, including not
only heuristic schemes, but also optimal algorithms based
on branch and bound ideas. (Properly implemented,
banded DP algorithms would also save additional memo-

1y.)

The algorithm takes advantage of the structure of covari-
ance models (profile SCFGs), splitting in the dimension
of the states of the model rather than in the sequence di-
mensions. The approach does not readily apply, therefore,
to unprofiled SCFG applications in RNA secondary struc-
ture prediction [34,36,55,56], where the states are fewer
and more fully interconnected. For these applications, it
would seem to be necessary to divide and conquer in the
sequence dimensions to obtain any significant improve-
ment in memory requirements, and it is not immediately
apparent how one would do this.

The current implementation of the algorithm is not bio-
logically useful. It is meant only as a testbed for the algo-

rithm. It outputs a raw traceback structure and alignment
score, not a standardly formatted alignment file. Most im-
portantly, the probability parameters for models are cal-
culated in a very quick and simple minded fashion, and
are far from being reasonable for producing robustly accu-
rate structural alignments. The next step along this line is
to produce good prior distributions for estimating better
parameters, by estimating mixture Dirichlet priors from
known RNA structures [57]. At this stage it would not be
meaningful to compare the biological alignment accuracy
of this implementation to (for instance) the excellent per-
formance of the RAGA genetic algorithm [27]. A biologi-
cally useful implementation with accurate alignment
performance is of course the eventual goal of this line of
work, but is not the point of the present paper.
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